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Abstract
The method of tailored Green’s functions advocated by Doak (Proceedings of the Royal Society
A254 (1960) 129 – 145.) for the solution of aeroacoustic problems is used to analyse the
contribution of the mucosal wave to self-sustained modulation of air flow through the glottis
during the production of voiced speech. The amplitude and phase of the aerodynamic surface force
that maintains vocal fold vibration are governed by flow separation from the region of minimum
cross-sectional area of the glottis, which moves back and forth along its effective length
accompanying the mucosal wave peak. The correct phasing is achieved by asymmetric motion of
this peak during the opening and closing phases of the glottis. Limit cycle calculations using
experimental data of Berry et al. (Journal of the Acoustical Society of America 110 (2001) 2539 –
2547.) obtained using an excised canine hemilarynx indicate that the mechanism is robust enough
to sustain oscillations over a wide range of voicing conditions.
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1. Introduction
Philip Doak [1] was one of the first to propose the use of ‘tailored’ Green’s functions in
applications of Lighthill’s [2] theory of aerodynamic sound to problems involving flow
sources near solid boundaries. It is now well understood how structural elements comparable
or smaller in size than the characteristic wavelength of the sound can significantly increase
the efficiency of sound production, and that this gain is most usefully expressed in terms of a
Green’s function that incorporates both the geometrical and mechanical properties of the
structure.

Doak later advocated the adoption of the total enthalpy B as the fundamental acoustic
variable, instead of Lighthill’s perturbation density (see, e.g. [3]). When this is done a
principal source of aerodynamic sound is identified as the vorticity [4 – 6]. More generally,
the sources are then confined to those regions where the vorticity ω ≠ 0 and ∇s ≠ 0, where s
is the entropy. In the important approximation where the source flow is effectively
homentropic (an homogeneous medium with no combustion) Lighthill’s equation becomes
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(1)

where ρ, c, v are the fluid density, sound speed and velocity (with ω = curl v), and where ρ
≡ ρ(p) can be expressed as a function of the pressure p and

(2)

Bernoulli’s equation implies in the absence of vorticity and moving boundaries that B =
constant throughout the flow; and B may therefore be assumed to vanish in the absence of
sound. When the Mach number M ~ v/c is small local mean values of ρ and c differ from
their uniform respective values ρo and co by terms of relative order M2 ≪ 1. Equation (2)
then takes the simplified form

(3)

Outside the source flow the unsteady motion is entirely irrotational. It can be represented by
a velocity potential ϕ(x, t) that satisfies B = −∂ϕ/∂t. In the far field the acoustic pressure p is
given by

(4)

If the mean flow is stationary at infinity p = ρoB, where ρo is the corresponding mean
density.

The solutions of aeroacoustic problems in the presence of high speed moving boundaries are
frequently obtained numerically by means of an appropriate extension of Kirchhoff’s surface
integral representation [7], in particular high-speed fan and rotor noise can be expressed in
terms of surface terms derived by Ffowcs Williams and Hawkings [8 – 10]. These solutions
usually involve the free space Green’s function [6, 9, 11]. However, radiation from surfaces
and sources at lower Mach numbers (M ~ 0.4 or less) are often treated more effectively in
terms of the vortex sound equation (1), and it is then that the great utility of Doak’s
recommended use of a tailored Green’s function becomes apparent.

Equation (1) is self-adjoint [12, 13] and Green’s function G(x, y, t, τ) is an ‘advanced
potential’ that satisfies

(5)

G(x, y, t, τ) is a disturbance that propagates as an ‘incoming’ wave as a function of (y, τ)
towards the singularity at y = x on the right of the equation, arriving at τ = t and vanishing
thereafter. It turns out to be convenient to require that ∂G(x, y, t, τ)/∂yn = 0 on any stationary
or moving boundary S(τ) of the flow, where yn is a local normal coordinate on S directed
into the fluid. The usual application of Green’s theorem using equations (1) and (5) then
yields [7, 12, 13]
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(6)

where η is the shear coefficient of viscosity, V (τ) is the time dependent domain occupied
by the fluid, and where Green’s function and source terms vanish respectively at τ = ±∞. In
deriving this result the momentum equation has been used in the form

where only the shear component of viscosity is important close to S.

This equation is applied in this paper to discuss a ‘reduced complexity’ analysis of voiced
speech. This is traditionally based on Fant’s equation governing the unsteady flow of air
through the glottis [14 – 16]. During voicing a steady flow from the lungs is interrupted by
the periodic opening and closing of the glottis by aerodynamically driven vibrations of the
vocal folds. The air emerges in a succession of ‘puffs’ of volume velocity Q(t), which
determines an equivalent monopole sound source radiating into the supraglottal vocal tract
and thence from the mouth to listeners in free space.

The wavelengths of voiced speech mostly exceed the vocal tract diameter, and it is usual to
model the supraglottal tract by a uniform, hard walled, circular cylindrical duct of length L
and cross-sectional area A in which sound propagates back and forth as plane waves, and
radiates from an open ‘mouth’ (Figure 1a). The subglottal tract is also regarded here as rigid
and uniform with cross-section AL < A and terminating in the lung complex, where wave
energy is absorbed without reflection, or reflected in accordance with a suitable impedance
condition [17 – 21]. Similarly, the glottis is modelled by a ‘necked’ duct of v rectangular

cross-section and streamwise length , which opens and closes at a nominal ‘free’
vocal fold frequency fo (~ 125 Hz for an adult male) [22, 23]. This is indicated in the upper
part of Figure 2, which shows the sagittal section parallel to the mean flow, where the cross-
hatched upper and lower glottis walls correspond to the medial surfaces of the vocal folds.
The glottis has constant span ℓs ≫ ℓg (out of the plane of the paper in the figure) and a blade-
like jet is formed (according to experiment [24]) by separation a short distance downstream
of the point labelled A in Figure 2, where the glottis cross-sectional area takes its minimum
value Ag(t). The Strouhal number foℓg/V ~ 0.05 at typical flow speeds V ~ 10 m/s. This is
small enough for it to be assumed that the glottal flow passes through a continuous sequence
of quasi-static states during a cycle of oscillation.

Basic reduced order equations for Ag(t) are derived from a ‘one’ or ‘two-mass’
approximation of a vocal fold [25 – 27]. The original single mass model cannot self-excite,
however, except in the absence of damping or with acoustic feedback. The two-mass
approximation represents the fold as two lumped masses connected by springs and dampers
which are adjusted to provide the necessary asymmetry in surface pressure force to promote
self-excited oscillations. Avanzini [28] has developed a quasi-one-mass model by assuming
that the displacement of the ‘upper’ mass of the conventional two-mass model is
proportional to that of the lower mass after a suitable time delay. This permits the two-mass
model to be described by a single equation of motion for the lower mass.

The two-mass model is effective because it provides a rudimentary approximation to the
influence on the surface force of the mucosal wave. This force depends on the pressure
produced by lung contraction, and its modification by flow separation from the vocal folds
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and jet formation in the glottis outflow. Separation depends on the position within the glottis
of its cross-sectional minimum Ag, which is governed by the mucosal wave propagating
over the medial surfaces of the folds [29 – 37]. The separation point is sometimes expressed
in terms of a ‘flow separation coefficient’ As/Ag, where As is the cross-sectional area
downstream of the minimum glottis cross section at which separation occurs. Sidlof et al.
[24] concluded from measurements of a model vocal fold that this point remains close to the
narrowest cross-section during most of the vibration cycle, but that it can move significantly
further downstream just before and after glottal closure. Because of the asymmetry provided
by separation, a knowledge of As/Ag constitutes an essential input to numerical models.
Thus, Deverge et al. [38] assume As/Ag = 1.2, and values of As/Ag ranging from 1.08 to 1.6
are used in [28, 39 – 42].

In this paper the time-dependent position of the separation point is obtained from
measurements of Berry et al. [32] of mucosal waves on an excised canine hemilarynx. These
are incorporated into the single mass-spring model of the glottis illustrated in Figure 2. The
experiment involved imaging of the vocal fold medial surface along a coronal cross-section
of the left vocal fold. Excised fold tissue responds passively to an applied subglottal pressure
rise, but it was claimed that many aspects of the intact voice are duplicated in the experiment
(chest like, falsettolike, frylike vibrations) including abnormalities observed in voice
disorders. Previous measurements on an hemilarynx [43] also indicate that observations over
a wide range of driving pressures yield results comparable to the full larynx.

The aeroacoustic theory of voicing for this simple model is discussed in Section 2. The
Berry et al. [32] data are sufficiently precise for the time-dependent position of the glottal
minimum area Ag to be determined as a two-valued function of the fractional open area Ag/
Amax, respectively applicable during the opening and closing phases of the glottis, where
Amax is the maximum open area attained during a cycle. This is discussed in Section 3. The
result is used in Section 4 to calculate the unsteady normal driving force for use in the
single-spring-mass equation of motion of the vocal folds. This equation must be solved
simultaneously with the Fant equation governing the glottis volume velocity Q(t). Limit
cycle solutions of the equations are then investigated (Section 5), for which the moving
separation point provides the necessary phase variation to overcome system damping and
maintain vocal fold vibration. The influence on the glottis of the back-reaction of standing
waves in the supraglottal tract is discussed in Section 5.

2. Green’s function and the Fant equation
In the vocal tract the Mach number is small and variations in the mean air density can be
neglected. We can therefore set ρ = ρo in equation (6), so that

(7)

where ν = η/ρo is the kinematic viscosity.

2.1 Green’s function
Consider the evaluation of this integral formula at x in Figure 1a, in the supraglottal v tract

where . Green’s function will be determined in the compact approximation (for

characteristic wavelengths ), when only plane waves can propagate. To avoid
unnecessary complications let us assume that the upper and lower tracts have the same
cross-sectional area A = AL. Use rectangular coordinates x = (x1, x2, x3) with the origin at
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the centroid of the glottis and with x1 directed along the axis of symmetry. Within and close
to the acoustically compact glottis Green’s function reduces to a solution of Laplace’s
equation, which can be written

(8)

where α(τ, x1, t), β(τ, x1, t) do not depend on y and ∇2Y (y, τ) = 0. Y (y, t) can be regarded
as a velocity potential of an ideal flow from y1 < 0 to y1 > 0 through the glottis normalised
to have unit speed in the positive y1 direction in the upper and lower tracts. In particular it is
required that ∂Y/∂yn = 0 on all surfaces, including the instantaneous surface of the glottis,
and Y can be normalised such that

(9)

where ℓ̄= ℓ̄(τ) is a characteristic length ~ (A/Ag)ℓg.

It follows that the functional forms of G ≡ G(x1, y1, t, τ) when y lies within the upper and
lower tracts must satisfy

(10)

In these regions we have (see [44] for further details)

(11a)

(11b)

where f(τ − y1/co) is an incoming plane wave from the lungs, ko = ω/co, and

(12)

in which H(·) is the Heaviside step function. The integrations with respect to ω pass above
singularities on the real axis. Go(x1, y1, t, τ) is just the compact Green’s function for x, y in
the upper tract when ∂Go/∂y1 = 0 at y1 = 0 (i.e. when flow through the glottis is blocked).

The representation (11b) satisfies ∂G/y1 → β as y1 → +0, and G = 0 at the ‘mouth’ y1 = L̂,
where L ̂ is the internal duct length L increased by an appropriate ‘open-end correction’ [45].
The conditions that G → α − ℓ̄, α respectively as y1 → ∓0, and ∂G/∂y1 → β as y1 → −0
supply the following consistency relations:

(13)

Howe and McGowan Page 5

J Sound Vib. Author manuscript; available in PMC 2014 August 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(14)

2.2 The Fant equation
It is not possible to simplify further the above equations to obtain an explicit representation
of G, which depends implicitly on the time-dependent geometry of the glottis, and therefore
on the solution of the acoustic problem! However, this coupling leads to the Fant equation in
the guise of a further consistency condition that must be satisfied by the glottis volume
velocity Q(t). This is derived by equating the results of two different calculations of the
acoustic pressure: (i) in terms of the monopole source Q(t), and (ii) via the aerodynamic
sound integral representation (7).

2.2.1 Prediction (i) via the monopole source—To do this we consider the sound field
at an arbitrary point x in the upper vocal tract. We first regard the glottis opening into the
tract as a monopole source distribution in the wall at x1 = 0, and then apply a special case of
(7) using the Green’s function Go of equation (12) for a duct closed at x1 = 0. Only the
surface integral on the right hand side of (7) is retained (with the viscous term discarded) to
yield for case (i)

(15)

This result is now expressed in terms of the coefficient β(τ, x1, t) by use of the consistency
relation (14) and the third of equations (13):

(16)

2.2.2 Prediction (ii) via the aerodynamic sound formula—Turning now to the full
aeroacoustic representation (7), there are two principal sources corresponding to the two
integrals on the right hand side, and we write

(17)

where Bo and Bσ are the respective contributions from the surface and volume integrals.

Surface motions are significant in two regions. One of these is the wall region within and
close to the glottis. The overall monopole contribution from this motion is small, because of
tissue incompressibility, and is ignored. Other surface integral contributions from within the
glottis can also be ignored [46]; in particular the viscous drag within the glottis is significant
only near closure – the Reynolds number typically exceeds 103 during most of the open
phase and detailed calculation [46] indicates that the net contribution of surface friction is
uniformly small over a complete cycle of oscillation.

The remaining contribution is furnished by steady contraction of the lungs, which will be
assumed to give a net volume flux Qo towards the glottis. The contraction is necessarily
equivalent to a compact source centred on x1 ~ −ℓq, say, (Figure 1) so that
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(18)

where use has been made of the second of equations (13).

Next, Green’s function is given by equation (8) when y is in the compact region adjacent to
the glottis, and therefore

(19)

where the volume integral may be regarded as confined to the jet just downstream of the
glottis (or just upstream if reverse flow should occur). Although turbulence (vortex) sources
exist elsewhere in the vocal tract, they are essentially weak quadrupoles and contribute
negligibly to the sound.

Combining the results (18), (19) we conclude that the aggregate aeroacoustic prediction (ii)
within the upper tract is simply

(20)

2.2.3 Fant equation—Predictions (16) and (20) for the sound in the upper tract are
evidently equivalent provided

(21)

This is the Fant equation for the volume velocity Q(t). Its more conventional form is [14 –
16]

(22)

where ℓ = ℓ(t) ≡ (Ag/A)ℓ̄(t) is the effective length of the slug of fluid within and near the
glottis that contributes to the inertia of the unsteady glottal flow [45]. The integrated term on
the left represents the influence of the unsteady jet on the glottal flow, and can be evaluated
when information is available about the jet vorticity and velocity distributions. The terms in
the curly brackets on the right hand side are respectively the overall unsteady pressures just
upstream and downstream of the glottis, which force the glottal volume flow over its
effective cross-section Ag:

(23)

An investigation based on equation (22) is often more convenient than full numerical
treatments of the structural and compressible motions [41, 47 – 51], which are
computationally intensive and frequently cannot be run for more than one or two voicing
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cycles. They have mostly neglected the back-reaction on the glottal flow of standing
acoustic waves in the supra and subglottal tracts, by permitting sound to radiate towards the
mouth and lungs without reflections. Back-reactions of this kind are easily incorporated into
equation (22) [17, 18, 20, 21, 25, 44, 52 – 55], in our case via the second of equations (23).

2.2.4 Vocal fold equation—Equation (22) must be solved in conjunction with equations
governing Ag(t) and ℓ(t). The simplest reduced order equation for Ag(t) is based on the single
mass-spring system of the vocal folds indicated in Figure 2 [25]. With the origin at the
centroid of the glottis, and x1 parallel to the vocal tract, the x2 and x3 axes may be taken
respectively vertically upwards and out of the plane of the paper in Figure 2. The folds are
assumed to vibrate symmetrically in the x2 direction, and the displacement ζ(t) of the upper
fold (Figure 3) is taken to satisfy the damped-oscillator equation

(24)

where m is the effective mass of the fold, α ≃ 0.1 is the structural damping ratio, Ω = 2πfo is
the radian natural frequency determined by muscular adjustment of the folds, and F(t) is the
normal force exerted by the air on the medial surface of the fold. The two folds touch and
‘close’ the glottis when ζ = ζo, say, which corresponds to the centre-line of the glottis, so
that ζ > ζo during free motion. If ζo > 0 (as in Figure 3) and the folds are in their
undisturbed rest positions, they are pressed tightly together with equal and opposite forces of
magnitude mΩ2ζo. When ζo < 0 the glottis remains open in the rest position, and the folds
are then separated by a distance 2|ζo|.

The driving force F(t) is governed by the pressure produced by lung contraction, modified
by flow separation from the vocal folds and jet formation in the outflow. These events
depend on the position within the glottis of the cross-sectional minimum Ag, which is
influenced by the mucosal waves propagating over the medial surfaces of the folds [29 –
37]. In the case of the single mass-spring system of Figure 2, the position of Ag coincides
with that of the maximum mucosal wave amplitude. Interactions with the opposite fold
during collision also affect the volume velocity Q(t), and certain voice disorders have been
identified with vocal fold abnormalities (nodules, polyps, etc) that can disrupt normal
mucosal wave propagation [56].

3. Mucosal wave data
Berry et al. [32] measured fleshpoint motions on an excised canine hemilarynx using nine
microsutures placed along the medial surface of a mid-coronal section of the left vocal fold,
spaced approximately one mm apart. Fleshpoint motions were primarily confined to the
static mid-coronal plane, the observed out-of-plane vibrations (parallel to the flow direction
in Figure 2) were observed to be an order of magnitude smaller. The experiments were
performed in the absence of a supraglottal tract over a range of subglottal pressures pI, up to
a maximum of about 1600 Pa.

A periodic, chest-like vibration pattern was observed at pI ~ 800 Pa with fundamental
frequency ~102 Hz. Data for this case displayed in Figure 8(a) of [32] has been digitised to
provide an empirical relation between the glottis fractional minimum cross-section Ag/Amax
and its distance ℓ2 from the downstream end of the glottis. For the simplified glottis of Figure
2, the overall glottal length ℓg is defined to be the observed value of ℓ2 at which Ag attains its
maximum Amax.
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The digitised data have been smoothed and ℓ2/ℓg plotted in Figure 4 as a two-valued function
of Ag/Amax over a complete cycle, the dependence on Ag being different during the opening
and closing phases. In the opening phase ℓ2 remains at or very close to the downstream end
of the glottis until Ag exceeds about 80% of Amax, after which it recedes rapidly to the
subglottal end. The variation when closing is relatively uniform and the folds exhibit a
sharp, whip-like motion reminiscent of the chest or modal register [32]. The corresponding
changes in glottal geometry at equal time intervals over a cycle are illustrated in Figure 5.
The profiles are drawn by assuming that the nominally flat medial surface is displaced a
distance y inwards, towards the glottal axis, according to the formula

(25)

where xw = (distance/ℓg) along the x1 axis from the position ℓ2 of minimum glottis cross-
section, h is the nominal peak amplitude of the mucosal wave (see Figure 3) and ℓw = 0.1.
Thus, 2h is the mean glottis width in the upstream section in the fully closed state of Figure
5a. Although this width is arbitrary, its actual value has little or no significance for the
calculations to be discussed below. The sequence of profiles in Figure 5 is similar to Figure
2.1 of Stevens [16], except that in Stevens’s closed state, corresponding to our Figure 5a, the
region of contact of the vocal folds extends a distance of about 0.2ℓg from the supraglottal
end of the glottis.

4. Equations of motion in the quasi-static approximation
4.1 The Q-equation

The Berry et al. [32] data are applied to the simplified case of Figure 1 where the subglottal
and supraglottal tracts are hard-walled and have equal uniform cross-sectional areas A ≫
Amax. Steady contraction of the lung cavity is assumed to be equivalent to a uniform driving
pressure pI = ρocoQo/A in the subglottal region, resulting in a volume flux Q(t) through the
glottis and the propagation of plane sound waves into x ≷ 0 on either side of the glottis.

The unsteady pressure p1 just upstream of the glottis (where fo|x1|/co ≪ 1) is

(26)

When the Strouhal number foℓg/V ≪ 1, the flow within and near the glottis is quasi-static and
the steady form of Bernoulli’s equation is applicable in local regions of irrotational flow. It
is assumed that flow separation just downstream of the minimum glottis section (A in Figure
2) produces a well defined jet of volume velocity Q(t) bounded by idealised free streamlines
(the Reynolds number based on jet thickness ~ 103 typically). The unsteady pressure within
the jet and in the glottis to the left of A is therefore given by

(27)

where V (x, t) is the local flow speed. In the downstream region, outside the jet, the pressure
is equal to p2.

The overall internal duct length L (~ 17 cm for an adult male) will be increased to L̄ = 20 cm
(Table 1) to account for the acoustic end-correction at the mouth [45]. In the absence of
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dissipation in the duct and when radiation losses from the mouth are ignored, the pressure p2
is given in terms of Q by the second of equations (23). The integration path along the real ω
axis passes above simple poles of the integrand at , (−∞ < n < ∞).

In practice, however, dissipation at the walls of the supraglottal tract and radiation losses
from the mouth can be important. For the hard-wall, mechanical model of Figure 1a thermo-
viscous damping occurs in the duct wall boundary layers, and usually exceeds the radiation
damping at lower frequencies. When these effects are taken into account the resonance
frequencies become complex and are given to a first approximation by [57]

(28)

in which ℓp is the perimeter of the upper tract, and ν ≃ 1.5 ×10−5 m2/s, χ ≃ 2 × 10−5 m2/s are
respectively the kinematic viscosity and thermometric conductivity of the air in the upper
tract. Dissipation produced by flexing of wall-tissue by standing waves in the upper tract is
actually much larger [16], but the simple model (28) will suffice to illustrate the influence of
dissipation on standing waves in the upper tract.

When this correction is incorporated into the second of equations (23) we find

(29a)

(29b)

The results (26) and (29) may now be substituted into the Fant equation (22).

In the quasi-static approximation the vorticity integral in equation (22) is given to first order
by [44, 58]

(30)

which is applicable also in the case of reversed flow (towards the lungs) through the glottis.
This quadratic term represents the influence of the unsteady jet on the glottal motion, and

this quasi-static representation is applicable provided  is small, where Uσ =
Q/σAg is the free jet speed and s is the jet contraction ratio. Jet instability in the downstream
region can be ignored because the integrand is only significantly different from zero close to
the glottis. The contraction ratio σ ≃ 0.61 for a simple circular or rectangular aperture in thin
wall, where the streamlines turn through about 90° at the aperture edge [13], but it will be
much larger for a confined jet where separation takes place just downstream of the
narrowest section Ag. Experiment [59] and ideal analytical modelling [23] suggest that a
value closer to σ ≃ 1 is probably more appropriate, and we shall use this in what follows.

Finally, because the glottal region is compact, we can neglect ℓ̄∂Q/t in (22) compared to coQ.
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Thus, collecting together the results (26), (29a) and (30), the Fant equation (22) is reduced to
quasi-static form

(31)

4.2 The surface force F(t)
The net normal force F(t) applied by the airflow to the vocal fold of Figure 3 (in the
direction of increasing ζ) consists of two components produced by the air pressure acting on
the sections of the glottis wall upstream and downstream of the separation point,
approximately of respective lengths ℓ1 and ℓ2. The pressure on the downstream section is
equal to p2. Except in the immediate vicinity of the mucosal wave peak, Bernoulli’s
equation (27) gives for pu, the upstream wall pressure,

(32)

where Ac ≡ Ag + 2ℓsh is the uniform cross-sectional area of the glottis upstream of the
minimum cross-sectional area. These approximations neglect small edge-transitional
modifications of the pressure discussed by McGowan & Howe [60].

Using equations (26), (29a) and (32), and eliminating Q|Q| by means of the Fant equation
(31), we find

(33)

4.3 The vocal fold equation of motion
The substitution

(34)

permits the vocal fold equation (24) to be cast in the form

(35)

The net force on the right hand side must be positive to open the glottis during a period of
closure. Solutions of the simultaneous equations (31) and (35) are obtained below for the
standard set of parameter values in Table 1. The damping ratio α is believed to be about 0.1
[25, 61], although no precise data is available.
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The vocal fold motion starts at t = 0 by application of a sufficiently large and constant lung
overpressure pI, with the initial conditions Ag = 0, dAg/dt = 0. Two simple alternative
procedures can be applied to model inelastic and elastic vocal fold collisions [25]. In the
inelastic case each fold is reduced to rest on contact, and the motion is re-started with the
initial values Ag = 0, dAg/dt = 0 by the pressure force pI. During elastic impact Ag remains
zero for a finite time dependant on tissue resilience. This is modelled by formally permitting
Ag to become negative subject to the modified equation of motion

(36)

The contact motion will be assumed to be critically damped by taking the damping ratio ᾱ =
1. When predictions are plotted, however, the glottis area Ag(t) is set to zero during those
time intervals where the equations imply that Ag < 0, i.e. we plot Ag = 0 for times when the
vocal folds are in contact.

To determine Q(t) and Ag equations (31), (33), (35), (36) are augmented by equations for
Zn(t), n = 1, 2, ···. These are obtained from equation (29b), which implies that Zn is also
given in terms of Q(t) by the equations

(37)

where . In practice the component of the back-
pressure p2 determined by the modal coefficient Zn(t) will be small when the glottal radian
frequency Ω ≪ ωn. This is satisfied when n > 2 for normal voicing, which indicates that the
infinite system (37) can safely be truncated at, say, n = 5. The validity of this approximation
has been verified by numerical tests. The whole set of governing equations can then be

solved by Runge-Kutta integration, subject to the additional initial conditions Zn = 0, 
at t = 0.

5. Numerical results
Typical numerical predictions when the separation point moves in accordance with the
Berry et al. [32] measurements are depicted in Figure 6. The variations of Ag(t)/A, Q(t)/Qo,

 are plotted during the initial time period 0 < fot < 5, where Qo = pI A/ρoco is
mean volume velocity from the lungs, corresponding to a subglottal pressure of amplitude
pI. The variation of Q(t) determines the acoustic pressure radiated towards the mouth (prior
to reflection and transmission). The motion is started at t = 0 with Ag = 0, dAg/dt = 0 with
the folds just touching (ζo = 0) by a constant applied subglottal pressure pI. The damping
ratio α = 0.1, and critical damping ᾱ = 1 is assumed in equation (36) during vocal fold
impact. Other parameter values are given in Table 1.

The surface force F(t) falls almost to zero when the glottis is fully open, when the separation
point is at the upstream end of the glottis, because the whole of this force is then furnished
by the back pressure p2 (equation (29a)), which is very small when fo ≪ f1 = ω1/2π ~ 450
Hz. This is favourable to the maintenance of limit cycle oscillations. According to Figure 6
the asymmetry of F(t) relative to the instant at which Ag = Amax (produced by the
corresponding asymmetric motion of the separation point) ensures that the surface force is
always larger during opening than at the corresponding point during the closing phase of the
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glottis, conducive to the supply of energy to overcome vocal fold damping. The waveforms
plotted in Figure 6a are for a mean subglottal pressure pI = 800 Pa, for which the peak of the
limit cycle volume velocity wave profile is skewed slightly to the latter half of the cycle.
The effective limit cycle fundamental frequency is about 40% larger than f0.

Figure 6b indicates how these conclusions are changed when the subglottal pressure is
increased to 1600 Pa accompanied by the application of an adduction force Fa, say, to the
vocal folds, causing them to be tightly pressed together in the rest position. This force
corresponds to the second term (Ω2ζo) in the braces on the right of equation (35), where the
parameter ζo is taken to be 0.5 mm. Because in ‘pressed voicing’ the folds are unable to
execute a full cycle of the ‘free’ equation of motion (35), the effective frequency of the limit
cycle is increased, in the present case by about 60% of f0.

5.1 The ‘exposed’ glottis
Insight into the influence on the glottal flow of standing acoustic waves in the upper tract is
obtained by consideration of the configuration of Figure 1b, where the glottis radiates
directly into free space. The pressure p2 downstream of the glottis now vanishes to a good
approximation.

The calculations of Figure 6 have been repeated for an exposed glottis (with AL = A of
Table 1) and the results displayed in Figure 7. The force and volume velocity waveforms are
now much smoother, F(t) vanishing when the glottis is fully open. The predicted volume
velocity profiles Q/Qo are perfectly symmetric, and exhibit marginally increased oscillation
frequencies and reduced maximum amplitudes relative to the corresponding predictions in
Figure 6 in the presence of the upper tract. Upper tract back-reaction therefore appears to be
responsible for the asymmetry in the volume velocity waveforms.

5.2 Resonant back-reaction
The broadly similar predictions for corresponding cases in Figures 6, 7 suggest that the
experimental data of [32] in Figure 4 measured using an excised canine hemilarynx (with
the supraglottal tract removed) probably provides a good model also in the presence of the
upper tract, at least when the back-reaction of standing waves is weak (when fo ≪ f1). But
the data can also be used to investigate the back-reaction when fo is close to an upper tract
resonance frequency, when the motion in the glottis could be strongly influenced by
standing acoustic waves. This is known to be important for an exposed glottis when fo is
close to a subglottal resonance [17 – 21]. According to Joliveau et al. [62] tuning of the first
upper tract resonance frequency f1 to fo can be used by singers to attain increased radiated
power, and Titze [30] has argued that vocal fold vibrations are enhanced when fo just
exceeds f1.

To examine this effect in terms of the mechanical vocal tract of Figure 1a, the length L̄ of
the upper tract must be artificially changed. Figure 8 depicts typical predictions when the
unforced vocal fold resonance frequency fo = 250 Hz and the upper tract is adjusted to make
f1 = 246.6 Hz (L ̄ = 36.4 cm), and when the subglottal driving pressure pI = 800 Pa. No
allowance is made for a possible corresponding reduction in the effective dynamic mass of
the vocal folds. Equations (37) are truncated at n = 8 to ensure proper convergence.

In Figure 8 the limit cycle oscillations of the vocal folds are at frequency ~ f1. The glottis
ejects two distinct puffs per cycle into the upper tract separated by a short interval of
‘silence’, during which the surface force F(t) rises to its maximum value ℓsℓgpI normally
attained only when the glottis is closed. When boundary layer damping in the upper tract is
ignored (Figure 8a), Q/Qo rises to a maximum of 0.165 when Ag has opened to about
0.5Amax, after which it falls to zero, and remains zero until Ag starts to decrease. During this
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time the supraglottal back pressure p2 ~ pI is large enough to completely block the flow,
even though the glottis is fully open (cf. Lighthill [63], Section 2.5; [44]). A second larger
volume velocity peak of Q/Qo ~ 0.207 occurs when Ag decreases to about 0.55Amax, at
which time the surface force F(t) falls to a positive minimum. The overall profile of the
volume velocity is therefore periodic with frequency fo, but with a substantial second
harmonic component. The principal effect of upper tract damping (Figure 8b) is to replace
the flow blockage near Ag ~ Amax with a deep, positive minimum of the volume velocity Q.
The depth of this minimum will in practice be further reduced when more realistic damping
associated with vocal tract wall flexing is taken into account.

For the simple mechanical model of Figure 1a, these ‘double puff’ volume velocity profiles
are evident in numerical predictions only when the glottis frequency fo is close to an upper
tract resonance frequency. However, effects of this kind are believed to occur in the human
vocal tract over much wider frequency bands centred on upper tract resonance frequencies
[64], because of the diffusive influence of the relatively large contribution to overall
damping produced by tissue-flexure in the tract walls.

6. Conclusion
The acoustic source responsible for voiced speech involves the periodic release of high
pressure air from the lungs by the opening and closing of the glottis. Air emerges in a rapid
succession of puffs of unsteady volume velocity that is usually identified as a monopole
source radiating into the supraglottal tract. But this is really a nonlinear aeroacoustic
problem whose solution by the tailored Green’s function method propounded by Doak [1] is
formally intractable, because the time history of Green’s function depends on the solution of
the direct acoustic problem. Green’s function and the glottis volume velocity Q(t) are
coupled by a consistency equation, i.e. by the Fant equation, usually derived by heuristic
argument, but shown here to be a rigorous consequence of Lighthill’s theory of aerodynamic
sound.

The mucosal wave propagates back and forth over the medial surfaces of the separated vocal
folds, and is responsible for the amplitude and phase modulation of the surface force. The
state of the wave determines the position within the glottis of the minimum of the glottis
cross-sectional area (Ag). Flow separation from the wall near this moving minimum is
responsible for the desired phasing of the force, achieved principally because of asymmetric
motion of Ag during opening and closing of the glottis. This is the significance of the
experimental data in Figure 4, obtained from measurements on an excised canine
hemilarynx [32]. Our calculations using this data for a simplified vocal tract model indicate
that the mechanism is robust enough to maintain limit cycle oscillations over a wide range of
voicing conditions. The characteristic locus of Ag displayed in Figure 4 is likely to be
typical of most voicing cycles involving an interval of closure of the glottis, but
confirmation of this awaits the availability of in vivo data.
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Figure 1.
Idealized configurations of the subglottal and supraglottal sections of the vocal tract. (a)
Damping of sound within the lung complex is modelled by permitting sound from the glottis
to radiate without reflection into the lungs, as if the subglottal tract were semi-infinite in
length; (b) ‘exposed’ glottis with the supraglottal tract removed.
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Figure 2.
Simplified representation of the subglottal and supraglottal sections of the vocal tract. The
upper part of the figure illustrates the idealised glottis, which is treated as a ‘necked’
rectangular duct within which flow separation occurs just downstream of the point A of
narrowest cross-section.
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Figure 3.
The vocal folds are assumed to oscillate symmetrically relative to the centre-line ζ = ζo of
the glottis; ζ − ζo is the distance from the centre-line to the point of maximum amplitude h
of the mucosal wave, so that Ag = 2ℓs(ζ− ζo).
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Figure 4.
Empirical relation between the minimum glottal cross-sectional area Ag and its distance ℓ2
from the supraglottal end expressed in terms of the idealised glottis of Figure 2. The curves
are constructed using digitised data from Figure 8(a) of Berry et al. [32] for measurements
on an excised canine hemilarynx at pI ~ 800 Pa.
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Figure 5.
Illustrating the changes in glottal geometry for equally spaced instants in a complete cycle of
oscillation calculated from the data of Figure 4: (a) – (e), opening phase; (f) –(j) closing
phase.
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Figure 6.

Limit cycle variations of Ag(t)/A, Q(t)/Qo,  when separation occurs just
downstream of the minimum of the glottis cross-sectional area which moves according to
the data of Berry et al. [32], for the conditions of Table 1 when α = 0.1, ᾱ = 1, L̄ = 20 cm.
(a) pI = 800 Pa; (b) pI = 1600 Pa, ζo = 0.5 mm.
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Figure 7.

Predictions of Ag(t)/A, Q(t)/Qo,  for an ‘exposed’ glottis (Figure 1b) when
separation occurs just downstream of the minimum of the glottis cross-sectional area which
moves according to the data of Berry et al. [32], for the conditions of Table 1 when α = 0.1,
ᾱ = 1. (a) pI = 800 Pa; (b) pI = 1600 Pa, ζo = 0.5 mm.
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Figure 8.
Resonant acoustic back-reaction from the supraglottal tract when separation occurs just
downstream of the minimum of the glottis cross-sectional area which moves according to
the observations of Berry et al. [32], for the conditions of Table 1 when α = 0.1, ᾱ = 1, pI =
800 Pa, fo = 250 Hz, f1 = 246.6 Hz. (a) no upper tract damping; (b) upper tract damping
defined as in (28).
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Table 1

Vocal tract parameters

Parameter Value

glottal length ℓg 3 mm

glottal span ℓs 10 mm

mucosal wave amplitude h 1 mm

mass of one vocal fold m 0.5 × 10−4 kg

nominal vibration frequency fo = Ω/2π 125 Hz

subglottal and supraglottal cross-sections A 100π mm2

perimeter of the supraglottal tract ℓp 20π mm

effective length of the supraglottal tract L̄ 20 cm

density of air ρo 1.23 kg/m3

speed of sound co 359 m/s
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