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Abstract
Activation of metabotropic glutamate receptor subtype 4 has been shown to be efficacious in
rodent models of Parkinson’s disease. Artificial neural networks were trained based on a recently
reported high throughput screen which identified 434 positive allosteric modulators of
metabotropic glutamate receptor subtype 4 out of a set of approximately 155,000 compounds. A
jury system containing three artificial neural networks achieved a theoretical enrichment of 15.4
when selecting the top 2% compounds of an independent test dataset. The model was used to
screen an external commercial database of approximately 450,000 drug-like compounds. 1,100
predicted active small molecules were tested experimentally using two distinct assays of mGlu4
activity. This experiment yielded 67 positive allosteric modulators of metabotropic glutamate
receptor subtype 4 that confirmed in both experimental systems. Compared to the 0.3% active
compounds in the primary screen, this constituted an enrichment of 22 fold.
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Introduction
This study implements a machine learning approach (Artificial Neural Networks, ANNs) to
virtually screen commercially available compounds for positive allosteric modulators
(PAMs) of metabotropic glutamate receptor subtype 4 (mGlu4). Marino and Conn [1, 2]
showed that activation of mGlu4 is a viable option in treating Parkinson’s disease (PD), a
debilitating movement disorder that afflicts more than 1 million people in North America. In
Parkinson’s patients, there is a decrease in GABAergic transmission at the inhibitory
striatopallidal synapse within the basal ganglia; this abnormality is thought to contribute to
the motor dysfunctions observed in PD patients. Current PD treatments that are focused on
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dopamine-replacement strategies ultimately fail in most patients because of loss of efficacy
and severe adverse effects that worsen as the disease progresses [3, 2]. Selective activation
of mGlu4 could provide palliative benefit in PD. Further, selectively targeting mGlu4 avoids
the loss of efficacy and severe side-effects of long-term dopamine replacement therapy. In
2003 Maj [4, 2] et al. reported on the discovery of (−)-PHCCC, the first positive allosteric
modulator of mGlu4 with demonstrated selectivity for group III mGlus, but also a partial
antagonist for mGlu1 (group I). Around the same time, Mathiesen [5] et al. showed that
SIB-1893 and MPEP (a known mGlu5 antagonist [6]) are mGlu4 PAMs.

Despite the success of many GPCR-based drug discovery programs, many of the developed
ligands lack selectivity. The traditional approach to target the endogenous ligand
(orthosteric)-binding site has suffered from a paucity of suitably subtype-selective ligands as
orthosteric binding sites are highly conserved between GPCR subtypes. An alternative
approach is to target allosteric sites that are topographically distinct from the orthosteric site,
either enhancing or inhibiting receptor activation [7]. Discovery and characterization of
allosteric modulators of GPCRs has gained significant momentum over the last few years,
especially since the clinical validity of GPCR allosteric modulators was demonstrated with
two allosteric modulators entering the market [8, 9]. Thus, allosteric modulation represents
an exciting novel means of targeting GPCRs particularly for CNS disorders, a therapeutic
area with one of the highest rates of attrition in drug discovery [10].

Recently, Niswender [11] et al. reported the discovery of 434 PAMs of mGlu4 from a high-
throughput screen of approximately 155,000 compounds. The study highlighted a series of
cyclohexyl amides joined to a substituted phenyl ring. The structures of these tested
molecules and their experimentally determined EC50 towards mGlu4 potentiation were
employed in the ANNs described in this paper. Engers et al. [12] discuss the synthesis and
evaluation of a set of heterobiarylamides optimized for penetrating the central nervous
system. Around the same time, several pyrazolo[3,4-d]pyrimidines were also described to be
novel mGlu4 positive allosteric modulators [13]. Two challenges in further developing
PAMs of mGlu4 as a PD treatment strategy are the low hit-rate of 0.3% in the original high-
throughput screen resulting in a small number of available ligands and the ‘flat’ structure
activity relationship (SAR) around the ‘proof of concept’ compound PHCCC. Even slight
structural modifications lead to complete loss of activity for the reported compounds [14].
However, successful modifications of PHCCC were reported later by our group [15]. The
present study addressed both challenges by identifying additional PAMs from commercially
available compound libraries and exploring the chemical space around the known active
compounds.

Quantitative structure activity relationship (QSAR) models describe the often complex, non-
linear relation between the chemical and physical properties of molecules and their
biological activity; for a review of different methods see Todeschini et al. [16, 17]. Classical
QSAR was introduced by Hansch et al. by deriving biological activity from electron density
[18]. In 1988 Cramer [19] introduced Comparative Molecular Field Analysis (CoMFA.)
CoMFA establishes 3D-QSAR by correlating sterics and electrostatics to the bioactivity
data. This approach was expanded into the Comparative Molecular Similarity Index
Analysis (CoMSIA) by Klebe [20] in 1994. However, both approaches rely on the spatial
alignment of small molecules sharing a common scaffold. The QSAR techniques employed
in the present and similar studies utilize 2D molecular fingerprints and 3D molecular
descriptors coupled with machine learning [21–23]. These descriptors are independent from
the orientation of the small molecule and the existence of a common scaffold. ANNs have
been successfully applied in biochemistry to generate QSAR models [23–27]. Our group
recently published a theoretical comparison of machine learning techniques for
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identification of compounds that are predicted allosteric modulators of the mGlu5 glutamate
response [28, 29].

In the present study, artificial neural networks (ANNs) were trained on descriptors computed
with the software package ADRIANA [30] linking chemical properties of small molecules
to their potency as PAMs of mGlu4. Fragment-independent scalar descriptors, 2D and 3D
surface and auto-correlation functions, and radial distribution functions are employed to
encode a large diversity of chemotypes into comparable mathematical representations [29].

Methods
Two independent assays for primary and confirmatory screen

The compounds identified in the virtual screen were ordered from ChemBridge and tested at
the Vanderbilt HTS facility. These compounds were screened in single point at a nominal 10
μM concentration employing the human mGlu4/Gqi5 calcium mobilization assay as well as
the rat mGlu4 thallium flux assay described in Niswender et al [31, 11]. Compounds
exceeding three standard deviations over the control EC20 response were then screened in
concentration-response curve format in both assays.

Preparing the input for the ANNs
Only 0.3% (432 molecules) of the whole data set (156,146 molecules) was active. For
training, the dataset was oversampled by a factor of 360 (see Fig. 1) [29]. This leads to a
data set with 311,234 molecules where approximately half of the data points were active and
the other half inactive.

Three-dimensional models of all 156,146 molecules from the original HTS were generated
using CORINA [32]. These models served as input for the ADRIANA [33] software
package. All 35 categories (scalar, 2D/3D auto-correlation, RDF (eight each), surface auto-
correlation (three), see Table 1) were computed implementing the default values in each
category. Approximately 4% of all molecules were not properly encoded by ADRIANA and
removed from the data set. The final data set consisted of 298,914 data points.

Training the ANN on the logarithm of the half maximal effective concentration EC50

The experimentally determined EC50 values of the active compounds ranged from 0.4 μM
to 15.8 μM. To distinguish between active and inactive compounds, all inactive compounds
were set to an arbitrary potency of 1 mM. The output for training the ANN consisted of the
natural logarithm of the ln(EC50) values ranging from −14.7 (most active) over −11.1 (least
active) to −6.9 (inactive). The root mean square deviation (rmsd) between experimental and
predicted EC50 values was employed as objective function in training the ANNs:

(1)

where expi is the experimentally determined ln(EC50) value and predi the predicted ln(EC50)
value.

From the 298,914 data points in the oversampled data set, 239,132 (80%) were employed in
the actual training of the ANN. The monitoring data set consisted of 29,891 data points
(10%). The rmsd between experimental and predicted ln(EC50) was computed for the
monitoring data set after each iteration over the full training data set. Once the rmsd was
minimized, the training was terminated, and the rmsd of the remaining 10% (independent
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data set) computed (see Table 2). Care was taken to exclude overlap between training,
monitor, and independent data set.

Overall structure of the ANNs and the jury system
The trained ANNs consisted of the input layer with up to 1,252 chemical descriptors, the
hidden layer consisting of eight neurons, and one neuron in the output layer predicting the
ln(EC50) of the described molecule. The sigmoid function S(x) = 1/(1+exp(−x)) served as
activation function of the neurons. The ANNs were trained by implementing resilient back-
propagation of errors [34], a supervised learning approach. The training was terminated after
up to 40,000 iterations when the monitoring dataset achieved its minimum rmsd. It took up
to 13 hours per network using eight cores of a core2 quad 2.33GHz Intel Xeon
microprocessor in parallel on the 64-bit version of Red Hat Enterprise Linux 5.2.

The outputs of the three best ANNs were used as input for a jury ANN that consisted of
three inputs, four hidden neurons, and one output (Fig. 2). The training of the jury ANN
terminated after 290 steps.

Selection of the optimal set of descriptors of chemical structure
It is crucial to select the optimal set of descriptors from the 35 available categories. In a top-
down approach, the least significant categories for predicting ln(EC50) were successively
removed to increase the predictive power of the according ANNs. The advantage lies in
removing degrees of freedom from the ANN by reducing the number of inputs. Since the
number of data points stays the same, the signal-to-noise ratio improves. This procedure is
described in detail elsewhere [29].

The input sensitivity of each of the 27 non-scalar descriptor categories was determined as
norm over the individual input sensitivity values within this category. The descriptor
categories were sorted by input sensitivity. In each step, categories comprising the least 10%
of input sensitivity were removed. This process was repeated until the quality measures were
optimized (see Table 2).

Enrichment and area under the curve complement rmsd as quality measures
Analysis of the rmsd proved to be a poor indicator for model quality (see Table 2). Hence,
all models were also assessed in terms of their binary classification power using enrichment
and area under the curve (auc) quality measures. Receiver operating characteristic (ROC)
curves were generated as a measure to evaluate predictive power of the machine learning
approaches. ROC curves plot the rate of true positives TP/P versus the rate of false positives
FP/N of a binary classifier, here biological activity (see Fig. 3 and Fig. 4). TP and FP
represent the numbers of known active and inactive compounds within a given subset of
small molecules ordered by their predicted biological activity. Similarly, P and N represent
the according numbers for the whole HTS dataset. The diagonal represents the performance
expected from a random predictor. A higher auc of a ROC curve represents a better
predictive power of the according model.

The enrichment represents the expected factor by which the fraction of active compounds is
increased in a small set of compounds resulting from an in silico virtual screen compared to
the same fraction in the original HTS dataset (0.28%).

(2)
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where P represents the total number of active compounds (positives) in the training dataset
and N the total number of inactive compounds (negatives). TP stands for true positives –
active compounds found in a compound library from virtual screening. FP are false positives
– compounds predicted to be active that turn out to be inactive. Enrichments can be
determined when experimentally testing a compound library obtained from a virtual screen
or for an independent dataset set aside during training of the QSAR method. The
enrichments reported in Table 2 were determined when selecting 2% of the compounds in
the independent dataset predicted to be most active.

Implementation
The ANN and the Resilient Propagation training algorithm [34] were implemented in the
BioChemistryLibrary (BCL). The BCL is an in house developed, object-oriented library
written in the C++ programming language currently consisting of approximately 400 classes
and 300,000 lines of code. Chemical descriptors were computed with ADRIANA [30, 33]
based on three-dimensional structures generated by CORINA [32].

Results
Artificial Neural Networks (ANNs) were trained to predict the capability of drug-like
molecules for allosteric potentiation of the metabotropic glutamate receptor subtype 4
(mGlu4) based on a High Throughput Screen (HTS) as reported by Niswender et al [11].
Commercially available databases of small molecules were virtually screened for novel
PAMs of mGlu4. Hit compounds were verified experimentally in a human mGlu4 Gqi5-
mediated calcium assay and a rat mGlu4 thallium flux assay.

Optimization of molecular descriptor set improves prediction results
An ANN was trained using only the scalar descriptors 1–8 to report a baseline performance
using only naïve descriptors (Fig. 3 and Table 2) yielding an auc value of 0.631. The
enrichment equals 1.2 at a compound cutoff of 2%. The relative rmsd value for the
independent data set is 0.238. ‘Total Polarizable Surface Area’ was the input with the
highest sensitivity (0.87) in this model with the other descriptor sensitivities ranging from
0.07 (‘Dipole Moment’) to 0.48 (‘Hydrogen Bond Acceptors’). The second baseline model
involved all 1,252 descriptors as inputs. The auc and enrichment values improved to 0.708
and 7.3, respectively, while the rmsd dropped to 0.234.

In a 1st round of descriptor optimization, one third of the descriptor categories with the
lowest input sensitivity were removed. Note that the scalar descriptors were kept in all
models to facilitate comparison of input sensitivities with the baseline. This procedure leads
to a final model containing 741 descriptors in 21 categories (see Table 2) without a
significant change in model quality (auc: 0.703, rmsd: 0.227, enrichment: 7.1). The 2nd

round yielded a model with 578 descriptors in 17 categories. The quality measures were
better than the model with all descriptors with an auc of 0.706, rmsd of 0.229, and an
improved enrichment of 13.0. The last iteration left 415 descriptors in 13 categories. While
the auc value (0.804) and rmsd value (0.222) improved, the enrichment (10.7) dropped.

Jury model combines favorable features of all previous models
As these QSAR models have a comparable quality and enrichment values are affiliated with
high uncertainties, a jury approach was tested to combine models. An ANN was trained on
the output of the three ANNs with the reduced descriptor sets (see Fig. 2). This procedure
improved the critical enrichment value to 15.4 and reduced the rmsd to 0.207. The auc value
is with 0.732, a value lower than the 0.804 value reported for the ANN model with 415
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descriptors. However, the reduced auc value this model results from the second half of the
ROC curve, which is not employed when predicting molecules with high activities (Fig. 4).

Virtual screening of ChemBridge compound library
The ANN QSAR model was applied in a virtual screen of the ChemBridge EXPRESS-Pick
collection of commercially available compounds. In silico screening of the entire library of
~450,000 compounds took approximately ten hours on a regular personal computer. A total
of 1,108 compounds with predicted EC50 values below 3 μM for mGlu4 PAM activity were
selected.

Screening these compounds in the human mGlu4/Gqi5 calcium mobilization assay as well as
the rat mGlu4 thallium flux assay described in Niswender et al [31, 11] identified 168
primary hits which were then moved to screening in concentration-response curve format in
both assays. 67 compounds were confirmed as potentiators in both assays, representing an
enrichment of 67/1,108 × 156,184/434 = 22 relative to the initial experimental HTS hit rate.
The experimentally observed enrichment is consistent with the enrichment values predicted
from analysis of an independent dataset during development of the QSAR model, given the
large uncertainty of these values (Table 2).

The EC50 of the 67 confirmed potentiators ranged from 0.4 μM to 15.8 μM with three
compounds below 1 μM in the human Gqi5 assay and from 0.4 μM to >10 μM with three
compounds below 1 μM in the rat thallium flux assay.

Simple similarity search fails to identify 54 out of 67 confirmed potentiators
To compare the ANN virtual screen with a more naïve similarity search, we selected 1,116
small molecules from the ChemBridge database based on MACCS structural key fingerprint
similarity to known actives. The number of compounds was chosen to create a dataset of
similar size to the one selected through the ANN. The artificially high Tanimoto coefficient
cutoff of 96.7% indicates that a similarity search with a reasonable Tanimoto coefficient
would create a dataset much too large for experimental verification. The intersection
between this set of 1,116 compounds and the 67 potentiators identified by the ANN contains
13 compounds (19%) missing 54 compounds identified by the ANN virtual HTS.

Enrichment of 22 in known benzo-oxazoles scaffold
The rate of PAMs from the benzo-oxazole scaffold in the original HTS constituted 88 out of
26,180 (0.34%, MOE [35] similarity search employing MACCS fingerprints at 85%
Tanimoto Superset/Subset.) A simple similarity search for benzo-oxazoles would preserve
this rate while the virtual HTS enriched benzo-oxazoles by a factor of
8/133*156,146/432=22.

Discussion
Radial Distribution Functions (RDFs) are most important descriptors for predicting mGlu4
PAM activity

Several of the descriptor categories (see Table 1) employ the same chemical property but
different encoding functions (2D vs. 3D auto-correlation and Radial Distribution Functions).
Therefore, a descriptor optimization strategy was critical to identify the smallest set of
descriptors needed for optimal QSAR models. Using this technique, the number of
parameters (weights) in the ANNs is reduced, improving the signal-to-noise ratio for the
trained models. To determine the ‘least necessary’ descriptor categories, the input sensitivity
(see Methods) of each input with respect to the output of the ANN, i.e. biological activity
prediction, was determined.
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As more descriptors are removed from the inputs, the input sensitivity values increase for
RDFs (see Fig. 5). Specifically, RDFs for π- and lone pair electronegativity play an
important role. RDFs for identity and polarizability are featured most prominently in the
model with 578 descriptors which is the best non-jury network (see Table 2). The
importance of these descriptors immediately makes sense, since the active compounds of the
original High Throughput Screening often feature phenyl rings and amide substructures that
are well described by such RDFs.

Virtual screening yields active compounds similar to known hits
The 67 newly identified mGlu4 PAM compounds contained eight benzo-oxazoles, 42 furan-
amides including 22 thioureas, and three phenylbenzamides. All three compound classes
were represented in the original HTS hits [36, 37, 11] and featured modifications in R-
groups (Fig. 6). Experimentally inactive compounds from these classes included 72
phenylbenzamides, 125 benzo-oxazoles, and 215 furanamides out of 1,041 inactive
compounds.

Conformational ensembles could improve activity prediction from 3D molecular
descriptors

CORINA provides one low energy conformation per small molecule. For flexible molecules
multiple conformations of similar energy can exist. The conformation of the small molecule
binding allosterically to the mGlu4 is then unknown. This shortcoming of the present
approach could be addressed by generating an ensemble of low energy conformations for
each small molecule and using the lowest predicted EC50 value in virtual screening. The
molecular libraries employed in the present study are dominated by rather rigid molecules
with few rotatable bonds. Therefore we speculate that the impact of additional
conformational sampling is small.

Conclusions
Artificial Neural Networks were trained to generate QSAR models from an HTS
experimental dataset of compounds with hmGlu4 Gqi5 assay activity. A jury system, based
on the three ANN models, generated improved enrichments when compared to each
individual model. The enrichment factor of 22 determined from biological testing of 1,100
compounds prioritized from a commercial library of ~450,000 substances demonstrates the
predictive power of the method.
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Fig. 1.
Overall model generation workflow: (a) SD files were provided with active and inactive
compounds towards mGlu4 determined by HTS and CRC; CORINA and ADRIANA were
employed to generate 3D structures and molecular descriptors; (b) active molecules were
oversampled 360 times to balance data sets; (c) molecules were randomly distributed
between training (80%), monitoring (10%), and independent (10%) datasets; (d) ANNs were
trained and (e) low sensitivity descriptors were removed until the quality measures (see
Table 2) no longer improved; the best three ANNs were combined into a jury network
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Fig. 2.
Schematic view of the jury system: The output of the best three ANNs according to the
quality measures reported in Table 2 were employed as inputs for a jury ANN with four
hidden neurons
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Fig. 3.
Receiver Operating Characteristic (ROC) curve plot for classical (blue), all (red), and jury
(black) approach: This plot compares classical QSAR (eight scalar descriptors) with
utilizing all (1,252) available ADRIANA descriptors and a jury approach. It demonstrates
that ADRIANA descriptors add to the classical approach and that a jury approach improves
performance even further. The inset shows the first 20% of the False Positive rate
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Fig. 4.
Receiver Operating Characteristic (ROC) curve plot for 415 (red), 578 (green), 741 (blue),
and jury (black) approach: The three optimized descriptor sets (415, 578, 741) perform
similarly well as the jury approach. However, the jury approach is more stable compared to
the three other ANNs, as can be seen in Table 2. The inset shows the first 20% of the False
Positive rate
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Fig. 5.
Schematic view of an ANN: The input to the ANN consists of up to 1,252 descriptors in 35
categories. The weighted sum of the inputs is propagated through the activation function and
fed into the hidden layer (8 neurons). The output is the predicted value of the logarithm of
the EC50 of the small molecule towards potentiation of glutamate response at the
metabotropic glutamate receptor 4. The heat map shows the input sensitivity of each
category from lowest (red) to highest (green)
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Fig. 6.
Scaffold category analysis: (I) Scaffold composition of 432 mGlu4 PAMs from HTS. mGlu4
PAMs were clustered with the Mathematica package using the Tanimoto coefficient of the
largest common substructure as distance measure. Three major scaffolds are constituted by
28 phenylbenzamides (6.5%, a), 40 benzo-oxazoles (9.3%, b), and 41 (9.5%, c) furan-
amides. (II) Scaffold composition of 67 active compounds in the postscreen. (III) Scaffold
composition of inactive compounds in the postscreen. Compounds d, e, and f are examples
for active compounds identified by the virtual HTS, where g, h, and i were found to be
inactive
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Table 1

Summary of 1,252 molecular descriptors in 35 categories computed with ADRIANA

Description Method Description Property Abbreviation Number

1 Scalar descriptors Molecular weight of compound Weight 1

2 Number of hydrogen bonding acceptors HDon 1

3 Number of hydrogen bonding donors HAcc 1

4 Octanol/water partition coefficient in [log units] XlogP 1

5 Topological polar surface area in [Å2] TPSA 1

6 Mean molecular polarizability in [Å3] Polariz 1

7 Dipole moment in [Debye] Dipol 1

8 Solubility of the molecule in water in [log units] LogS 1

9 2D Autocorrelation atom identities 2DA_Ident 11

10 σ atom charges 2DA_SigChg 11

11 π atom charges 2DA_PiChg 11

12 total charges 2DA_TotChg 11

13 σ atom electronegativities 2DA_SigEN 11

14 π atom electronegativities 2DA_PiEN 11

15 lone pair electronegativities 2DA_LpEN 11

16 effective atom polarizabilities 2DA_Polariz 11

17 3D Autocorrelation atom identities 3DA_Ident 12

18 σ atom charges 3DA_SigChg 12

19 π atom charges 3DA_PiChg 12

20 total charges 3DA_TotChg 12

21 σ atom electronegativities 3DA_SigEN 12

22 π atom electronegativities 3DA_PiEN 12

23 lone pair electronegativities 3DA_LpEN 12

24 effective atom polarizabilities 3DA_Polariz 12

25 Radial Distribution Function atom identities RDF_Ident 128

26 σ atom charges RDF_SigChg 128

27 π atom charges RDF_PiChg 128

28 total charges RDF_TotChg 128

29 σ atom electronegativities RDF_SigEN 128

30 π atom electronegativities RDF_PiEN 128

31 lone pair electronegativities RDF_LpEN 128

32 effective atom polarizabilities RDF_Polariz 128

33 Surface Autocorrelation molecular electrostatic potential Surf_ESP 12

34 hydrogen bonding potential Surf_HBP 12

35 hydrophobicity potential Surf_HPP 12

Total 1252
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