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Summary
High-density SNP microarrays provide a useful tool for the detection of copy number variants
(CNVs). The analysis of such large amounts of data is complicated, especially with regard to
determining where copy numbers change and their corresponding values. In this paper, we
propose a Bayesian multiple change point model (BMCP) for segmentation and estimation of SNP
microarray data. Segmentation concerns separating a chromosome into regions of equal copy
number differences between the sample of interest and some reference, and involves the detection
of locations of copy number difference changes. Estimation concerns determining true copy
number for each segment. Our approach not only gives posterior estimates for the parameters of
interest, namely locations for copy number difference changes and true copy number estimates,
but also useful confidence measures. In addition, our algorithm can segment multiple samples
simultaneously, and infer both common and rare CNVs across individuals. Finally, for studies of
CNVs in tumors, we incorporate an adjustment factor for signal attenuation due to tumor
heterogeneity or normal contamination that can improve copy number estimates.
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1. Introduction
Much recent work in human genetics has focused on structural variants (SVs), a class of
genomic alterations involving segments of DNA typically larger than 1 kilobase (kb). SVs
with changes in DNA copy numbers are termed copy number variants (CNVs) or
polymorphisms (CNPs) in the germline, or copy number aberrations (CNAs) in tumor cells.
Here we refer to any of these as CNVs. One can estimate genome-wide copy numbers and
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characterize CNVs at high resolution with data from high-density SNP microarrays, which
currently feature more than one million SNPs and non-polymorphic probes.

Calling CNVs requires segmentation and estimation. By segmentation, we mean delineating
a chromosome into equal copy number difference regions. This definition is slightly broader
than traditional definition for segmentation in that we are interested in the difference
between the true copy number of the sample of interest and the reference copy number. The
reference copy number does not have to equal two for all locations, though if it does our
definition and the traditional definition are equivalent. Such a broad definition is useful
since CNVs can exist in non-diseased reference samples. For example, studies of CNVs in
tumors may search for chromosomal regions with different copy numbers between paired
tumor and blood samples from the same subject. In this case, the paired blood sample may
not have two copies across all locations on a chromosome. As in traditional segmentation,
our approach involves accurate boundary detection. And by estimation, we mean the
estimation of true copy number for each segment.

We consider three different scenarios for segmentation and estimation: one-sample, multi-
sample, and familial-sample models. The one-sample model refers to the case when only the
CNVs of a particular sample is of interest so segmentation is done on this sample only. In
the multi-sample model, interest is in inferring shared CNVs across samples and
segmentation is performed on these samples simultaneously. When one has data on related
family members, a special type of the multi-sample model infers family-specific CNVs,
where segmentation is performed on all family members simultaneously. By incorporating
the potential familial correlation in copy numbers, the familial-sample model should
improve copy number estimation, in comparison with ignoring this correlation (e.g. as is
done by the multi-sample model).

Many techniques have been proposed for one-sample segmentation of array-based copy
number data. The two most common approaches are the Hidden Markov Model (HMM) and
change-point model. Fridlyand et al. (2004) presented one of the earliest approaches to
segmenting array CGH data with an unsupervised HMM. Marioni et al. (2006) extended
their model to incorporate additional biological covariates (e.g. distance between adjacent
clones). Wang et al. (2007) adopted a six state HMM based on total copy number (for
autosomes) and CNV genotypes: deletion of two copies, deletion of one copy, normal, copy-
neutral with LOH, single copy duplication, and double copy duplication. However, they
only defined CNV genotypes at single SNPs, even though CNVs occur on DNA segments
with multiple SNPs and the definition for CNV genotypes should combine all the SNP
genotypes within a CNV region. In addition, the fixed number of states in any HMM limits
the CNV types it can model. For example, the ‘deletions and duplications’ class at the same
locus (Redon et al., 2006) and multi-allelic copy number variation (Aitman et al., 2006;
Redon et al., 2006; Conrad and Hurles, 2007) may not be captured by the six-state model in
Wang et al. (2007). Rueda and Daz-Uriarte (2007) proposed a Bayesian nonhomogeneous
HMM fitted by reversible-jump Markov Chain Monte Carlo. Their approach gave the
posterior probability that a region is a CNV. In addition, it incorporated interprobe distances.
Unlike most other HMM methods, it has the flexbility that the number of states does not
have to be fixed in advance and can be determined by the model. Guha et al. (2008)
proposed a four-state Bayesian HMM for the same problem. One feature of their approach is
that they identified outliers using the states of interest.

Olshen et al. (2004) proposed a change-point based segmentation method called circular
binary segmentation (CBS). This approach repeatedly splits each chromosome segment until
no additional statistically significant splits are found using a maximal t statistic with a
permutation reference distribution to obtain the corresponding p value. Venkatraman and
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Olshen (2007) extended this work to improve the computational speed with a hybrid
approach to obtain the p value of the test statistic in linear time and an early stopping rule.
Lai et al. (2008) proposed a Bayesian stochastic method for estimation. Their approach
focused on estimation only and provided explicit formula for posterior estimates of true
signals. However, they did not use actual chromosome locations and assumed that markers
are spaced uniformly across the genome.

In addition to HMM and change-point model based methods, some authors used mixture
model approaches. Engler et al. (2006) presented a Gaussian mixture model with a Hidden
Markov dependence structure for this problem. They adopted a pseudolikelihood approach
to reduce the compuational burden for genome-wide analysis. Broet and Richardson (2006)
utilized a Bayesian three-state spatially correlated mixture model to detect genomic regions
of gain or loss.

As noted above, above methods focus on segmenting one sample at a time, and thus are not
meant for finding CNVs shared by multiple individuals. In this case, combining CNVs
across multiple samples generally requires ad hoc approaches. However, it might be difficult
to detect weak signals (e.g. for small CNVs) if segmenting each sample separately.
Combining the signals across all individuals could potentially increase the power to detect
these CNVs (Zhang et al., 2008). While Zhang et al. (2008) extended the one-sample
method by Olshen et al. (2004) using a mixture model weighted sum of chisquare statistic
for finding shared change points across multiple samples, their approach is focused on
segmentation only. Existing methods focus on either segmentation or estimation, but not
both. Consequently, some of them do not provide a direct estimate and confidence measures
of the true copy number (e.g. Broet and Richardson (2006); Guha et al. (2008); Rueda and
Daz-Uriarte (2007)). All these HMM based methods except Rueda and Daz-Uriarte (2007)
assume a fixed number of states which may not capture all the CNV events, and none of the
existing approaches address signal attenuation issues arising in studies of tumors. Another
important issue in segmentation and estimation approaches is that copy numbers may not be
integers. For example, in cancer studies, tumors are frequently heterogeneous or
contaminated with varying proportions of normal cells. Here, using a continuous scale
allows one to redefine copy number gain or loss by setting new thresholds that depend on
this proportion. Moreover, heterogeneous samples may not have the same copy numbers
throughout, so the average copy number should be continuous. Therefore, an ideal
segmentation algorithm should provide the user continuous segment-specific copy number
estimates and correct for signal attenuation due to tumor heterogeneity or normal
contamination.

In this paper, we build a unified Bayesian multiple change point model for segmentation and
estimation of SNP microarrays. Our method performs segmentation and estimation for one-,
multi- and familial-samples. By allowing for multi- and familial-sample situations, we do
not need to use an ad hoc approach to combine sample-level CNVs. The use of familial-
sample approach for family data can improve copy number estimates, as we will show with
an empirical example. In addition, our method not only gives posterior summaries (i.e.
posterior mean and 95% CI) for the locations of copy number difference changes, but also
gives those for the copy number of each segment. Our method also incorporates a
component adjusting for signal attenuation in its model formulation. This extra component
together with the ability for both segmentation and estimation preclude us from getting
closed-form formula for inferences like Lai et al. (2008) and so we use Monte Carlo
simulation to infer parameters of interest.

This paper is organized as follows. The next section presents our model. In section 3, results
from a simulation study to assess the proposed approach are given. Section 4 provides
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applications of the one- and familial-sample approaches. Finally, we summarize and discuss
our work in section 5.

2. Model
In this section, we construct a multiple change-point model for segmentation and estimation.
Multiple change-point models have been proposed for different applications (e.g. Suchard et
al. (2003); Tai et al. (2009b)). Our multiple change-point model consists of two fundamental
elements: the locations along the sequence (chromosome) where copy number difference
changes occur, and the copy number of each segment. For the one-sample approach, we are
interested in dividing a chromosome of a sample into regions of equal copy number
difference (i.e. between the sample of interest and reference). In the multi-sample case, there
are two possible scenarios of interest. First, finding common CNVs of the same copy
number difference (e.g. common deletions) based on all the samples available. In this case,
all the individuals are assumed to have the same locations of copy number difference
changes and the same copy number difference within each segment. Second, finding both
common and rare CNVs whose copy number differences do not have to be identical across
samples. The copy number difference within each segment is allowed to differ across
samples, and are assumed independent. The same scenarios hold for the familial-sample
approach, except that familial CNVs are inherited within family members and are correlated.
These three approaches yield the same data model, which we outline below.

We describe the model based on SNP arrays with both SNP and non-polymorphic probes. It
is straightforward to apply the model to arrays with SNP probes only. We borrow the
notation from Tai et al. (2009b). For each chromosome, assume there are L nucleotide
locations. We denote the observed log2 copy number ratio of the sample of interest over
some reference for a SNP in sample i at location l by sil, and for a CNV probe in the same
sample at l by cil, l = 1, …, L.

2.1 Multiple Change Point Model
2.1.1 One-Sample Model—As Tai et al. (2009b), suppose that a chromosome is divided
into K + 1 blocks by K change points τ1, …, τK, where 1 = τ0 < τ1 < … < τK < τK+1 = L +
1 and 0 ≤ K ≤ L − 1. We denote the true copy number at location l for the sample of interest
by αl, and its difference with the reference at the same location by dl = αl − αlR. The
difference dl is a step function staying constant within each segment. We further denote a
particular partition by ρ = (τ1, …, τK, K). The observed log2 ratios sl and cl are assumed to

be conditionally independent and normally distributed, i.e.,  and

. The mean parameter λl depends on dl and the parameter βl, a factor
adjusting for dl due to signal attenuation. It can be modeled by λl = log2(βldl+αlR)−
log2αlR, where βl = 0.5 when dl = 0, ∀l, and 0 < βl < 1 otherwise. Note that αlR is location-
specific and does not have to equal 2 ∀l. Following Tai et al. (2009b), for identifiability

purposes, we impose a constraint on , where wk is the proportion of
data points within segment k. The adjustment factor βl is also location-specific because it
equals any value between 0 and 1 when dl = 0 such that the identifiability constraint is met.
Note that incorporating βl is motivated by the idea that copy number differences are reduced
by a constant factor in a CNV region. For example, in cancer studies, βl could represent the
proportion of tumor cells. A factor of 1 indicates pure tumor cells, while 0.5 represents 50%
tumors and 50% normals. In a non CNV region, the factor can be any number between 0 and
1 without loss of generality, since the reduced difference equals 0 whatever value the factor
is. In other words, βl in a CNV region represents the proportion of tumor cells, while in a
non CNV region it is just a factor adjusted accordingly such that the constraint is met.
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Finally, by checking the real data, it is reasonable to assume that intensity variabilities

( ) are different between SNP and CNV probes.

2.1.2 Multi-Sample Model—If the segment-specific copy number difference is allowed
to differ across samples, then dl above becomes sample-specific dil. It is also possible that
the proportion of contamination differs across samples within a study. In that case, βl

becomes sample-specific βil. Intensity variability could vary across samples or labs, so 

and  become sample-specific  and .

2.1.3 Familial-Sample Model—Here, the offspring’s copy numbers should depend on
those of the parents. The segment-specific copy number typically differs across family
members, so we denote the true copy numbers of the father and mother at location l by αfl
and αml, and that of the offspring by αol. The observed log2 ratios are sfl, sml, sol, cfl, cml,
and col, respectively. This notation can be easily extended to a family of larger size (Web
Appendix A). The model for the SNP data becomes

, and . Again, λil
= log2(βildil+αilR) − log2αilR, i = {f, m, o}. The model for the CNV probes are similar. The
same notation applies when the segment-specific copy number is the same across family
members, except that αfl, αml, and αol all become αl.

2.2 Priors and Posterior
We use a Bayesian framework to draw inferences on the parameters of interest. The number
of change points K is difficult to determine before undertaking segmentation. Thus, we
assign a uniform prior on K, i.e., P(K = k) = 1/(Kmax + 1), k = 0, 1, …, Kmax, 0 ≤ Kmax ≤ L
− 1 to let the data estimate K. Given K, the prior for change point locations τ1, …, τK can be
uniformaly or non-uniformaly distributed along the chromosome. The joint distribution for
τ1, …, τK and K is simply P(ρ) = P(τ1, …, τK|K)P(K). Now we discuss the other priors
under different situations.

2.2.1 One-Sample Model—We assume that d, the vector of copy number differences, is
truncated multivariate normal with mean d0, covariance matrix δ2I, and truncation lower
bound −αR, denoted by N−αR(d0, δ2I). The hyperparameter d0 is assumed to be truncated

multivariate normal N−αR(0, I). The priors for the individual elements of  and  are
assumed to be inverse gamma with parameters a and b. The prior for the individual elements
of the adjustment factor β is assumed to be Uniform[0,1].

Given the above priors, the posterior can be expressed using the likelihood. The parameters

to be estimated are ρ, d, β, , and d0. The hyperparameters δ2, a and b are determined
by the user or the data. The posterior can be written by

(1)

2.2.2 Multi-Sample Model—The priors for the one-sample model also apply here, except
that when the segment-specific copy number difference is allowed to vary across samples,
d1, …, dI are assumed truncated multivariate normal N−αR(di0, δ2I). The posterior becomes
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(2)

If the segment-specific copy number difference is the same across samples, the posterior
becomes

(3)

2.2.3 Familial-Sample Model—The priors for the parents’ copy number differences df
and dm are assumed to be truncated multivariate normal N−αR(df0, δ2I), N−αR(dm0, δ2I),
respectively. We assume that any offspring’s copy number difference given the parents’ is
truncated multivariate normal

(4)

We describe the posterior for the case of a trio. The extension to other family structures is
easily conceived (Web Appendix A).

(5)

2.3 Parameter Inference
To draw inferences on the parameters of interest, we use the reversible jump Markov Chain
Monte Carlo algorithm (rjMCMC) (Green, 1995; Suchard et al., 2003; Tai et al., 2009b).
The algorithm is comprised of four move types: add a change point, delete a change point,
move a change point, and alter parameters. At each iteration a move type is proposed, and
accepted or rejected based on a probability depending on ratios of posteriors and proposal of
the new and old parameters. The details of the algorithm are described in Web Appendix B.

3. Simulation
3.1 Method

We performed a simulation study under different scenarios to evaluate the performance of
our method, which we call BMCP (for Bayesian multiple change point) thereafter. The
simulation data were generated based on Affymetrix SNP 6.0 chromosome 21 arrays from
HapMap samples and from a study of skin cancer. Eight models (M1–M8) were used to
simulate data under different scenarios with regard to marker density, region length, data

Tai et al. Page 6

Biometrics. Author manuscript; available in PMC 2013 September 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



variability, and with or without outliers (Table 1). We then compared the performance of
BMCP with two commonly used algorithms: Circular Binary Segmentation (CBS) in the
software DNAcopy (Olshen et al., 2004; Venkatraman and Olshen, 2007) and the Hidden
Markov Model (HMM) implemented in aCGH (Fridlyand et al., 2004). More details of the
simulation method are described in Web Appendix C.

3.2 Results
Before comparing different approaches, we consider BMCP for a single simulation. In
particular, Web Table 1 lists the estimated parameters of interest with their corresponding
95% CIs for one simulation with outliers from model M1. The true values were all covered
by the 95% CIs. This shows that BMCP gives reasonable results even in the presence of
outliers. The inclusion of an adjustment factor improved copy number estimates. The true
copy numbers for the gain and loss regions of the simualtion presented in Web Table 1 were
2.82 and 1.08, respectively. The estimated copy numbers from BMCP were 2.66 and 1.28,
which are closer to the true values than those estimated from observed log2 ratios (2.57 and
1.36, respectively).

Table 2 gives the numbers of FP and FN when there are no outliers. The FPs for BMCP
were close to or lower than those of CBS except for M3 and M4. This suggests that data
variability has an impact on FPs for BMCP. When copy numbers are perfectly correlated
(unlikely in reality), BMCP may detect more FPs. M1 showed that ignoring potential
correlations between copy numbers does not prevent us from getting reasonable results,
while reducing the number of parameters to be estimated. This is important because the
rjMCMC fitting procedure may get complicated when the number of parameters gets large.
HMM achieved similar or lower FP than CBS except M7. This agrees with our discussion
earlier that HMM is not suitable when copy numbers are mosaic. In all cases, BMCP
achieved higher FN than CBS and HMM. BMCP achieved lower FN in M6 than M1 and M5,
suggesting that the more candidate locations being searched, the lower the FN. The
comparision between M1 and M2 indicates that the more signal attenuation, the higher the
FN. Such an effect was not observed from CBS.

The presence of outliers greatly increased the numbers of FP from CBS and HMM (Table
3). BMCP achieved the lowest FP compared to CBS and HMM. CBS achieved similar FN
as HMM. Web Figures 1–3 show the log2 ratio plot, posterior distribution of number of
change points, trace plots of β for a simulated dataset from M1, respectively.

4. Applications
4.1 One-Sample Example

We evaluated the q-arm of chromosome 11 from a prostate tumor sample and its paired
blood sample, both typed by the Illumina 1M Duo BeadArrays (Tai et al., 2009a). The
reference for the tumor sample was the paired blood, such that the CNVs detected were
somatic changes. We began with no change points, and the starting values are

, and β = 0.5. The upper bound for the number of change points was set
to 30. BMCP searched through the top 20% of candidate locations to improve computational
speed. The chain was run for 100,000 iterations. The first 50,000 iterations were thrown
away as burn-ins, and we sampled every 10th of the remaining iterations for our final
analyses.

We also segmented the same tumor sample using DNAcopy and aCGH. As the analysis for
the simulation models with outliers, we did outlier smoothing and undo split for segments
that were less than 1.2 SD apart between means in DNAcopy analysis, and merged states
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whose predicted values are less than 0.21 apart in aCGH analysis. To see how outliers affect
segmentation results by CBS and HMM, we repeated these two analysis without any
smoothing, undo split, or merging.

Figure 1 shows the estimated change points for the tumor sample found by these three
algorithms with outlier handling for CBS and HMM. CBS gave 21 change points, while
BMCP and HMM gave 8 and 10 change points, respectively. All of these three methods
identified most breakpoints. However, none of them detected any change point around the
right end of the chromosome arm where there seemed to be a slight downward trend in log2
ratios. Even with outlier handling, CBS seemed to detect more change points between 80,
000, 000 and 100, 000, 000 bps, some of which did not appear to reflect changes. The results
for BMCP and HMM looked more similar, except that BMCP missed two change points
between 69, 333, 663 bp and 75, 212, 671 bp where a normal region existed between two
deletion regions. HMM missed a change point around 98, 319, 393 bp where a large deletion
seemed to occur.

Web Figure 4 plots the estimated change points from CBS (top) and HMM (bottom) without
outlier handling, and the top 48 locations by BMCP (middle). In this case, CBS gave 48
change points, while HMM identified 130 change points. The use of a merging step for
HMM had a great impact on the result. Both CBS and HMM produced many apparent FPs,
even though they no longer missed the change point around the right end of the chromosome
arm where there seemed to be a slight downward trend in log2 ratios. In addition, HMM now
detected the apparent change point around 98, 319, 393 bp when removing the merging step.
The top 48 locations by BMCP indicated change points around the right end of the
chromosome arm where there seemed to be a slight downward trend in log2 ratios. It also
now detected one of the previously missed change points between 69, 333, 663 bp and 75,
212, 671 bp.

This comparison showed two things. First, both CBS and HMM were very sensitive to
outliers. Second, for BMCP analysis, one could use the posterior probabilities as a way to
rank regions of interest for further experimental validation. Web Figure 5 plots the estimated
log2 ratio, posterior probability, copy number, and adjustment factor by BMCP. The copy
number estimate indeed indicated a slight downward trend at the right end of the
chromosome arm, even though the locations in that region were not within the top 8. Web
Table 2 gives the posterior probabilities for the top 20 locations. Web Table 3 lists the
estimated parameters of interest. The two missed change points between 69,333,663 bp and
75,212,671 bp were covered by the 95% CI for τ3. This suggests that these might have been
missed because the change points were not well separated, and that confidence measures
could be another alternative for defining CNVs.

4.2 Familial-Sample Example
We also applied the familial-sample model with copy numbers are allowed to differ across
family members to the q arm of chromosome 1 of a YRI trio from HapMap (NA18852,
NA18853 and NA18854). The reference was the median across all samples in the YRI
population. The starting values for this example were:

, βf = βm = β0 = 0.5. As above, we start with no
change points, set the upper bound to 30, and searched through the top 20% of candidate
locations. The chain was run for 100,000 iterations, and 50,000 iterations were discarded,
and we sampled every 10th observation from the remaining iterations for analysis.

Figure 2 gives the segmentation results on the trio.
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The familial-sample segmentation found a common deletion within this family (from 105,
803, 129 to 105, 841, 589 bps). The estimated copy numbers for this common CNV are
1.76, 1.78, 1.69 for samples NA18852, NA18853 and NA18854, respectively. In addition,
the deletion from 111, 179, 089 to 111, 185, 496 bps in NA18852 was also detected. The
estimated copy numbers for this region are 0.91, 1.53, 1.6 for NA18852, NA18853 and
NA18854, respectively. This shows that the familial-sample BMCP approach can detect
both familial and individual CNVs.

To see how the familial model compares to multi-sample or one-sample models, we fit these
models to the YRI trio. The multi-sample approach also found the shared deletion within
this family (from 105, 814, 900 to 105, 823, 899 bps). The estimated copy numbers for this
common CNV are 1.68, 1.81, 1.84 for NA18852, NA18853 and NA18854, respectively. In
addition, the deletion from 111, 179, 089 to 111, 213, 759 bps in NA18852 was also
detected. The estimated copy numbers for this region are 1.62, 2.06, 1.91 for NA18852,
NA18853 and NA18854, respectively. Note that the copy number estimates from the
familial- and multi-sample approaches were somewhat different. Since these are HapMap
samples, it is reasonable to assume that there is no signal attenuation and that the true copy
number could be converted from log2 ratios directly. Web Table 5 gives the log2 ratio,
estimated copy number, and the absolute difference between the estimated and true copy
number for both CNVs in all these three individuals. We found that all of the absolute
differences except one are smaller for familial-model analysis. The total absolute difference
is larger for the multi-sample model (4.3) than for the familial-sample model (3.04). Thus,
the familial-sample model gave improved copy number estimates compared to the multi-
sample model. When fitting the one-sample model to each member of the YRI trio
separately, BMCP was not able to detect any signal for NA18853 and NA18854. It detected
both CNVs for NA18852, however, the boundaries for one CNV did not overlap with those
observed for the familial-sample model. This may have been caused by the weak signal, and
the one-sample analysis demonstrates the value of pooling information across samples when
individual signals are weak.

5. Discussion
In this paper, we propose a Bayesian multiple change point framework for segmentation and
estimation of SNP microarrays. Our approach provides the following advantages: being less
sensitive to outliers; allowing for joint modeling of multiple and familial samples to help
detect short CNV regions with weak signals; and improving copy number estimates.
Nevertheless, BMCP may have lower power to detect short regions with low marker density.
One future research direction is to modify BMCP such that it has a greater power to detect
such regions.

Estimating the number of change points has been an active research area in the context of
multiple change point models. Our algorithm provides a natural way to estimate this
quantity, even in the presence of outliers, as demonstrated by the simulation study. The
modified BIC procedure of Zhang and Siegmund (2007) may also provide useful guidance
here. In our application, we found that CBS and HMM tended to detect more change points
than BMCP even when outlier handling procedures are used. Since the distinction between
outliers and true signals is not always clear, this disparity may lead to concerns that BMCP
is under-powered in comparison to CBS and HMM. To address this issue, we provide an
alternative approach to change point selection based on posterior probabilities. Here, one
can prespecify a target number of change points and obtain corresponding locations using
posterior probabilities. Another pertinent question is how to choose the upper bound on the
number of change points, Kmax. Based on the simulation study and real data analysis, we
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observe that BMCP is not sensitive to the choice of Kmax, so one can set it to any large
integer.

Our BMCP multi-sample model forces the breakpoints to be the same even if they are not
perfectly aligned. This is useful for finding the overlapping regions of these common CNVs.
To identify what portions of a structural variant overlap, one can simply fit any one-sample
segmentation algorithm to each sample independently, and subtract out the overlapping
region from each sample-specific region to locate those non-overlapping regions.

Although BMCP is more general than other approaches, it can have a higher computational
burden. There is a tradeoff between chain length (convergence) and the accuracy of
parameter estimates, especially for high density SNP arrays. Subsampling is one way to
address this issue. Here, we have fixed chain lengths and burn-ins at 100, 000 and 50, 000
respectively which, combined with the proposed starting values and tuning parameters,
produced reasonable estimates as demonstrated by our simulation study and real data
application. In a straightforward implementation of our rjMCMC algorithm, evaluation of
the likelihood dominates the computational time. This scales as O(ISM), with I = iterations,
S = number of samples, and M = the number of markers. By caching parts of the likelihood
that remain invariant across a step, we need only to calculate segments that change across a
step. By rewriting the log likelihood expression in terms of sums over log ratios and squared
log ratios, we can use precomputed look-up tables to reduce the calculation to a few table
accesses and some arithmetic. The result of these optimizations change the scaling to
O(ISG) + O(M), with G the number of change points. With this, for Illumina 1M SNP array
data, it takes only 75 seconds for BMCP to run 100, 000 iterations genome-wide in C++
with a Core2 Duo system running the Linux 2.6 kernel.

Finally, in contrast to a HMM, we are not aware of any segmentation-based approaches
(including BMCP) that can detect copy-neutral LOH regions. Given the advantage over a
HMM of handling mosaicism, it would be useful to extend any segmentation-based method
for detecting copy-neutral LOH regions, which is important in cancer studies

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
The authors thank an Associate Editor and two anonymous Referees for many valuable comments which greatly
improved this paper. We appreciate many valuable discussions about the background and low-level analysis of
Affymetrix SNP microarrays from Terry Speed and Henrik Bengston. We also thank Yuanyuan Xiao and Wilson
Liao for discussions about issues on segmentation. Mark Segal and Ru-Fang Yeh deserve special thanks for their
useful comments on our manuscript. Finally, we are very grateful to Adam Olshen for discussions about the
DNAcopy software. This work was supported in part by the NIH grants R25 CA112355, R01 CA88164, and U01
CA127298.

References
Aitman TJ, Dong R, Vyse TJ, Norsworthy PJ, Johnson MD, Smith J, Mangion J, Roberton-Lowe C,

Marshall AJ, Petretto E, Hodges MD, Bhangal G, Patel SG, Sheehan-Rooney K, Duda M, Cook PR,
Evans DJ, Domin J, Flint J, Boyle JJ, Pusey CD, Cook HT. Copy Number Polymorphism in Fcgr3
Predisposes to Glomerulonephritis in Rats and Humans. Nature. 2006; 439:851–855. [PubMed:
16482158]

Broet P, Richardson S. Detection of gene copy number changes in CGH microarrays using a spatially
correlated mixture model. Bioinformatics. 2006; 22(8):911–918. [PubMed: 16455750]

Conrad DF, Hurles ME. The Population Genetics of Structural Variation. Nature. 2007; 39:S30.

Tai et al. Page 10

Biometrics. Author manuscript; available in PMC 2013 September 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Engler DA, Mohapatra G, Louis DN, Betensky RA. A pseudolikelihood approach for simultaneous
analysis of array comparative genomic hybridizations. Biostat. 2006; 7(3):399–421.

Fridlyand J, Snijders AM, Pinkel D, Albertson DG, Jain AN. Hidden Markov Models Approach to the
Analysis of Array CGH Data. J Multivar Anal. 2004; 90(1):132–153.

Green PJ. Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model
Determination. Biometrika. 1995; 82:711–732.

Guha S, Li Y, Neuberg D. Bayesian hidden markov modeling of array cgh data. Journal of the
American Statistical Association. 2008; 103(482):485–497. [PubMed: 22375091]

Lai TL, Xing H, Zhang N. Stochastic Segmentation Models for Array-Based Comparative Genomic
Hybridization Data Analysis. Biostat. 2008; 9(2):290–307.

Marioni JC, Thorne NP, Tavare S. BioHMM: a Heterogeneous Hidden Markov Model for Segmenting
Array CGH Data. Bioinformatics. 2006; 22(9):1144–1146. [PubMed: 16533818]

Olshen AB, Venkatraman ES, Lucito R, Wigler M. Circular Binary Segmentation for the Analysis of
Array-Based DNA Copy Number Data. Biostat. 2004; 5(4):557–572.

Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR,
Chen W, Cho EK, Dallaire S, Freeman JL, Gonzalez JR, Gratacos M, Huang J, Kalaitzopoulos D,
Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen
F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Zhang J,
Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW,
Scherer SW, Hurles ME. Global Variation in Copy Number in the Human Genome. Nature. 2006;
444:444–454. [PubMed: 17122850]

Rueda OM, Daz-Uriarte R. Flexible and accurate detection of genomic copy-number changes from
acgh. PLoS Comput Biol. 2007; 3(6):e122. [PubMed: 17590078]

Suchard M, Weiss R, Dorman K, Sinsheimer J. Inferring Spatial Phylogenetic Variation Along
Nucleotide Sequences: A Multiple Changepoint Model. Journal of the American Statistical
Association. 2003; 98:427–437.

Tai, YC.; Cheng, I.; Chen, G.; Plummer, S.; Neslund-Dudas, C.; Casey, G.; Rybicki, B.; Witte, JS.
Genome-wide Allelic Imbalance in Prostate Cancer: Comparison of Aggressive and Non-
Aggressive Disease. 2009a. In preparation

Tai, YC.; Iversen, ES.; Parmigiani, G. Modeling Cancer Risk Variation by Mutational Spectra. 2009b.
In preparation

Venkatraman ES, Olshen AB. A Faster Circular Binary Segmentation Algorithm for the Analysis of
Array CGH Data. Bioinformatics. 2007; 23(6):657–663. [PubMed: 17234643]

Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF, Hakonarson H, Bucan M. PennCNV: An
Integrated Hidden Markov Model Designed for High-Resolution Copy Number Variation
Detection in Whole-Genome SNP Genotyping Data. Genome Res. 2007; 17(11):1665–1674.
[PubMed: 17921354]

Zhang, N.; Siegmund, D.; Ji, H.; Li, J. Technical Report. Department of Statistics, Stanford University;
2008. Detecting Simultaneous Change-points in Multiple Sequences.

Zhang NR, Siegmund DO. A Modified Bayes Information Criterion with Applications to the Analysis
of Comparative Genomic Hybridization Data. Biometrics. 2007; 63(1):22–32. [PubMed:
17447926]

Tai et al. Page 11

Biometrics. Author manuscript; available in PMC 2013 September 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Estimated change point locations for the tumor sample by CBS, BMCP, and HMM with
outlier handling.
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Figure 2.
Estimated common change points (green vertical lines) for the trio (NA18852, NA18853,
NA18854) by BMCP familial-sample model. The blue solid and red dashed lines are the
estimated log2 ratios and the corresponding 95% CIs, respectively.

Tai et al. Page 13

Biometrics. Author manuscript; available in PMC 2013 September 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Tai et al. Page 14

Ta
bl

e 
1

Si
m

ul
at

io
n 

M
od

el
s.

 T
he

pa
ra

m
et

rs
 

 a
nd

 β
A

 a
re

 
 a

nd
 β

 f
or

 th
e 

C
N

V
 r

eg
io

ns
. T

ho
se

 f
or

 th
e 

no
rm

al
 r

eg
io

ns
 a

re
 in

de
xe

d 
by

 N
. x

 s
ta

nd
s 

fo
r 

th
e

to
p 

x%
 lo

ca
tio

ns
 s

am
pl

ed
 f

or
 B

M
C

P 
an

al
ys

is
. M

os
ai

ci
sm

 m
ea

ns
 w

he
th

er
 o

r 
no

t C
N

V
s 

ha
ve

 m
os

ai
c 

co
py

 n
um

be
rs

. T
yp

e 
st

an
ds

 f
or

 th
e 

re
gi

on
 ty

pe
de

sc
ri

be
d 

in
 W

eb
 A

pp
en

di
x 

C
. M

1:
 T

yp
ic

al
 d

at
a,

 m
od

er
at

e 
co

nt
am

in
at

io
n.

 M
2:

 S
am

e 
as

 M
1,

 b
ut

 m
or

e 
co

nt
am

in
at

io
n.

 M
3:

 S
am

e 
as

 M
1,

 b
ut

 h
ig

he
r

va
ri

ab
ili

ty
. M

4:
 P

er
fe

ct
 c

or
re

la
tio

n 
am

on
g 

tr
ue

 c
op

y 
nu

m
be

r 
di

ff
er

en
ce

s.
 M

5:
 S

am
e 

as
 M

1,
 b

ut
 f

ew
er

 c
an

di
da

te
 lo

ca
tio

ns
 s

ea
rc

he
d.

 M
6:

 S
am

e 
as

 M
1,

 b
ut

m
or

e 
ca

nd
id

at
e 

lo
ca

tio
ns

 s
ea

rc
he

d.
 M

7:
 S

am
e 

as
 M

1,
 b

ut
 c

op
y 

nu
m

be
rs

 a
re

 m
os

ai
c.

 M
8:

 S
am

e 
as

 M
1,

 b
ut

 C
N

V
 r

eg
io

ns
 a

re
 lo

ng
er

.

M
od

el
β A

β N
δ2

r
x

M
os

ai
ci

sm
T

yp
e

M
1

0.
06

0.
07

0.
07

0.
08

0.
7

0
0.

01
0.

3
20

N
o

1

M
2

0.
06

0.
07

0.
07

0.
08

0.
5

0
0.

01
0.

3
20

N
o

1

M
3

0.
1

0.
15

0.
1

0.
15

0.
7

0
0.

01
0.

3
20

N
o

1

M
4

0.
06

0.
07

0.
07

0.
08

0.
7

0
0.

01
1

20
N

o
1

M
5

0.
06

0.
07

0.
07

0.
08

0.
7

0
0.

01
0.

3
5

N
o

1

M
6

0.
06

0.
07

0.
07

0.
08

0.
7

0
0.

01
0.

3
95

N
o

1

M
7

0.
06

0.
07

0.
07

0.
08

0.
7

0
0.

01
0.

3
20

Y
es

1

M
8

0.
06

0.
07

0.
07

0.
08

0.
7

0
0.

01
0.

3
20

N
o

4

Biometrics. Author manuscript; available in PMC 2013 September 08.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Tai et al. Page 15

Ta
bl

e 
2

M
ea

n 
an

d 
95

%
 C

I 
fo

r 
th

e 
nu

m
be

rs
 o

f 
fa

ls
e 

po
si

tiv
es

 (
FP

) 
an

d 
fa

ls
e 

ne
ga

tiv
es

 (
FN

) 
of

 e
ac

h 
m

et
ho

d 
un

de
r 

8 
si

m
ul

at
io

n 
m

od
el

s 
w

ith
ou

t o
ut

lie
rs

.

M
od

el
C

B
S 

F
P

H
M

M
 F

P
B

M
C

P
 F

P
C

B
S 

F
N

H
M

M
 F

N
B

M
C

P
 F

N

M
1

0.
04

 [
0,

 0
]

0 
[0

, 0
]

0.
04

 [
0,

 0
.7

8]
0 

[0
, 0

]
0 

[0
, 0

]
0.

44
 [

0,
 1

.7
8]

M
2

0.
04

 [
0,

 0
]

0.
02

 [
0,

 0
]

0.
02

 [
0,

 0
]

0 
[0

, 0
]

0 
[0

, 0
]

1 
[0

, 2
]

M
3

0.
04

 [
0,

 0
]

0.
04

 [
0,

 0
]

0.
06

 [
0,

 1
]

0 
[0

, 0
]

0 
[0

, 0
]

0.
14

 [
0,

 1
]

M
4

0.
04

 [
0,

 0
]

0 
[0

, 0
]

0.
14

 [
0,

 1
.7

8]
0 

[0
, 0

]
0 

[0
, 0

]
0.

42
 [

0,
 2

]

M
5

0.
04

 [
0,

 0
]

0 
[0

, 0
]

0 
[0

, 0
]

0 
[0

, 0
]

0 
[0

, 0
]

0.
26

 [
0,

 1
.7

8]

M
6

0.
08

 [
0,

 0
]

0 
[0

, 0
]

0.
04

 [
0,

 0
.7

8]
0 

[0
, 0

]
0 

[0
, 0

]
0.

08
 [

0,
 1

]

M
7

0 
[0

, 0
]

0.
34

 [
0,

 0
.7

8]
0 

[0
, 0

]
0 

[0
, 0

]
0 

[0
, 0

]
1.

26
 [

0,
 2

.7
8]

M
8

0.
16

 [
0,

 2
]

0.
16

 [
0,

 2
]

0 
[0

, 0
]

0 
[0

, 0
]

0 
[0

, 0
]

0.
54

 [
0,

 2
]

Biometrics. Author manuscript; available in PMC 2013 September 08.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Tai et al. Page 16

Ta
bl

e 
3

M
ea

n 
an

d 
95

%
 C

I 
fo

r 
th

e 
nu

m
be

rs
 o

f 
fa

ls
e 

po
si

tiv
es

 (
FP

) 
an

d 
fa

ls
e 

ne
ga

tiv
es

 (
FN

) 
of

 e
ac

h 
m

et
ho

d 
un

de
r 

8 
si

m
ul

at
io

n 
m

od
el

s 
w

ith
 o

ut
lie

rs
.

M
od

el
C

B
S 

F
P

H
M

M
 F

P
B

M
C

P
 F

P
C

B
S 

F
N

H
M

M
 F

N
B

M
C

P
 F

N

M
1

1.
36

 [
0,

 4
]

5.
68

 [
2,

 9
.5

5]
0.

10
 [

0,
 1

]
0 

[0
, 0

]
0 

[0
, 0

]
0.

74
 [

0,
 2

]

M
2

0.
12

 [
0,

 2
]

0.
88

 [
0,

 1
2]

0 
[0

, 0
]

0 
[0

, 0
]

0 
[0

, 0
]

0.
96

[0
,2

]

M
3

1.
02

 [
0,

 4
]

3.
18

 [
0,

 2
]

0 
[0

, 0
]

0 
[0

, 0
]

0 
[0

, 0
]

0.
24

 [
0,

 1
]

M
4

1.
72

 [
0,

 6
]

4.
80

 [
2,

 6
]

0 
[0

, 0
]

0 
[0

, 0
]

0 
[0

, 0
]

0.
64

 [
0,

 2
]

M
5

0.
94

 [
0,

 3
.7

8]
4.

24
 [

2,
 6

]
0.

10
 [

0,
 1

]
0 

[0
, 0

]
0 

[0
, 0

]
0.

22
 [

0,
 1

]

M
6

1.
64

 [
0,

 4
]

4.
40

 [
2,

 6
]

0.
18

 [
0,

 2
]

0 
[0

, 0
]

0 
[0

, 0
]

0.
32

 [
0,

 1
]

M
7

0.
20

 [
0,

 2
]

2.
94

 [
0,

 1
9.

55
]

0 
[0

, 0
]

0 
[0

, 0
]

0 
[0

, 0
]

1.
28

 [
0,

 3
]

M
8

0.
08

 [
0,

 1
.5

5]
3.

52
 [

0,
 1

7.
10

]
0 

[0
, 0

]
0 

[0
, 0

]
0 

[0
, 0

]
0.

96
 [

0,
 2

]

Biometrics. Author manuscript; available in PMC 2013 September 08.


