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Abstract
BACKGROUND—Many mutations that contribute to the pathogenesis of acute myeloid
leukemia (AML) are undefined. The relationships between patterns of mutations and epigenetic
phenotypes are not yet clear.

METHODS—We analyzed the genomes of 200 clinically annotated adult cases of de novo AML,
using either whole-genome sequencing (50 cases) or whole-exome sequencing (150 cases), along
with RNA and microRNA sequencing and DNA-methylation analysis.

RESULTS—AML genomes have fewer mutations than most other adult cancers, with an average
of only 13 mutations found in genes. Of these, an average of 5 are in genes that are recurrently
mutated in AML. A total of 23 genes were significantly mutated, and another 237 were mutated in
two or more samples. Nearly all samples had at least 1 nonsynonymous mutation in one of nine
categories of genes that are almost certainly relevant for pathogenesis, including transcription-
factor fusions (18% of cases), the gene encoding nucleophosmin (NPM1) (27%), tumor-
suppressor genes (16%), DNA-methylation–related genes (44%), signaling genes (59%),
chromatin-modifying genes (30%), myeloid transcription-factor genes (22%), cohesin-complex
genes (13%), and spliceosome-complex genes (14%). Patterns of cooperation and mutual
exclusivity suggested strong biologic relationships among several of the genes and categories.

CONCLUSIONS—We identified at least one potential driver mutation in nearly all AML
samples and found that a complex interplay of genetic events contributes to AML pathogenesis in
individual patients. The databases from this study are widely available to serve as a foundation for
further investigations of AML pathogenesis, classification, and risk stratification. (Funded by the
National Institutes of Health.)

The molecular pathogenesis of acute myeloid leukemia (AML) has been studied with the use
of cytogenetic analysis for more than three decades. Recurrent chromosomal structural
variations are well established as diagnostic and prognostic markers, suggesting that
acquired genetic abnormalities (i.e., somatic mutations) have an essential role in
pathogenesis.1,2 However, nearly 50% of AML samples have a normal karyotype, and many
of these genomes lack structural abnormalities, even when assessed with high-density
comparative genomic hybridization or single-nucleotide polymorphism (SNP) arrays3-5 (see
Glossary). Targeted sequencing has identified recurrent mutations in FLT3, NPM1, KIT,
CEBPA, and TET2.6-8 Massively parallel sequencing enabled the discovery of recurrent
mutations in DNMT3A9,10 and IDH1.11 Recent studies have shown that many patients with

Copyright © 2013 Massachusetts Medical Society.

Address reprint requests to Dr. Timothy J. Ley at Washington University School of Medicine, Division of Oncology, Stem Cell
Biology Section, Campus Box 8007, 660 S. Euclid Ave., St. Louis, MO 63110, or at timley@wustl.edu.
The members of the Cancer Genome Atlas Research Network are listed in the Appendix.

Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

A video detailing the findings of this study is available at NEJM.org

NIH Public Access
Author Manuscript
N Engl J Med. Author manuscript; available in PMC 2013 November 30.

Published in final edited form as:
N Engl J Med. 2013 May 30; 368(22): 2059–2074. doi:10.1056/NEJMoa1301689.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



AML carry no mutations in any of the currently recognized driver genes associated with the
pathogenesis of AML.8,12

Patients with a cytogenetic profile that is associated with a favorable risk (i.e., those with
PML-RARA, RUNX1-RUNX1T1, or MYH11-CBFB fusions) have relatively good
outcomes with chemotherapy-based consolidation regimens, whereas patients with an
unfavorable-risk profile (monosomy karyotype or complex alterations) require allogeneic
transplantation during the first remission to improve their prognosis.13,14 However, the
majority of patients with AML have an intermediate cytogenetic risk (most commonly, a
normal karyotype); some of these patients do well with chemotherapeutic consolidation, but
others have a very poor outcome. For this reason, recent studies have focused on
establishing new biomarkers for better classification of intermediate risk.8,15,16 Newer
classification algorithms incorporate FLT3, NPM1, CEBPA, and KIT into standard-of-care
testing. Even more recently, testing has revealed that mutations in newly discovered AML
genes (e.g., DNMT3A, IDH1/2, and TET2) may also provide prognostic information for
some patients with an intermediate-risk profile.8,12,16 None of the current classification
schemes are entirely accurate, which suggests that a more complete understanding of the
genetic and epigenetic changes that are relevant to the pathogenesis of AML will be required
for better classification of risk and, ultimately, better approaches to therapy.

METHODS
PATIENTS

We selected samples from 200 adults with de novo AML to represent the major
morphologic and cytogenetic subtypes of AML.8,15,16 The characteristics of these patients
are fully described in Table 1, and in Tables S1 and S2, Figure S1, and the Materials section
in the Supplementary Appendix, available with the full text of this article at NEJM.org. A
video describing AML and this study is also available at NEJM.org.

ANALYTIC PLATFORMS
We performed whole-genome sequencing of the primary tumor and matched normal skin
samples from 50 patients (with data from 24 of these patients reported previously17) and
exome capture and sequencing for another 150 paired samples of AML tumor and skin (see
Table S3 in the Supplementary Appendix for coverage data for the 200 samples).

All 200 patients who were selected for this study were enrolled in a single-institution tissue-
banking protocol approved by the human studies committee at Washington University.
Written informed consent for whole-genome sequencing was obtained from all study
participants.

The samples, which were banked between November 2001 and March 2010, were selected
from a set of more than 400 samples to reflect a real-world distribution of subtypes. Sample
inventory and quality issues also had to be considered in the selection process, since the
samples were analyzed on several different platforms. We identified candidate somatic
variants using several algorithms (see the Methods section in the Supplementary Appendix),
and all the variants for the 200 samples were verified with the use of hybridization capture–
based methods and deep digital sequencing.18 We performed RNA-expression profiling on
the Affymetrix U133 Plus 2 platform for 197 samples, RNA sequencing for 179 samples,
microRNA (miRNA) sequencing for 194 samples, Illumina Infinium Human Methylation
450 BeadChip profiling for 192 samples, and Affymetrix SNP Array 6.0 for both tumor and
normal skin samples from all 200 patients. Data sets were not completed for all samples on
all platforms because of assay failures and availability and quality issues for some samples.
The complete list of data sets is provided in Table S4 in the Supplementary Appendix. All
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data sets are available through the Cancer Genome Atlas (TCGA) data portal (https://tcga-
data.nci.nih.gov/tcga).

RESULTS
COPY-NUMBER ALTERATIONS

In most de novo AML samples with a cytogenetic profile indicating intermediate or
favorable risk, we detected very few copy-number events on high-resolution SNP arrays, as
reported previously3 (Fig. S2 and Table S5 in the Supplementary Appendix). Unfavorable-
risk samples had chromosomal copy-number alterations that were verified on the SNP
arrays, and many had additional, cytogenetically cryptic events. No samples contained
evidence of chromothripsis (a single genomic event that results in focal losses and
rearrangements in multiple genomic regions).19 Details of these analyses are presented in
the Materials section in the Supplementary Appendix.

MUTATIONS IN CODING SEQUENCES
We discovered 2315 somatic single-nucleotide variants (SNVs) and 270 small insertions and
deletions (indels) in coding (tier 1) regions of the genome, with an average of 13 tier 1
mutations per sample (range, 0 to 51) (see box, and Table S6 in the Supplementary
Appendix). We observed no recurring coding mutations in three samples, but all contained
well-recognized fusion events that are known to initiate AML (NUP98-NSD1 in Patient
868231, MLL-MLLT3/AF9 in Patient 923966, and MLL-MLLT10/AF10 in Patient
558395). Three outlier samples contained 51, 36, and 35 tier 1 mutations; none of these
samples contained mutations in known DNA-repair genes. Of the 2315 SNVs, 1539 (66%)
were missense and 510 (22%) had no translational consequences. Small indels accounted for
270 of the 2585 validated mutations (10%); of these, 191 (71%) caused frameshifts.

Samples were stratified into 10 groups on the basis of the presence or absence of known
recurring fusion events, cytogenetic-risk profile, or the presence or absence of TP53
mutations (which were strongly associated with an unfavorable cytogenetic risk) (Fig. 1A).
We observed significant differences in the numbers of recurrent tier 1 mutations in some of
these groups. Eleven samples had MLL fusions; this group had the fewest recurrent tier 1
mutations, with a mean of 2.09, as compared with a mean of 5.24 for all 200 samples (P =
0.002 after correction for multiple comparisons). This finding suggests that MLL fusions
require fewer cooperating mutations than other AML-initiating events. Similarly, 20
samples containing PML-RARA fusions had fewer recurrent tier 1 mutations (mean, 3.25;
P=0.001). We observed a higher mean number of recurrent tier 1 mutations in 7 samples
containing either RUNX1-RUNX1T1 fusions (mean value, 7.85; P = 0.04) and in 13
samples with a combination of a high-risk cytogenetic profile and a TP53 mutation (mean,
7.00; P = 0.049). Larger sample sets will be required to confirm these observations.

A total of 260 genes had somatic mutations in at least 2 of the 200 samples; in 154 of these
genes, more than one mutation was nonsynonymous. An additional 1623 genes were found
to have a validated tier 1 mutation in one sample. Using the significantly mutated gene
(SMG) test in the Mutational Significance in Cancer (MuSiC) suite of tools,20 we identified
23 genes with a higher-than-expected mutation prevalence (false discovery rate, <0.05),
including genes that are well established as being relevant to AML pathogenesis (e.g.,
DNMT3A, FLT3, NPM1, IDH1, IDH2, and CEBPA), along with genes that have only
recently been implicated in AML pathogenesis, including U2AF1, EZH2, SMC1A, and
SMC3 (Fig. 1B, and Table S7 in the Supplementary Appendix).

We also identified and verified all variants in noncoding regions in the 50 sample pairs that
we analyzed using whole-genome sequencing. After the exclusion of 1 tumor sample, from
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Patient 817156, that had a high level of AML tumor cells (36%) in the skin sample (Table
S1 in the Supplementary Appendix), the median number of non-coding mutations in tumor
samples was 394, ranging from 68 to 1298. There was a strong correlation between the
number of coding and noncoding mutations in each genome (Pearson’s correlation
coefficient, 0.78), suggesting that most of the mutations were randomly distributed
throughout each genome. Most mutations in AML genomes are probably background events
that occurred in hematopoietic stem cells before the initiating event occurred; the clonal
expansion of these cells captures their mutational history, as reportedly previously.17 This is
also the reason why nearly all mutations in AML genomes are present in nearly all the cells
in each sample.17 The results of an analysis of recurrently mutated regions in tiers 2 and 3
(nongenic regions11) are presented in Table S8 in the Supplementary Appendix, as are data
for mitochondrial variants (Table S9 in the Supplementary Appendix); the relevance of these
events to pathogenesis is unclear.

Using deep digital sequencing, we verified all tier 2 and 3 variants that were discovered with
the use of whole-genome sequencing. This provided a large number of sites for variant allele
frequency (VAF)–based cluster analysis, which allowed us to define the clonal composition
of each tumor.17,18 More than half the tumors contained both a founding clone (the clone
with the highest VAF values) and at least one subclone; we were able to identify as many as
three independent subclones in one tumor sample (Fig. 1C, and Table S1 in the
Supplementary Appendix). The coverage provided by whole-genome sequencing in this
study (mean, 30.54×) limited the power to detect small sub-clones with VAFs of less than
10% (Fig. S3A in the Supplementary Appendix). Exome sequencing produced a higher level
of coverage for the targeted sequences (mean, 167.50×), slightly increasing our ability to
detect mutations with VAFs of less than 10%. However, the difference between the number
of tier 1 mutations detected with whole-genome sequencing (14.5 per sample) and the
number detected with exome sequencing (12.7 per sample) was not significant (P = 0.17)
(Table S6 in the Supplementary Appendix). The mutational spectrum of all validated SNVs
for all 200 samples is shown in Figure S3B in the Supplementary Appendix; transitions were
the most common mutation type, as reported previously.17,18

EXPRESSION OF MUTANT ALLELES
Analysis of RNA sequences revealed allelic bias for mutations in several genes. We
observed increased or exclusive expression of the mutant DNMT3A, RUNX1, PHF6, and
TP53 in several cases (Fig. S4A through S4F in the Supplementary Appendix). Loss of
heterozygosity or partial uniparental disomy explained the enrichment of mutant allele
expression in most samples; epigenetic modifications (e.g., altered patterns of DNA or
histone methylation) may be responsible for the rest.

miRNA VARIANTS
We identified somatic SNVs in miRNA genes in 7 of 200 samples (4%) (Table S10 in the
Supplementary Appendix). Of these 7 samples, 4 had mutations in miR-142 that were
localized to the seed region of the mature strand (a sequence from the 3′ region called
miR-142-3p) and were likely to affect messenger RNA (mRNA) target specificity (Fig. S5A
in the Supplementary Appendix). The expression of miR-142-3p and miR-142-5p (a
sequence from the 5′ region) is thought to be restricted primarily to the hematopoietic
compartment.21,22 Data from miRNA sequencing showed that miR-142 was highly
expressed in AML samples (Fig. S5B in the Supplementary Appendix). The mutated
miR-142 alleles were expressed at levels similar to those of the nonmutated allele in all
samples (Fig. S5C in the Supplementary Appendix). Although miR-142 mutations have not
previously been identified, several reports have linked aberrant expression of miR-142-3p
with hematologic cancers, including precursor B-cell23 and T-cell24,25 acute lymphoblastic
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leukemia and AML.26 The remaining mutations in miRNA genes were localized to
precursor miRNAs (in 3 samples) or to a nonseed region of a mature miRNA (in 1 sample).

GERMLINE VARIANTS
We identified all the variants predicted to cause mRNA truncation that were found in both
the skin and tumor samples (see the Results section, Table S11, and Fig. S6 in the
Supplementary Appendix). However, very few of the genes with truncation variants were
found to be expressed in most AML samples (including the samples carrying the variants
themselves), suggesting that most of the inherited truncating variants were probably
irrelevant for pathogenesis.

FUNCTIONAL CATEGORIZATION OF MUTATED GENES
We used complementary approaches to identify combinations of mutations in the samples;
for this analysis, we considered only nonsynonymous mutations (Fig. 2). Using the HotNet
algorithm,27 we identified six subnetworks of a genome-scale protein–protein interaction
network that had significant mutations (P<0.001). These included portions of known
pathways and protein complexes, including the cohesin complex17 (Fig. S7 in the
Supplementary Appendix).

We grouped mutations into larger sets or pathways and examined patterns of mutual
exclusivity and co-occurrence between these groups. Of 200 samples, 199 (>99%) contained
at least one mutation in one of nine categories that were defined according to biologic
function and that have a putative role in AML pathogenesis: transcription-factor fusions
(18% of cases), the gene encoding nucleophosmin (NPM1) (27%), tumor-suppressor genes
(16%), DNA-methylation–related genes (44%), activated signaling genes (59%), chromatin-
modifying genes (30%), myeloid transcription-factor genes (22%), cohesin-complex genes
(13%), and spliceosome-complex genes (14%) (Fig. 2, and Fig. S8 in the Supplementary
Appendix). For all genes that had mutations in only a small number of samples, the
pathophysiological relevance of the events will require further validation. FLT3 mutations
were identified in 56 samples, and an additional 62 samples were found to have mutations in
genes encoding other kinases, phosphatases, or RAS family proteins (Fig. S9 in the
Supplementary Appendix). However, most of these genes contained mutations in only 1 to 3
samples (with the exception of KIT, KRAS, NRAS, and PTPN11). In total, 59% of samples
had a mutation in a gene encoding a signaling protein.

To more fully assess patterns of mutual exclusivity and co-occurrence between sets of
genes, we applied Dendrix++ (see the Materials section in the Supplementary Appendix) to
the mutation matrix. Dendrix++ identified three sets of genes with the strongest patterns of
mutual exclusivity (groups A, B, and C) (Fig. 2). The most statistically significant set
included the transcription-factor fusion genes, NPM1, RUNX1, TP53, and CEBPA (Fig.
S10 in the Supplementary Appendix). The second most significant set showed exclusivity
between mutations in FLT3 and in genes encoding other tyrosine kinases, serine–threonine
kinases, protein tyrosine phosphatases, and RAS family proteins (Fig. S9 in the
Supplementary Appendix). The third set included mutations in ASXL1 and in genes
encoding components of the cohesin complex, other myeloid transcription factors, and other
epigenetic modifiers (Fig. S10 in the Supplementary Appendix). Mutations within the
spliceosome gene set, genes encoding other epigenetic modifiers, and genes encoding
myeloid transcription factors also showed considerable mutual exclusivity within each set
(Fig. S11 in the Supplementary Appendix).

Among the pairwise relationships between mutations in the AML samples, the most
prominent was the significant co-occurrence between mutations in FLT3, DNMT3A, and
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NPM1 (Fig. S8 in the Supplementary Appendix). In particular, many samples had mutations
both in NPM1 and DNMT3A or in NPM1 and FLT3. The likelihood that these mutations
occurred together by chance is extremely small (P<6.3×10−7 for NPM1 and DNMT3A and
P<1.9×10−6 for NPM1 and FLT3). This observation, combined with the strong association
between samples having concurrent mutations in NPM1, FLT3, and DNMT3A and distinct
clusters in mRNA, miRNA, and DNA methylation, suggests that samples with mutations in
all three genes represent a novel subtype of AML. Furthermore, we observed relationships
of strong mutual exclusivity. For example, PML-RARA, MYH11-CBFB, and MLL-
containing fusion genes were mutually exclusive of mutations in NPM1 and DNMT3A
(P<0.007, P<0.04, and P<0.04, respectively), and RUNX1 and TP53 mutations were
mutually exclusive of FLT3 and NPM1 mutations. Table S12 in the Supplementary
Appendix contains a full list of genes or gene sets with significant co-occurrences or
exclusivity among the samples.

GENE FUSIONS
De novo assembly of RNA-sequencing data28 for 179 AML samples identified 118 gene
fusions in 80 samples (mean, 1.5 per sample), of which 71 were distinct events (Fig. 3A)29;
99 samples had no detected fusions (Table S13 in the Supplementary Appendix). The range
of fusions per sample was 0 to 8. The 74 in-frame fusions included many previously
described, recurrent events, including PML-RARA, MYH11-CBFB, RUNX1-RUNX1T1,
BCR-ABL1, PICALM-MLLT10/AF10, NUP98-NSD1, and multiple fusions involving MLL
(Fig. 3B). We identified 15 new fusion events that maintained an open reading frame.
Although none of them were recurrent in this cohort, several of the genes in the fusions were
mutated or translocated in other samples of AML that we analyzed (i.e., MLLT10/AF10,
NF1, GRID1, PPP2R1B, XIAP, ATP1B4, WSB1, KIAA0999, TBX15, and LRRC37B). An
additional 42 gene fusions were out-of-frame (Fig. 3C), creating a truncated upstream gene
or potential haploinsufficiency for both partner genes, with many that were mutated or
translocated in other AML samples (including RUNX1, DNMT3B, MLLT10/AF10, NSD1,
EDIL3, SCARB1, XIAP1, PPP2R1B, FOXP1, KSR2, MLL3, and CUL1). One out-of-frame
fusion (GAS6-FAM70B) was detected in three AML samples, and one of its fusion partners
(FAM70B P233L) was mutated in another sample. Most of the newly described fusion
events in these samples were not detected by means of routine cytogenetic studies (Table S1
in the Supplementary Appendix).

GENE-EXPRESSION ANALYSIS
Unsupervised non-negative matrix factorization (NMF) consensus clustering (i.e., clustering
data with inputs consisting only of gene or miRNA abundance information) suggested an
optimum of seven RNA-sequencing groups and five miRNA-sequencing groups (Fig. S12 in
the Supplementary Appendix). Associations between these groups and overall survival are
shown in Fig. S13 in the Supplementary Appendix; the groups enriched for samples
containing PML-RARA had better outcomes than other groups, as expected. The RNA-
sequencing groups were highly concordant with a microarray data set for the same 178
samples (Fig. S14 in the Supplementary Appendix).

We used one-sided Fisher’s exact tests (corrected for multiple testing) to identify significant
associations (P<0.05) between specific RNA-sequencing and miRNA-sequencing groups
and covariates (Fig. 4). RNA-sequencing group 4 was associated with subtype M1 (AML
with minimal maturation) in the French–American–British (FAB) classification of acute
leukemias, group 3 with FAB subtype M3 (acute promyelocytic leukemia), group 5 with
FAB subtype M4 (acute myelomonocytic leukemia), and group 7 with FAB subtype M5
(acute monoblastic or monocytic leukemia) (Fig. 4A). Concordance between gene-
expression groups and FAB subtypes was similar to that previously reported for microarray
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data30,31 and showed that some expression signatures were strongly correlated with the stage
of myeloid differentiation of the AML sample.

For the miRNA-sequencing data, group 5 was associated with FAB subtype M3, and groups
2, 3, and 5 were associated with unfavorable, intermediate, and favorable cytogenetic risk
categories, respectively. Group 3 was strongly associated with mutations in NPM1,
DNMT3A, FLT3, and genes encoding the cohesin complex; miR-10a was expressed at high
levels in this group, an observation that is consistent with reports correlating high miR-10a
expression and NPM1 mutations32,33 (Fig. 4B). Levels of miR-424 were relatively low in
this group, making miR-424 the second-most discriminatory miRNA — an observation that
is consistent with the findings in a previous study.34 The data also confirmed that miR-196b,
miR-130a, and let-7b were discriminatory in this group.35 Additional comparisons with
published sets of expression data are provided in the Materials section in the Supplementary
Appendix.

DNA-METHYLATION ANALYSIS
Unsupervised analysis of changes in DNA methylation revealed significant differences
among subsets of samples, particularly in CpG-sparse regions of the genome (Fig. 5).36

Samples with IDH1 and IDH2 mutations showed extensive gains of methylation relative to
CD34+CD38− cells obtained from healthy donors (Table S14 in the Supplementary
Appendix), whereas some samples with MLL fusions or co-occurring NPM1, DNMT3A,
and FLT3 mutations were associated with extensive loss of DNA methylation, as compared
with normal CD34+CD38− cells. Specific patterns of methylation gain and loss
distinguished samples with CEBPA mutations, as well as samples with PML-RARA,
RUNX1-RUNX1T1, or MYH11-CBFB fusions. Significant changes in DNA methylation
were identified across AML samples at 160,519 CpG loci (42% of sites tested), with 67%
resulting in a gain of methylation and 33% resulting in a loss (see the Methods section and
Table S15 in the Supplementary Appendix). Samples with triple mutations in NPM1,
DNMT3A, and FLT3 showed methylation losses at 328 of 382 differentially methylated
regions larger than 1 kb (86%), as compared with CD34+CD38− cells from healthy donors.
Although both intergenic and genic regions were affected, approximately 71% of these
changes were in coding regions (Table S16 in the Supplementary Appendix).

We also assessed the relationships between gene expression and DNA methylation in pairs
of data types by identifying groups in one data type that were enriched in samples from a
group in the other data type (Fig. S15A through S15E in the Supplementary Appendix).
Clusters containing samples of acute promyelocytic leukemia were strongly concordant for
mRNA, miRNA, and CpG-sparse DNA methylation (Fig. 5, and Fig. S15 in the
Supplementary Appendix). In mRNA groups 1, 2, 5, and 6, there was a preferential
association with one miRNA-sequencing group each, suggesting that regulatory
relationships must exist between these groups (Fig. S15A in the Supplementary Appendix).
Associations in CpG-sparse DNA methylation groups were more significant for miRNA
groups than for mRNA groups, suggesting the existence of previously unrecognized
epigenetic regulatory pathways (Fig. S15B through S15E in the Supplementary Appendix).
Genes defining the RNA- and miRNA-sequencing groups are shown in Figure S16 in the
Supplementary Appendix; a very striking set of small RNA genes within an imprinted locus
on chromosome 14 were found to be consistently dysregulated in acute promyelocytic
leukemia (Fig. S17 in the Supplementary Appendix).37

DISCUSSION
Of the adult cancer types that have been extensively sequenced to date, AML has had the
fewest mutations discovered (Fig. S18 in the Supplementary Appendix). The average
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number of coding mutations (SNVs and indels) per patient in this study was 13, of which
only 5 were recurrently mutated in each genome. There was little evidence of genomic
instability in most AML genomes. However, a small number of patients had an unfavorable-
risk (complex) cytogenetic profile that was strongly associated with mutations in TP53,
which confirmed a recently reported relationship.38 Adult AML genomes contain a median
of only one somatic copy-number variant and an average of less than one gene-fusion event
(generally caused by translocations).1,2

The organization of mutated genes into nine functionally related categories revealed many
potentially important biologic relationships. The transcription-factor fusions were the first
recognized somatic mutations in AML genomes,1,2 and all such fusions have been shown to
be relevant for disease initiation in mice.39-42 Our data show that some mutations that are
common in AML (e.g., in DNMT3A, NPM1, CEPBA, IDH1/2, and RUNX1) are mutually
exclusive of the transcription-factor fusions, suggesting that these mutations may have
functions in the initiation of AML that are similar to the functions of fusion genes. We also
identified a pattern of mutual exclusivity for mutations in genes within certain biologic
classes, including those encoding the cohesins, proteins of the spliceosome, signaling
proteins, and histone-modifying proteins, suggesting that one mutation in these pathways is
generally adequate for AML pathogenesis. Although a common model of AML
pathogenesis has suggested that an activating mutation in a gene encoding a signaling
protein might be a requirement for pathogenesis,43 only 59% of the patients in our study had
a mutation in a gene annotated to suggest a role in signaling.

We integrated the expression data for both mRNA and miRNA with all the clinical and
mutational data for all genomes. That analysis revealed that the differentiation state of the
AML sample was highly correlated with the expression signature, as reported previously.44

Patients who had PML-RARA fusions had very distinct mRNA and miRNA signatures that
were strongly correlated with each other and with a specific DNA methylation signature.45

All the transcription-factor fusions were correlated with specific patterns of mRNA
expression, whereas PML-RARA and RUNX1-RUNX1T1 (and some MLL fusions) were
also associated with miRNA expression signatures. In addition, occurrence of NPM1,
DNMT3A, and FLT3 mutations together was strongly associated with specific expression
signatures for both mRNA and miRNA. These data suggest that this combination of
mutations in patients with intermediate-risk AML may identify a subtype of AML with
unique epigenetic features. Our analysis of methylation patterns corroborates previous
reports of methylation signatures in CpG islands for transcription-factor fusions and IDH1/2
mutations46,47 but surprisingly revealed that the strongest methylation signatures occur in
CpG-sparse regions of the genome. Although the significance of this finding is not yet clear,
the widespread and variable losses of methylation in these regions are consistent with
observations from analyses of epithelial tumors48 and support the idea that methylation
patterns in gene bodies and intergenic regions are important for the regulation of gene
expression.49

This data set will be available to provide a framework for future studies that pertain to the
molecular classification of patients with AML. The identification of many potentially
important relationships among recurrently mutated AML genes and pathways provides a
comprehensive foundation for an understanding of the genetic rules of pathogenesis.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Glossary

Comparative
genomic
hybridization

An array-based method that permits comparison of DNA abundance
throughout the genome between two DNA samples to identify
regions where DNA copies have been gained or lost.

DNA methylation This generally refers to the addition of a methyl group to the 5-
carbon of the pyrimidine ring of cytosine, usually pertaining to
cytosines that precede a guanine residue in DNA (a CpG
dinucleotide motif). DNA methylation of CpG-rich regions (CpG
islands) is often associated with repression of nearby genes.

MicroRNA A short regulatory form of RNA that binds to a target RNA and
suppresses its translation or alters its stability.

Single-nucleotide
polymorphism
(SNP) array

A microarray-based assay system that allows for simultaneous
measurement of nucleotide sequence of hundreds of thousands of
SNPs throughout the genome in a DNA sample. Acquired copy-
number variants can sometimes be detected with SNP arrays by
comparing signals from the tumor and normal samples obtained
from the same individual.

Single-nucleotide
variant (SNV)

A difference in a DNA sequence at a single position in the genome,
as compared with the reference genome; each variant may represent
either an inherited or an acquired (somatic) change. SNPs generally
represent inherited changes only.

Variant-allele
clusters

Groups of mutations with similar variant allele frequencies, defined
by statistical approaches. A large group of mutations with variant-
allele frequencies of approximately 50% generally represents the
founding clone of that tumor.

Variant-allele
frequency (VAF)

The relative proportion of sequencing reads from a variant allele
(i.e., somatic mutation) in a tumor sample. The VAF can be used to
estimate the fraction of cells within a sample that contain that
variant. For example, variant alleles with a VAF of 50% usually
represent heterozygous somatic mutations that are present in all
cells within the sample. Variant alleles with lower VAFs are
generally present in only a fraction of the cells in a sample, which
may represent subclones derived from the founding clone of a
tumor.

Whole-exome
sequencing

Sequencing of the coding regions, or exons, of an entire genome
from a single individual.

Whole-genome
sequencing

Determination of the primary nucleotide sequence of the entire
genome from a single individual.
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Tiers of Variants

Somatic variants that are identified on whole-genome sequencing and other large-scale
sequencing analyses are often categorized according to their likely effect on biologic
function. In this study, the somatic variants were divided into four tiers.

Tier 1 Changes in the amino acid coding regions of annotated exons, consensus
splice-site regions, and RNA genes (including microRNAs).

Tier 2 Changes in highly conserved regions of the genome or regions with
regulatory potential.

Tier 3 Changes in the nonrepetitive part of the genome that do not meet the
criteria for tier 2.

Tier 4 Changes in the remainder of the genome.
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Figure 1. Characterization of Mutations
Panel A shows the numbers of verified, recurrent tier 1 mutations in each of 200 samples
obtained from patients with AML, organized according to important cytogenetic and
mutational findings. For each set of data, the middle horizontal line indicates the mean, and
the shaded area indicates ±1 SD. P values are shown for the groups that had significant
differences from the mean number of recurrent tier 1 mutations in all samples. NK denotes
normal karyotype. Panel B shows significantly mutated genes, as identified by the MuSiC
analysis suite,20 and the number of samples with each mutation. Panel C shows the number
of discrete clusters of mutations with distinct variant allele frequencies (VAFs) for each of
50 samples that underwent whole-genome sequencing. Each discrete VAF cluster represents
a founding clone or a subclone derived from it.17,18 Samples with one clone have only a
founding clone, those with two clones have a founding clone and one subclone, those with
three clones have a founding clone and two subclones, and so forth. Exome sequencing
defined too few mutations to accurately define subclones. Each sample contained evidence
of a single founding clone, and most had one or more subclones derived from the founding
clone. The French–American–British (FAB) subtypes of the samples are designated. (See
Table 1 for FAB subtypes of AML.)
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Figure 2. Organization of Mutations into Categories of Related Genes
Shown are somatic, nonsynonymous mutations in individual genes and sets of genes,
grouped into nine categories, including one single-gene category, as labeled on the left. Of
the 200 samples evaluated, 199 (>99%) had at least one mutation in one of the listed genes
or sets. Blue boxes indicate mutations that are exclusive across all categories; green boxes,
mutations that co-occur in the same sample across different categories; and orange boxes,
mutations that co-occur in the same sample in the same category. Computational analysis
with the use of the Dendrix++ algorithm identified three significant, mutually exclusive
groups of genes, annotated on the right as groups A, B, and C. The cytogenetic risk for each
patient is shown at the bottom of the chart. Additional information about data in this figure
is provided in Tables S17 through S20 in the Supplementary Appendix. Ser–Thr denotes
serine–threonine, TF transcription factor, and Tyr tyrosine.
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Figure 3. AML Gene Fusions
Panel A is a plot created with the use of Circos software29 showing in-frame (green) and
out-of-frame (orange) gene fusions detected in the AML cohort in the Cancer Genome Atlas
(TCGA) with the use of Trans-ABySS software.28 Ribbon widths are proportional to the
frequency of a fusion event. Chromosomes are individually colored and are arranged
clockwise from chromosome 1 to X, starting with chromosome 1 at 12 o’clock. No
rearrangements involved the Y chromosome. The frequencies of in-frame and out-of-frame
gene fusions are shown in Panels B and C, respectively. For gene names shown in red, one
of the partner genes in that fusion was found to be mutated in at least one other AML sample
from this data set. On the basis of chromosomal aberrations and genomic variants annotated
in the Mitelman database from the Cancer Genome Anatomy Project (CGAP) (http://
cgap.nci.nih.gov/Chromosomes/Mitelman), all previously identified gene fusions are shown
in blue, a single known polymorphic fusion is shown in green, and all novel events are
shown in red.
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Figure 4. Unsupervised RNA and miRNA Expression Patterns
Shown are unsupervised consensus clusters for data obtained with the use of messenger
RNA sequencing (Panel A) and microRNA (miRNA) sequencing (Panel B). Shown from
top to bottom are RNA abundance heatmaps, with each messenger RNA or miRNA centered
on its mean; atypical members of each group (shown in black), which have silhouette widths
below 0.9 of the group’s maximum width; a silhouette-width profile (i.e., a dimensionless
metric that reflects how well samples fit into compact and distinct clusters) that was
calculated from the consensus membership matrix; and covariates (e.g., FAB subtypes), with
P values for association corrected for multiple testing, at the far left and far right (see the
Methods section in the Supplementary Appendix). B-H denotes Benjamini–Hochberg
multiple-testing correction. The numbers refer to the silhouette-width profiles for which P
values are provided. One asterisk denotes P<0.05, two asterisks P<0.01, and three asterisks
P<0.001. The color scales for both heatmaps reflect mean-normalized log2 abundances, with
RPKM (reads per kilobase of exon model per million mapped reads) for RNA-sequencing
data and log2 RPM (reads per million) for miRNA-sequencing data. The scale-bar numbers
(−2.5 for least abundant to 2.5 for most abundant) indicate the range of log2 mean-centered
abundance values in the heatmaps. Cytogenetic-risk profiles are shown at the bottom of the
chart.
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Figure 5. Unsupervised Analysis of DNA Methylation at Extremes of CpG Density
DNA-methylation values for specific CpG residues are shown as a proportion, ranging from
0% (unmethylated, in blue) to 100% (fully methylated, in red), for unsupervised clustering
of CpG-dense regions of the genome (Panel A) and of CpG-sparse regions (Panel B).
Covariates are shown below the corresponding samples. Data for CD34+CD38− bone
marrow cells, promyelocytes, neutrophils, and monocytes from three healthy volunteers are
plotted to the left of the data for 192 AML samples in each panel. CpG islands and shores
are annotated in dark green and light green, respectively, in the space between the normal
and AML samples. CpG density was computed as the ratio of observed to expected CG
dinucleotides in a 3-kb window, as described by Saxonov et al.36 The 1000 most variable
loci among those falling into the top and bottom 5% according to CpG density are plotted in
Panels A and B, respectively. Cytogenetic-risk profiles are shown at the bottom of the chart.
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Table 1

Characteristics of the 200 Patients.*

Characteristic Value

Age at study entry — yr 55.0±16.1

Race or ethnic group — no. (%)†

 White 178 (89)

 Black 15 (8)

 Other 7 (4)

Male sex — no. (%) 108 (54)

Bone marrow blasts at diagnosis — % 69.3±19.1

Normal cytogenetic profile — no./total no. (%) 92/195 (47)

White-cell count at diagnosis — per mm3

 Mean 36,300±48,500

 Median 16,200

Cytogenetic risk group — no. (%)

 Favorable 37 (18)

 Intermediate 115 (58)

 Unfavorable 43 (22)

 Missing data 5 (2)

AML FAB subtype — no. (%)

 AML with minimal maturation: M0 19 (10)

 AML without maturation: M1 46 (23)

 AML with maturation: M2 44 (22)

 Acute promyelocytic leukemia: M3 20 (10)

 Acute myelomonocytic leukemia: M4 41 (20)

 Acute monoblastic or monocytic leukemia: M5 22 (11)

 Acute erythroid leukemia: M6 3 (2)

 Acute megakaryoblastic leukemia: M7 3 (2)

 Other subtype 2 (1)

Immunophenotype — no./total no. (%)

 CD13+ 140/185 (76)

 CD33+ 160/198 (81)

 CD34+ 123/199 (62)

 CD117+ 174/185 (94)

Mutation — no./total no. (%)

 NPM1 54/200 (27)

 FLT3 56/200 (28)

 DNMT3A 51/200 (26)

 IDH1 or IDH2 39/200 (20)
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Characteristic Value

 NRAS or KRAS 23/200 (12)

 RUNX1 19/200 (10)

 TET2 17/200 (8)

 TP53 16/200 (8)

 CEBPA 13/200 (6)

 WT1 12/200 (6)

 PTPN11 9/200 (4)

 KIT 8/200 (4)

 Loss of 5 or del(5q) 16/195 (8)

 Loss of 7 or del(7q) 20/195 (10)

 11q23 7/195 (4)

 t(15;17) 18/195 (9)

 t(8;21) 7/195 (4)

 inv(16) 12/195 (6)

*
Plus–minus values are means ±SD. Percentages may not total 100 because of rounding. AML denotes acute myeloid leukemia, and FAB French–

American–British classification.

†
Race or ethnic group was self-reported.
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