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Abstract
Estrogen plays vital roles in human health and diseases. Estrogen mediates its actions almost
entirely by binding to estrogen receptors (ER), alpha and beta which further function as
transcription factors. Selective estrogen receptor modulators (SERMs) are synthetic molecules
which bind to ER and can modulate its transcriptional capabilities in different ways in diverse
estrogen target tissues. Tamoxifen, the prototypical SERM, is extensively used for targeted
therapy of ER positive breast cancers and is also approved as the first chemo-preventive agent for
lowering breast cancer incidence in high risk women. The therapeutic and preventive efficacy of
tamoxifen was initially proven by series of experiments in the laboratory which laid the
foundation of its clinical use. Unfortunately, use of tamoxifen is associated with de-novo and
acquired resistance and some undesirable side effects. The molecular study of the resistance
provides an opportunity to precisely understand the mechanism of SERM action which may
further help in designing new and improved SERMs. Recent clinical studies reveal that another
SERM, raloxifene, which is primarily used to treat post-menopausal osteoporosis, is as efficient as
tamoxifen in preventing breast cancers with fewer side effects. Overall, these findings open a new
horizon for SERMs as a class of drug which not only can be used for therapeutic and preventive
purposes of breast cancers but also for various other diseases and disorders. Major efforts are
therefore directed to make new SERMs with a better therapeutic profile and fewer side effects.
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1. INTRODUCTION
Breast cancer incidences and death rates have dropped significantly during recent years,
which is associated strongly with improvement in early detection methods and decrease of
menopausal hormone replacement therapy (HRT) [1, 2]. HRT, in the form of estrogen alone
or estrogen plus progesterone, had been widely used since the 1960s until recent years, to
treat conditions associated with aging as well as unpleasant menopausal symptoms. HRT
was also known to protect post-menopausal women from osteoporosis and also thought to
protect women from heart disease and Alzheimer’s disease. However, the Women’s Health
Initiative (WHI) study indicated that taking estrogen with or without progesterone for 5 or
more years placed the women at higher risk of breast cancer, Alzheimer’s disease, heart
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disease, blood clot and stroke, although HRT is effective to reduce the risks of osteoporosis
and colon cancer [3, 4]. The Million Women Study (MWS) conducted in the UK also
showed that women taking HRT were more likely to develop breast cancer [5], endometrial
cancer [6] and ovarian caner [7]. In the US, the use of estrogen-plus-progestin HRT has
dropped almost 50% when the WHI announced their findings in 2002, and this was followed
by a sharp 7% decrease of new breast cancers in 2003 [2]. Although the decrease of HRT
uses is not the sole reason leading to less breast cancer incidences, much effort has been
focused on finding more effective and safer compounds to replace HRT which not only
relieve menopausal symptoms but also prevent and treat hormone-responsive cancers. One
most promising approach is to use selective estrogen receptor modulators (SERMs).

SERMs are synthetic compounds that bind to estrogen receptors alpha and/or beta (ERα
and/or ERβ) and exert estrogenic or antiestrogenic activities in a tissue/cell-specific manner.
The first SERM that has been used successfully in the clinic to prevent and treat breast
cancer is tamoxifen, a failed postcoital contraceptive that evolved into the “gold standard”
for breast cancer treatment [8, 9]. Tamoxifen is estimated to have saved the lives of over
400,000 women with breast cancer [8]. The second generation SERM, raloxifene (formally
called keoxifene), failed as a treatment for breast cancer but is effective against osteoporosis
and prevents breast cancer at the same time. Raloxifene is as effective as tamoxifen to
reduce invasive breast cancer risks without an increase in the risk of endometrial cancer
observed with tamoxifen [10]. Indeed a recent study suggests that raloxifene might even be
effective in preventing endometrial cancer [11]. These findings have acted as a catalyst for
the search of new SERMs which are estrogen-like in bones and circulating lipids but
antiestrogenic in women’s reproductive organs and therefore are anti-cancer agents.
However, there are problems associated with the current SERMs such as drug resistance and
side effects. For example, both tamoxifen and raloxifene increase both hot flashes and blood
clots [12].

Besides SERMs, other endocrine therapies target the ER indirectly to prevent and treat
breast cancer. Aromatase inhibitors (AIs) that block the synthesis of estrogen from androgen
in peripheral tissues have been extensively studied and show efficacy equivalent or superior
to tamoxifen to treat postmenopausal breast cancer [13]. Since the mechanism for AIs to
treat ER-positive breast cancer is to deplete estrogen in postmenopausal patients, they do not
increase risks of endometrium cancer or blood clot and may be a better choice for
postmenopausal breast cancer patients than tamoxifen. However, AIs are not effective in
premenopausal women with actively functioning ovaries because AIs do not inhibit ovarian
estrogen production. In addition, AIs lack the estrogenic protective function for
cardiovascular diseases or osteoporosis. As a result, the side effects of AIs are mostly
consistent with estrogen deprivation. AIs are associated with a greater incidence of bone loss
and musculoskeletal symptoms, and probably higher risk of cardiovascular disease
suggested by adjuvant trials comparing AIs and tamoxifen [14]. However, AIs are
associated with a lower incidence of gynecological symptoms, thromboembolic diseases and
hot flashes compared to tamoxifen in adjuvant setting [14]. Another strategy is to use
selective estrogen receptor down-regulators (SERDs), such as fulvestrant, that cause
degradation of ERs. Fulvestrant has been approved to treat advanced breast cancer after
tamoxifen failure, and a recent phase III trial indicated that fulvestrant and AI exemestane
were equally effective with a similar safety profile [15].

Resistance is a common problem associated with endocrine therapy therefore alternative
treatment strategies without cross-resistance are necessary. Compared to the pure anti-
estrogenic actions like AIs or fulvestrant, an ideal SERM with beneficial estrogenic effects
has great potential for breast cancer prevention and treatment, especially in postmenopausal
women as they often suffer from unpleasant symptoms resulting from lower estrogen. A

Peng et al. Page 2

Anticancer Agents Med Chem. Author manuscript; available in PMC 2013 September 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



perfect SERM would reduce the risk of breast cancer, ovarian cancer and uterine cancer, as
well as strengthen the bone, prevent coronary heart disease, strokes and Alzheimer’s disease,
and relieve menopausal discomfort like hot flashes and vaginal atrophy [12].

The complicated outcome of SERMs action cannot just be explained by turning on or off the
ERs and their downstream genes. Although much new knowledge is being developed, we
are still evolving in our understanding of the detailed mechanism of SERMs and their
interaction with the ERs. In the past decade, another group of protein factors, nuclear
receptor coregulators, have been identified that are essential for modulating the functions of
SERMs and ERs. In this article, we will review the evolving understanding of the molecular
mechanisms of SERMs action in the context of other signal transduction pathways and
nuclear receptor coregulators, as well as the problems associated with the application of
SERMs as a treatment or preventative for breast cancer. Finally, the new SERMs with
potential as new agents to treat or prevent breast cancer will be described.

2. MECHANISM OF ESTROGEN ACTION
2.1. Structure and Function of ER

The existence of estrogen binding protein was first predicted by Elwood Jensen and
colleagues in early 1960’s [16]. The first ER cDNA, now known as ERα, was later cloned in
the mid-1980’s [17, 18]. In 1996, an additional ER was cloned from rat prostate [19] and
designated as ERβ. The action of estrogen in cells is therefore almost entirely mediated by
these two related but distinct subtype of estrogen receptors, ERα and ERβ. Both receptors
function as ligand activated transcription factors which can bind the cognate DNA
sequences known as estrogen responsive elements (ERE), and activate transcription. The ER
proteins can be structurally subdivided into six domains on the basis of the functions
controlled by the region, as shown in Fig. (1). The A/B domain contains one of the two
transcriptional activation functions (AFs), designated as AF1 which is involved in estrogen-
independent activation of transcription. Another activation function domain, AF2, is located
in the E domain which also harbors the ligand binding domain (LBD), and is involved in
estrogen/ ligand dependent activation [20, 21]. The ERβ has 97% homology in the DBD and
61% homology in the LBD with ERα suggesting differential ligand binding capability of
ERs [21].

SERMs, the molecules which can bind to ERα and/or β and can either stimulate estrogen-
like actions (agonist) or oppose estrogen actions (antagonist) in various estrogen target
tissues and cells. This pharmacologic knowledge advanced studies to decipher the details of
the molecular mechanism of estrogen action in different cell and tissue types.

The structural studies of a SERM complexed with the LBD of ERα and ERβ reveal that re-
orientation of the AF2 helix (helix 12) after the binding of the SERM to the hydrophobic
pocket of the LBD [22, 23]. The interaction of amino acid Asp351 of ERα with the
alkylaminoethoxyphenyl side chain of tamoxifen or raloxifene is crucial to prevent the
recruitment of coactivators to the SERM-receptor complex surface [22, 23]. Using different
mutants of ERα for the amino acid Asp351, it was shown that shielding and neutralization
of Asp351 by the side chain of raloxifene is critical in defining the antiestrogenicity of this
SERM. Furthermore, it has been shown that changing the Asp351 from aspartate to glycine
(D351G) abolishes the estrogen-agonist activity of the tamoxifen-ER complex, while
retaining its antagonistic property. The AF2 region of the agonist-bound receptor is
particularly important for the interactions of steroid receptor coactivators (SRCs 1–3) via the
interacting amino acid motif LxxLL, known as nuclear receptor interacting domain (NRID).
It is important to note that the affinity of ERs for these NRIDs of SRCs is highly dependent
upon the ER subtype, α and β, and ligand bound to the ER [24–26]. Recruitment of these co-
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activator(s) is also responsible for facilitating the activation of estrogen responsive genes by
modifying the chromatin structure and activating the transcriptional machinery.
Additionally, SERMs may also show differential AF1 activity mediated by co-repressor
binding. Using ERE-reporter constructs, it has been shown that the AF1 domain of ERα is
actively involved in agonist-induced gene expression whereas the AF1 domain of ERβ is
involved very weakly [27].

Estrogen can also modulate the expression of genes by another mechanism in which the
receptor complex can interact with other transcription factors such as activating protein 1
(AP1) or stimulating protein 1 (Sp1) through a process known as a tethering mechanism.
Intriguing differences are observed in the mechanism of action between ERα and ERβ
through an AP1 site. In the presence of estrogen, ERα induces AP1 driven reporter activity
but ERβ has no effect [28]. The raloxifene bound ERβ complex can induce transcriptional
activity through the AP1 site but the activity through ERα bound to raloxifene is negligible.

ERs also act in a non-genomic manner initiated from the cell membrane. These actions are
very fast (seconds to minutes) and occur without RNA or protein synthesis. They often
mobilize second messenger molecules such as Ca2+ and cAMP, and are associated with
protein kinase cascades such as PI3K/Akt and MAPK [29, 30]. Several explanations have
been offered to explain these effects. There could be a subpopulation of nuclear ERs
associate with the plasma membrane, either through posttranslational modification such as
palmitoylation or mediated by scaffold proteins such as caveolin-1 and MNAR, since ERs
do not have a transmembrane domain [29, 30]. Another membrane bound protein, G protein
coupled receptor GPR30, was identified in recent years that mediates non-genomic actions
of estrogen [31, 32]. The cellular localization of GPR30 is still controversial. Some evidence
suggests it is at plasma membrane [33, 34] and other evidence suggests it is in the
endoplasmic reticulum [32]. GPR30 binds to 17β-estradiol, tamoxifen and fulvestrant with
high affinity [33] and is associated with breast cancer metastasis and transactivation of the
epidermal growth factor receptor (EGFR) [35].

2.2. Co-Regulators
The co-regulators are protein molecules which can physically interact with the liganded or
un-liganded ERs and modulate the transcription of the genes. The transcriptional activation
or repression of the responsive genes is a combinatorial function of ligand-receptor
interaction, recognition of cognate DNA sequence and recruitment of specific co-regulators
onto the promoter of the gene. The assembly of the whole transcriptional complex is also
dependent upon the affinity of the above mentioned individual components among
themselves and their relative concentrations in the cell. Co-regulators play defining roles in
the final tissue outcome in terms of transcriptional activation or repression mediated by
estrogen or SERMs. The co-regulators can be broadly classified on the basis of their
function, as co-activators which promote the activation of the transcriptional process, or co-
repressors which are associated with repression of transcription of genes (Fig. (2)).

2.2.1 Co-Activators—Presently, around 200 co-activators are known, which are
associated with 48 nuclear receptors [36]. The family of p160 proteins known as steroid
receptor co-activators (SRCs) have been studied extensively. The relative abundance of
SRC1 in uterine cells is responsible for the agonistic activity of tamoxifen, whereas in breast
cancer cells, with low SRC1 levels, tamoxifen acts as an estrogen antagonist [37]. However,
raloxifene, another related SERM, does not recruit SRC-1 even in the uterine cells [37],
suggesting that the interaction with specific ligand which elicits a unique conformation of
the receptor is critical for the interaction of co-regulators. These observations further provide
an explanation for the earlier studies, where tamoxifen have been reported to induce growth
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of endometrial cancer cells but not of breast cancer cells in athymic mice [38] and also that
estrogen agonistic properties of raloxifene is less in endometrial cancer cells [39]. These
finding also translate very well to clinical experience [40]. In addition, the SERMs can
enhance the stability of the co-activators (SRC1 and SRC3) and thereby influence the
transcriptional capability of other nuclear receptors [41]. Post-translational modifications of
the co-activators, including but not limited to phosphorylation, methylation, ubiquitylation,
sumoylation and acetylation, can also regulate the gene activation by influencing the ability
of the co-activators to interact with ER and other components of the transcriptional complex
[34–36]. The understanding of structure-function relationship of ligands at the ER has
formed the basis of designing effective new SERMs with fewer side effects.

2.2.2. Co-Repressors—Co-repressors are functional counterparts of co-activators, which
are associated with transcriptionally inactive promoters and help repress the expression of
genes [42]. Fewer co-repressors have been reported compared to the co-activators. In the
case of ER, the co-repressors are known to interact with the un-liganded and/or antagonist
bound receptor. The two most extensively studied co-repressors in connection with ER are
Nuclear receptor corepressor (NCoR) and silencing mediator of retinoic acid and thyroid
hormone receptor (SMRT). The ER bound to raloxifene or 4-hydroxytamoxifen (a potent
antagonist metabolite of tamoxifen) is known to recruit NCoR and SMRT to the promoters
of estrogen responsive genes and repress transcription [43–45]. It has been shown that
inhibition of NCoR or SMRT with monoclonal antibodies can enhance the agonistic
property of 4-hydroxytamoxifen [46]. Moreover, using fibroblasts from NCoR null mice, 4-
hydroxytamoxifen was shown to be a relatively potent ERα agonist [47]. The critical role of
NCoR and SMRT in 4-hydroxytamoxifen-induced arrest of cell proliferation of ERα
positive breast cancer cells is confirmed because 4-hydroxytamoxifen-stimulated cell cycle
progression now occurs in NCoR-and-SMRT-deficient breast cancer cells [48]. However not
all estrogen responsive genes are activated by 4-hydroxytamoxifen in NCoR and SMRT
deficient cells, clearly indicating that additional molecules are important in SERM-induced
repression of estrogen responsive genes. Indeed, there are several other co-repressor proteins
known for ER. Metastasis associated protein 1 (MTA1) is a corepressor found to mediate the
ER transcriptional repression [49]. Another corepressor, known as repressor of estrogen
action (REA) potentiates the inhibitory effects of anti-estrogens including 4-
hydroxytamoxifen. Additionally, REA interacts with ER and competes with the co-activator
SRC1 for binding to the estrogen bound ER [50, 51]. This again emphasizes the fact that the
relative levels of co-regulators may be important in deciding the outcome of the SERM
action. The proteasomal regulation of NCoR is another factor which may influence the
SERM action. Degradation of NCoR occurs through the 26S proteasome, which is mediated
by seven in absentia homologue 2 (Siah2) [52]. Interestingly, estrogen mediated
upregulation of Siah2 in ER positive breast cancer cells has been implicated in the
proteasomal degradation of NCoR, and subsequent de-repression of NCoR regulated genes
[53].

In addition to acting as a “transcriptional adapter” between the receptors and the
transcriptional machinery, the coregulator itself or its complex possess various enzymatic
activities such as acetylation, phosphorylation, methylation or de-acetylation by which they
are able to modify the local chromatin structure thereby making the local environment
conducive for gene expression or repression. Intrinsic histone acetyl transferase activity was
found to be associated with co-activator SRC1 which helps in the activation of
transcriptional expression [54]. In contrast, the 4-hydroxytamoxifen bound ER complex
which recruits the co-repressors NCoR and SMRT is associated with histone de-acetylases
and other chromatin modifying enzymes [37, 55]. The deacetylase activity promotes
transcriptional repression [37, 55]. Interestingly, another enzyme in the co-activator
complex, CARM1 (coactivator associated arginine methyltransferase 1) has recently been
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implicated in modifying the coactivator itself and inducing the degradation of the complex
[56]. This suggests the ability of the enzymes in the complex to modify other proteins in its
own complex apart from a role in the modification of chromatin.

With this background of the molecular biology of SERM action, it is now appropriate to
describe our evolving understanding about drug resistance. This is important not only
because tumor drug resistance is the consequence of long term SERM administration, but
also because new knowledge will aid patients with the development of novel treatment
strategies for SERM-resistant breast cancer.

3. DRUG RESISTANCE TO SERMs
There are three types of resistance to SERMs based on the mechanism: metabolic resistance,
intrinsic resistance and acquired resistance [57].

3.1. Metabolic Resistance
Metabolic resistance to tamoxifen is mostly related to CYP2D6, an enzyme product that
metabolizes tamoxifen into its active forms 4-hydroxytamoxifen and endoxifen [58]. This
has been extensively reviewed recently and will only be briefly mentioned here [13, 59].
CYP2D6 is genetically polymorphic and 5–8% of Caucasian subjects are CYP2D6 “poor
metabolizers” thus are less likely to benefit from tamoxifen treatment, although it has been
shown that these women tolerate tamoxifen better and tend to remain on the drug for longer
[59]. The genotype of CYP2D6 has been shown in multiple clinical trials to be directly
related to the outcome of tamoxifen use, however, the results are not always consistent.
Eight studies indicated that CYP2D6 “poor metabolizer” genotypes have worse outcome of
breast cancer patients who received tamoxifen but two studies contradicted this conclusion
[60]. In addition to the genotype of CYP2D6, it is important to consider that other drugs
may interact with the enzyme system and block the metabolic activation of tamoxifen.
Unfortunately, selective serotonin reuptake inhibitors (SSRIs) that are used to relieve the
menopausal side effects of tamoxifen are also metabolized by CYP2D6 and block the
metabolic activation of tamoxifen. The proper choice of SSRI is therefore important so as
not to impair tamoxifen metabolism. The SSRI of choice is venlafaxine that has only a low
affinity for the CYP2D6 enzyme [61]. Although these emerging data about CYP2D6
genotypes and the drug interaction between tamoxifen and SSRIs are important, it is perhaps
too early to use CYP2D6 status to routinely choose between tamoxifen and aromatase
inhibitors to treat postmenopausal women with breast cancer. At present, an international
consortium is evaluating the overall CYP2D6 status of completed clinical trials with
tamoxifen to assemble a large scale retrospective analysis of the worth of genotyping. The
aim is to answer the question of whether “poor metabolizers” should avoid tamoxifen use.

3.2. Intrinsic Resistance
Approximately 30% ER-positive breast cancer patients do not respond to tamoxifen [62].
This type of resistance is referred to as “de novo” resistance or intrinsic resistance. Clinical
studies showed that only 40% patients with ER-positive, progesterone receptor (PR)-
negative breast cancers are responsive to anti-estrogen treatment (tamoxifen or endocrine
ablation) compared to 80% responsive rate in ER-and-PR-positive patients [58, 59].
Historically, the status of PR has been regarded as an indicator of a functional ER pathway,
since expression of PR is regulated by estrogen. On the other hand, recent evidence
suggested that the absence of PR is associated with excessive growth factor signaling such
as overexpression of HER2 [63, 64], which has been known to impair estrogen induction of
PR and reduce the effectiveness of tamoxifen treatment for breast cancer [65]. However, the
negative association between PR and HER2 seems more evident in older women (> 45 yrs)
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[66] and it remains controversial that PR-status could be used for clinical decision on
choosing between tamoxifen or AIs [67].

Growth factor signaling, especially through epidermal growth factor (EGF) pathway, has
been studied extensively in the past two decades and linked to SERM resistance. This has
been recently reviewed [68] and will only be briefly summarized here. EGF binds to ErbB
family of cell surface receptors that include four closely related receptor tyrosine kinases:
EGFR (ErbB-1), HER2/c-neu (ErbB-2), HER3 (ErbB-3) and HER4 (ErbB-4).
Overexpression of HER2 has been clinically linked to less response to endocrine therapies
and worse prognosis [69–71], so has the overexpression of EGFR [72]. Different ErbB
family members can form heterodimers and activate multiple signalling pathways including
PI3K/Akt and MAPK. The major molecular mechanisms leading to SERM resistance can be
summarized as follows: 1. Activation of downstream kinase cascade results in the
phosphorylation of ER at key residues (Ser106/107, 118, 167, 305 and Thr 311) which
activates transcription in a ligand-independent manner. Phosphorylation may change the
binding of ER with ligands, DNA and coregulators, which may ultimately alter the activity
of SERMs [73]. For example, phosphorylation of ER at Ser167 by Akt and Ser118 by the
MAPK pathway both cause ligand-independent activation [74–76]. A recent study showed
that phosphorylation of ER at Ser305 altered the orientation between the C-terminus of ER
and SRC-1 that led to the recruitment of ER transcription coactivators and RNA polymerase
II even in the presence of tamoxifen [77]. 2. Phosphorylation of ER co-regulators is equally
important as the phosphorylation of ER itself, since phosphorylated co-activators have
increased activity in the presence of SERMs [78–80]. Phosphorylation of co-repressors such
as SMRT is associated with the co-repressor’s nuclear export and impaired transcriptional
suppressing function [81]. 3. Other than enhancing the transcriptional activity of the ER by
phosphorylation, overexpression of EGFR or HER2 increases the non-genomic actions of
ER, and SERMs may now act as estrogen agonists via the membrane effects of ER [82, 83].
In addition to the EGF signal pathway, the insulin-like growth factor (IGF) signal pathway is
also involved in tamoxifen resistance [84]. It can activate PI3K/Akt pathway [71] and turn
on genes that are otherwise activated by estrogen [85, 86].

Dysregulation of ER co-regulators is another major contributor to intrinsic SERM
resistance. Overexpression of both AIB1 (SRC-3, ACTR, p/CIP, RAC3, TRAM-1) and
HER2 have been shown to convert tamoxifen into an estrogen agonist in breast cancer cells
[79]. Elevated AIB1 was found to associate with tamoxifen resistance, DNA-nondiploidy,
high S-phase fraction and HER2 amplification in samples from clinical study [87]. Although
a study indicated that high expression of AIB1 was not associated with relapse during
tamoxifen treatment [88], AIB1 was shown to associate with tamoxifen resistance in breast
cancers that overexpressed ErbB family proteins [88, 89]. AIB1 might be a predictor marker
for tamoxifen ineffectiveness in ER-positive, HER2-positive and PR-negative breast cancer.
On the other hand, low expression of ER co-repressor NcoR is associated with shorter
relapse-free survival in breast cancer patients who only received tamoxifen after surgery
[90]. Based on the emerging importance of co-regulators and tamoxifen resistance, one
novel approach to overcome tamoxifen resistance is by the use of disulfide benzamide
(DIBA) to disrupt the zinc finger in the ERα DNA binding domain. The approach facilitates
ERα dissociation from coactivator AIB1 and concomitant association of corepressor NcoR
without changing the phosphorylation of HER2, MAPK, Akt or AIB1 [91].

Another group of regulators associated with tamoxifen resistance are microRNAs (miRNA).
These are naturally occurring single-stranded RNAs with the length of 21–23 nucleotides
that do not code for proteins. They regulate gene expression mainly by inducing target
mRNA degradation or inhibiting translation (protein synthesis). Dysregulation of miRNAs is
associated with many cancers including breast cancer [92, 93]. Two recent studies show that
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miRNA-221/222 are upregulated in tamoxifen-resistant breast cancer cells and primary
tumors, and they may contribute to tamoxifen resistance by down-regulating p27Kip1 or
ERα [94, 95].

3.3. Acquired Resistance
Breast cancer patients who initially respond to tamoxifen later develop “acquired resistance”
that is characterized by tamoxifen stimulated growth. This can be replicated in the
laboratory with MCF-7 xenograft tumors implanted in ovariectomized athymic mice.
Tamoxifen initially inhibits estrogen stimulated tumor growth but eventually some tumors
start to grow during tamoxifen therapy [96]. These tumors now grow in response to either
estrogen or tamoxifen and stop growing with no treatment or during treatment with
fulvestrant [96]. The laboratory model is consistent with the clinic observation that
aromatase inhibitor or fulvestrant are equally effective after the failure of tamoxifen
treatment [97, 98]. It therefore appears that ER remains fully functional in the laboratory
model of acquired tamoxifen resistance. In clinical studies, only 17–28% patients with
acquired tamoxifen resistance have a loss of ER function [99, 100], and it is more likely that
acquired resistance is associated with the stimulation of other growth/survival pathways
[101]. For example, activated mammalian target of rapamycin (mTOR, downstream of
PI3K/Akt and MAPK pathway) and c-Src (downstream of EGFR/HER2) were observed in
breast cancer cells and mTOR and c-Src inhibitors can restore tamoxifen sensitivity in these
cells, respectively [102, 103]. Several genes involved in cell proliferation and survival have
altered expression level in breast cancer cells with acquired tamoxifen resistance. Examples
of genes which down regulation is associated with acquired tamoxifen resistance include
cyclin-dependent kinase inhibitors p21Cip [104] and p27Kip [105]. Examples of genes
which upregulation is associated with tamoxifen acquired resistance include cyclin-
dependent kinase 10 (CDK10) [106] and anti-apoptotic protein survivin [107].

Laboratory observation showed that acquired tamoxifen-resistant breast cancer cells/tumors
respond differently to estrogen, and three phases of tamoxifen-resistance have been
described, which seems to depend on the length of tamoxifen exposure [12]. Tumors with
phase I resistance are stimulated by estrogen and tamoxifen but inhibited by AIs and
fulvestrant; tumors with phase II resistance are stimulated by tamoxifen but are inhibited by
estrogen due to apoptosis; tumors with phase III resistance (automatous growth) grow in a
hormone-independent manner that is not responsive to either AIs or fulvestrant or SERMs,
but estrogen still exerts apoptotic actions on those tumors [12]. The laboratory models
suggest a new treatment strategy, in which limited duration, low-dose estrogen can be used
to purge phase II- or phase III-resistant breast cancer cells so that the tumors will be
responsive to antiestrogen therapy again. Phase II clinical study is ongoing to test this
treatment plan [108].

Most studies on SERM-resistance are related to tamoxifen and little is known about
raloxifene resistance. Based on a few studies on raloxifene resistance using cell culture and
animal models, raloxifene-resistant tumors are likely to have similar properties as
tamoxifen-resistant ones [109]. Raloxifene-resistant MCF7 cells generated by long-term
exposure to raloxifene in vitro are also resistant to tamoxifen in vitro and in vivo. They
exhibit phase II SERM-resistance as estradiol treatment causes tumor regression by inducing
G2/M cell cycle arrest and apoptosis [110]. Another raloxifene-resistant breast tumor model
generated by exposing MCF7 breast tumors to raloxifene in vivo exhibits phase I SERM-
resistance whose growth is stimulated by tamoxifen, raloxifene and estrogen [109].
Interestingly, protein levels of EGFR and HER2 are also increased in this phase I raloxifene-
resistant tumor model, which suggests raloxifene-resistant tumors share similar molecular
mechanisms as tamoxifen-resistant ones [109].
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Overall, the classifications of different forms of antihormonal drug resistance can be used as
a basis to evaluate the pharmacology of new SERMs. The goal is to improve on tamoxifen,
the pioneer that over the past 30 years found ubiquitous long term applications in the
treatment and prevention of breast cancer.

4. NEW SERMs
The discovery of the first antibiotic penicillin initiated a search for further antibiotics to
delay drug resistance and to target specific diseases. Similarly, the successful clinical
application of tamoxifen in medicine has resulted in the investigation of numerous related
molecules to develop the “ideal SERM”. However, it has been challenging to find a SERM
that is superior to tamoxifen, which retains or extends its benefit to treat and prevent breast
cancer but with fewer side effects. Tamoxifen maintains bone density in animals [111] and
humans [112] so SERMs are being developed to treat osteoporosis, but the potential to
prevent breast cancer and uterine cancer will also increase their clinical value and
commercial success. The core structures of SERMs are diverse, including triphenylethylene,
benzothiophene, chromene (benzopyran), naphthalene, indole and steroid, but each of the
newer SERM is really a mimic of tamoxifen, raloxifene or estradiol. The development of
dozens of SERMs have been discontinued due to ineffectiveness for human disease or
severe side effects, but several new SERMs are under active investigations with great
potential in breast cancer treatment and/or prevention, alone or in combination with other
type of drugs. In addition, since the identification of ERβ in 1996 [19], ER subtype selective
SERMs have been developed which could potentially be used as breast cancer preventives.
Thus this area of medicinal chemistry remains an important topic of interest as new ER
regulated targets emerge. We will review the current status of several agents that are either
approved or in the process of drug development (summarized in Table).

4.1. Tamaoxifen-like SERMs
4.1.1. Toremifene (Fareston)—Toremifene (2) is a chlorinated tamoxifen analogue
which has been approved in the US and several other countries for the treatment of
metastatic breast cancer. Its structure is shown in Fig. (3). Toremifene is as effective as
tamoxifen in the treatment of ER-positive breast cancer but with the potential of fewer
genotoxic effects, since it does not produce DNA adducts in rat liver and human
endometrium [113]. The mechanism for the reduced genotoxicity of toremifene can be
explained as follows: Tamoxifen-DNA adducts are primarily formed via sulfonation of the
α-hydroxylated tamoxifen metabolites, but the α-hydroxy metabolites of toremifene is
poorly esterified or sulfonated, and even sulfonated α-hydroxy toremifene, α-
sulfoxytoremifene, reacts poorly with DNA [114, 115]. However, there are some reports to
show toremifene induces DNA damages and hepatocarcinogenesis in rats [116, 117].

The effects of toremifene and tamoxifen on bones are similar [118], as are the endometrial
effects. However, a recent safety evaluation demonstrates that secondary endometrial cancer
incidence is lower with toremifene than with tamoxifen and is similar to that with raloxifene
[119]. Nevertheless, toremifene stimulates the growth of human endometrial cancer
implanted in athymic mice in the same way as tamoxifen [120]. The positive effects of
toremifene on lipid profiles are superior to tamoxifen’s. Toremifene lowers the low-density
lipoprotein (LDL) cholesterol to a level similar to that seen with tamoxifen, but unlike
tamoxifen, toremifene slightly increases high-density lipoprotein (HDL) cholesterol and
lowers triglycerides in the serum [121, 122].

Cross-resistance with tamoxifen is an important issue to consider when using toremifene for
recurrent breast cancer because the majority of patients have received or failed adjuvant
tamoxifen. Toremifene is completely cross-resistant with tamoxifen in human breast tumors
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implanted in athymic mice [123], as well as in breast cancer patients [124, 125]. Therefore,
toremifene would not be effective as a second-line endocrine therapy after tamoxifen failure
and may offer no therapeutic advantages over tamoxifen as an adjuvant therapy.

In recent years, toremifene has been developed to treat other estrogen-related diseases.
Toremifene is effective to treat mastalgia in some small phase II trials [126, 127], and is also
effective at decreasing prostate cancer incidences in a high-risk population [128]. In
addition, a recent multicenter randomized phase III trial showed that toremifene increased
bone density and improved lipid profile in men receiving androgen deprivation therapy for
prostate cancer [129, 130].

4.1.2. Ospemifene (Deaminohydroxytoremifene, FC-1271a)—Ospemifene (3), or
deaminohydroxytoremifene, is a metabolite of toremifene (Fig. (3)). Like toremifene,
ospemifene is generally well tolerated and has a favorable safety profile. It does not induce
DNA adducts in mice [131], rats [132] and monkey [133]. Ospemifene exerts a very weak
estrogenic effect on endometrial histology, like raloxifene and decreases cholesterol [134].
However, unlike tamoxifen or raloxifene, ospemifene has significant estrogenic effects on
vaginal epithelium [134–136] and is being developed for postmenopausal vaginal atrophy, a
chronic condition experienced by about 40% postmenopausal women. Ospemifene is being
evaluated in a phase III trial that has already recruited 826 women. Early results suggested
that a 12-week course of ospemifene treatment significantly relieves symptoms of dryness in
the vagina.

Ospemifene has showed promise in the prevention and treatment of osteoporosis. Cell
culture studies indicated that ospemifene inhibits osteoclast formation and bone resorption
and protects osteoblast-derived cells from apoptosis [137, 138]. In a recent phase II trial to
compare effects of ospemifene and raloxifene on biochemical markers of bone turnover in
postmenopausal women, ospemifene showed similar effects as raloxifene in regulating most
of the bone markers examined, and at the 90-mg dose, ospemifene increased procollagen
type I N propeptide (PINP) more than raloxifene [139]. Ospemifene is currently in phase III
development for the treatment of postmenopausal osteoporosis.

Studies based on animal models suggest ospemifene might be effective in breast cancer
prevention. Ospemifene prevented dimethylbenzanthracene (DMBA)-induced mammary
tumors in female Sencar mice as effectively as tamoxifen, while raloxifene was not effective
[140]. In a transplantable mouse model of ductal carcinoma in situ (DCIS), ospemifene had
inhibitory effects equivalent to tamoxifen in terms of tumor growth and progression [141].
Nevertheless, the chemoprevention effects of ospemifene in breast cancer need to be further
studied and substantiated by clinical trials.

4.1.3. GW5638 (DPC974) and GW7604—GW5638 (4) is a derivative of tamoxifen with
an acrylate side chain in place of the dimethylaminoethoxy side chain in tamoxifen.
GW7604 (5) is the 4-hydroxy version of GW5638, analogous to the major metabolite of
tamoxifen, 4-hydroxytamoxifen. Their structures are shown in Fig. (3). GW5638 functions
as a full ER agonist in bone and the cardiovascular system but as an antagonist in breast and
endometrial system in rodent models [142].

Although the structures of tamoxifen and GW5638/GW7604 are similar, GW5638/GW7604
acts with a mechanism different from tamoxifen/4-hydroxy tamoxifen as suggested by the
following evidence: 1. GW7604 acts as an antagonist in MDA-MB-231 cells transfected
with wild-type ERα, but 4-hydroxytamoxifen acts as an agonist [143]; 2. Phage display
experiments indicate that GW7604 bound ERα or ERβ is associated with different peptides
from 4-hydroxytamoxifen, raloxifene or fulvestrant bound ERs [144]; 3. GW5638 inhibits
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the growth of tamoxifen-resistant breast tumor xenograft [144, 145]; 4. The crystal structure
of the ERα LBD bound by GW5638 shows that GW5638 induces a distinct conformation of
H12 in the ERα AF2 region, which increased exposure of hydrophobic residues and results
in ERα destabilization in MCF7 cells [146].

GW5638 and GW7604 are also classified as selective estrogen receptor down-regulators
(SERDs) because they induce ERα degradation, a property observed with the pure
antiestrogen fulvestrant which was approved for the treatment of metastatic breast cancer
[147]. However, a recent report [148] indicates that GW5638 induces ERα degradation
through a different mechanism from fulvestrant and another SERD RU58,668, as the
protein/protein interaction surface on ER required for fulvestrant-induced degradation is not
necessary for GW5638-induced degradation. The fact that GW5638 has a unique
mechanism to antagonize estrogen function and induces ER degradation in breast cancer
cells makes it a possible second line therapy after tamoxifen failure and as an alternative to
fulvestrant. Currently, GW5638 is under clinical development under the name DPC974
[148].

4.2. Raloxifene-like SERMs
4.2.1. Arzoxifene (LY353381)—Arzoxifene (7) is a derivative of raloxifene with the
ketone group replaced by an ether group and the hydroxy group is replaced by a methoxy
group (Fig. (4)). These modifications have improved the pharmokinetic properties [149].
Arzoxifene has antiestrogenic effects on breast and endometrium but pro-estrogenic effects
on bone and lipids [150]. Arzoxifene is cross-resistant in some but not all tamoxifen-
stimulated breast tumor xenografts [151]. Phase II clinical trials indicate that arzoxifene is
effective to treat tamoxifen-sensitive or tamoxifen-refractory patients with advanced or
metastatic breast cancer [152] and patients with recurrent or advanced endometrial cancer
[153] with minimus toxicity. However, a phase III trial showed arzoxifene was inferior to
tamoxifen to treat patients with locally advanced and metastatic breast cancer [154]. The
main role of arzoxifene may reside in its chemoprevention potential since it is more potent
than raloxifene in pre-clinical studies [149].

The breast cancer chemoprevention property of arzoxifene has been studied with animal
models and small short-term clinical trials. Arzoxifene effectively prevented
nitrosomethylurea (NMU)-induced mammary tumor in rats [140] and induced apoptosis of
breast cancer cells in rodent models especially when used in combination with rexinoid
LG100268, a selective ligand for the retinoid X receptors (RXR) [155]. In two phase I
clinical trails of women with newly diagnosed ductal carcinoma in situ or T1/T2 invasive
cancer, arzoxifene did not demonstrate a significant reduction of tumor cell proliferation
compared to placebo in 2–6 weeks treatment [156]. However, there were some favorable
findings, such as a decrease of serum insulin like growth factor I (IGF-1) vs IGF binding
protein 3 (IGFBP3) ratio and an increase of sex hormone binding globulin [156]. Another
interesting aspect of the pharmacology of arzoxifene is that it might have chemopreventive
properties for ER-negative breast cancer when used in combination with LG100268. A
recent study showed that both SERMs arzoxifene and acolbifene alone prevent ER-negative
mammary tumor in a mouse model and the effect is synergized with LG100268 [155].
Although the SERMs by themselves are not functional in the treatment of established
tumors, together with LG100268 they inhibit proliferation and induce apoptosis in the ER-
negative mammary tumors [155]. The mechanism how SERMs prevent tumorigenesis of
ER-negative breast tissue is unknown, but the results suggest that arzoxifene has the
potential for further clinical development as a chemoprevention drug of both ER-positive
and negative breast cancer, especially in combination with rexinoids.
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4.2.2 Lasofoxifene (CP-336156, Fablyn)—Lasofoxifene (8) has a naphthalene core
structure, which is different from all the other SERMs discussed in this article (Fig. (4)).
However, the crystal structure shows that lasofoxifene fits into the ERα LBD pocket in a
similar manner as other ligands [157]. In addition, lasofoxifene-bound ERα LBD has similar
conformational features as other SERM-bound ERα LBDs, such as tamoxifen or raloxifene,
in which H12 in the “antagonist-bound” conformation and occludes the coactivator binding
surface [157]. Lasofoxifene has a high affinity for ER with an IC50 of 1.5 nM, which is
comparable to 17β-estradiol and higher than tamoxifen and raloxifene [158]. It preserves
bone density and lowers serum cholesterol, and also has chemopreventive and
chemotherapeutic effects in rat mammary tumor models without any uterine hypertrophic
effects [159]. Lasofoxifene is currently undergoing an extensive clinical evaluation for the
prevention and treatment of osteoporosis [159]. One advantage of lasofoxifene over
raloxifene is its increased oral bioavailability due to the nonpolar naphthalene structure that
makes it a poor substrate for intestinal wall glucuronidation [160]. In addition to its effects
on bone, lasofoxifene significantly improves symptoms of vaginal atrophy [161] and a
recently completed phase III trial indicated that lasofoxifene decreased vaginal pH and
improved the vaginal-cell maturation index in osteoporotic postmenopausal women. These
effects may be due to the increased vaginal ERβ and androgen receptor protein levels [162].
Lasofoxifene acts as a chemopreventive and treatment in the NMU-induced rat mammary
tumor model. The results are similar to the comparator drug tamoxifen [163]. Phase III trials
are currently ongoing to evaluate its ability to prevent breast cancer and cardiovascular
diseases in postmenopausal women [164].

4.2.3. Pipendoxifene (ERA-923)—Pipendoxifene (9) has an indole core structure (Fig.
(4)). It was designed by adding an alkylaminoethoxyphenyl side chain to zindoxifene
(D-16726), a 2-phenylindol based SERM which failed as a treatment for breast cancer [165].
Pipendoxifene, also named ERA-923, mimics the structure of raloxifene and is devoid of
uterotrophic activities in immature rats and ovariectomized mice compared to raloxifene
[166]. It inhibits the growth of tamoxifen-sensitive and -resistant tumors in rats and mice
[167] and is under phase II clinical development for the treatment of tamoxifen-resistant
metastatic breast cancer. In a recent study, a combination of pipendoxifene and
temsirolimus, which is a mammalian target of rapamycin (mTOR) inhibitor, synergistically
inhibited growth of MCF-7 cells and xenograft models even at suboptimal doses, primarily
by causing G1 cell cycle arrest [168]. This suggested that combination of a SERM and an
mTOR inhibitor might be of clinic value as breast cancer treatments.

4.2.4. Bazedoxifene (TSE-424, WAY-140424)—Bazedoxifene (10) is another indole
SERM, designed and synthesized at the same time as pipendoxifene with a slight structural
difference, as shown in Fig. (4) [166]. This SERM is being actively developed to treat
osteoporosis with the potential to prevent breast cancer. Bazodoxifene binds to ERα and
ERβ with an affinity lower than raloxifene but is less selective for ERα [169]. It inhibits
estrogen-mediated proliferation of breast cancer MCF7 cells and increases bone density with
little uterine or vasomotor effects in rat models [169]. A Phase III trial with 497 healthy
postmenopausal women showed that 6-month bazedoxifene treatment decreases
endometrium thickness and uterine bleeding, suggesting antagonistic effects of bazedoxifene
in endometrium [170]. Bazedoxifene is currently under review by the Food and Drug
Administration (FDA) for the prevention and treatment of postmenopausal osteoporosis. The
completed 3-year phase III trial which enrolled 7,492 postmenopausal women with
moderate to severe osteoporosis showed bazedoxifene significantly reduced the incidences
of vertebral and non-vertebral fracture compared to placebo, while raloxifene was not
effective against non-vertebral fracture [171]. No safety concerns related to breast or
endometrium were observed, however, a statistical insignificant increase of venous
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thromboembolic events was observed with groups treated with either bazedoxifene or
raloxifene in the same study [172]. Based on studies using rodent models, combination of
bazedoxifene and conjugated estrogens exerted positive vasomotor, lipid, and skeletal
responses with minimal uterine stimulation [173]. This suggested that pairing SERMs and
estrogen might be effective in the treatment of menopausal symptoms and prevention of
osteoporosis. However, further studies are needed to examine the effectiveness of
bazedoxifene in breast cancer prevention.

4.2.5. Acolbifene (EM-652, SCH57068) and EM-800 (SCH57050)—Acolbifene
(EM-652) (11) and its orally active prodrug EM-800 (12) have a chromene core structure
(Fig. (4)). They were initially misclassified as pure antiestrogens and their side chain was
depicted by analogy with the pure antiestrogen fulvestrant [174]. However, the structure of
acolbifene is actually similar to that of raloxifene, and unlike fulvestrant, the antiestrogenic
side chain of acolbifene does not mask the mutant ER amino acid D351Y to produce an
estrogenic action [175]. In addition, acolbifene and EM-800 act as antiestrogens in
mammary and uterine tissues, but have estrogenic effects to prevent bone loss and have a
favored function in the regulation of lipid metabolism by lowering plasma cholesterol and
triglyceride in rodent models [176, 177]. Therefore, acolbifene and EM-800 should be
classified as SERMs.

Acolbifene has the highest ER-binding affinity among all known compounds [178].
Preclinical studies indicated that acolbifene and EM-800 were more potent than tamoxifen,
idoxifene, raloxifene, GW-5638, toremifene and droloxifene to inhibit the growth of breast
cancer cell lines MCF-7, ZR-75-1, MCF-7 and T47D as well as ZR-75-1 xenograft in mice
models [179, 180]. Interestingly, acolbifene caused disappearance of 65% ZR-75-1
xenograft in ovariectomized nude mice, while other SERMs tested (tamoxifen, toremifene,
raloxifene, droloxifene, idoxifene and GW 5638) only decreased the tumor growth rate
stimulated by estrone [180]. Acolbifene was evaluated as a second line therapy for
tamoxifen-refractory breast cancers, since it was regarded as a pure anti-estrogen. In a small
clinical trail involved 43 postmenopausal or ovariectomized women with breast cancer who
had received tamoxifen for over a year but relapsed, the objective response to EM-800 was
12% with 1 complete response and 4 partial responses [181]. In a phase III trial to compare
acolbifene with the aromatase inhibitor anastrozole in breast cancer patients who did not
respond to tamoxifen, acolbifene did not show superior antitumor activity to anastrozole and
the study was halted [182]. However, acolbifene and EM-800 may be more suitable as first
line therapy and a phase III trial for untreated metastatic breast cancer patients is planned
[182].

Recent studies indicate that acolbifene might be used in combination with other drugs.
Acolbifene synergizes with rexinoid LG100268 in the prevention and treatment of mice with
ER-negative mammary tumor [155]. It also synergizes with dehydroepiandrosterone
(DHEA), which is a naturally produced prohormone for androgen and estrogen, in the
prevention of dimethylbenzanthracene (DMBA)-induced mammary tumors in the rats [183].
A phase III trials of acolbifene plus DHEA for vaginal atrophy and uterine safety has been
planned.

4.2.6. CHF4227—CHF4227 (13) is a SERM with a chromene (benzopyran) core structure,
as shown in Fig. (4). Compared with raloxifene, CHF4227 binds to ERα and ERβ with
higher affinity and inhibits the uterotropic action of 17alpha-ethynyl estradiol with more
potency [184]. CHF4227 significantly prevents the development of DMBA-induced
mammary tumors in rats [184]. It preserves bone mass without affecting uterine weight and
decreases serum cholesterol and fat mass in ovariectomized rats [185]. A recent phase I
study showed CHF4227 is well-tolerated, as 28 days of treatment has a positive effect on the
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serum lipid profile and bone markers without any negative effects on the endometrium or
the fibrinolytic system. Additionally, CHF4227 does not cause vaginal bleeding or hot
flashes [186]. These results suggest that CHF4227 is safe and worthy of further clinical
development for osteoporosis and the chemoprevention of breast cancer.

4.2.7. SP500263—SP500263 (14) was discovered in a screen to identify ER agonist in
bone cells [187]. It has a chromene core structure and binds to both ERα and ERβ with high
affinity similar to raloxifene’s (Fig. (4)) [187]. SP500263 inhibits the growth of breast
cancer MCF7 cells and xenografts in nude mice, and does not stimulate uterine weight gain
in immature rats or ovariectomized adult rats [188, 189]. SP500263 also blocks
osteoclastogenesis in human bone cell model [190]. These preclinical results suggest that
SP500263 has potential for the treatment of both breast cancer and osteoporosis. However,
clinical value of this drug has yet to be determined.

4.3. Steroidal SERMs
4.3.1. HMR3339—All of the SERMs described to this point are non-steroidal. Recently,
steroidal SERMs have been described (Fig. (5)). In rats, HMP3339 (15) not only increases
bone mineral density but also restores the mechanical strength at multiple sites even after
ovariectomy, and it affects both cortical and cancellous bones, while raloxifene was
effective only at cancellous sites [191]. HMR3339 has entered clinical investigation for the
prevention of osteoporosis and cardiovascular diseases. In a series of small phase II trials
with healthy postmenopausal women, HMR3339 was found to reduce total cholesterol, LDL
cholesterol, C-reactive protein (CRP, a pro-inflammatory cytokine and a cardiovascular
disease risk factor), asymmetric dimethylarginine (AMDA, a nitric oxide synthase inhibitor)
and homocysteine [192–194]. Elevation of AMDA or homocysteine is linked to a high
incidence of cardiovascular disease but raloxifene treatment does not reduce the level of
either AMDA or homocysteine [192]. HMR3339 reduces concentrations of
procarboxypeptidase U (pro-CpU, an inhibitor of fibrinolysis), antithrombin and fibrinogen
to a degree similar to raloxifene and shows beneficial effects on some markers of
fibrinolysis [195, 196]. Therefore, HMR3339 has potential to prevent cardiovascular
diseases and possibly also osteoporosis. However, whether or not there is potential as a
cancer preventive has not been determined.

4.3.2 PSK3471—PSK3471 (16) is a newly developed SERM with a structure similar to
HMR3339 (Fig. (5)). It was reported to prevent gonadectomy-induced bone loss in male and
female mice, and antagonize estradiol-stimulated MCF-7 cell proliferation [197].

4.4. ER Subtype Selective SERMs
ERα and ERβ have a different tissue distribution and have overlapping but distinct
biological functions [198]. Unlike ERα, ERβ expression is not routinely examined in the
clinic and its function in breast cancer remains unclear. ERβ expression is found in both
normal and breast cancer specimens but does not correlate with ERα expression [199]. It
seems that ERβ functions differently if it is expressed alone or co-expressed with ERα in
breast cancers. In ERα-positive breast tumors, ERβ often antagonizes the pro-proliferation
actions of ERα [200, 201] and its expression is associated with better response to endocrine
therapy and a favorable clinical outcome in most cases [202]. Thus ERβ seems to function as
a tumor suppressor. However in ERα-negative breast tumors, several studies indicated that
the expression of ERβ correlates with proliferation markers such as Ki67 and cyclin A [202,
203], which suggested that ERβ might stimulate cancer growth. In the latter situation, ERβ
could serve as an endocrine therapy target in those patients who would otherwise be
regarded as ER-negative and have limited choice but chemotherapy. The presence of ERβ in
ERα-negative breast cancers may partly explain why some “ER-negative” patients respond
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to SERMs. The reason that ERβ functions differently in the absence or presence of ERα
might be due to the different activities between the ERα/β heterodimer and ERα or ERβ
homodimers.

A new direction to consider is the estrogen related receptor (ERR) [204, 205]. There is
emerging evidence that ERRα is critical for the growth of ER-negative breast-cancer MDA-
MD-231 xenografts in mice [206], as ERRα appears to be involved in angiogenesis by
inducing the expression of vascular endothelial growth factor (VEGF) [207, 208]. Novel
therapeutic agents targeted to ERRα would be valuable to treat breast cancer.

Several ER-subtype selective SERMs have been reported, although it is difficult to design
subtype selective ligands given the fact that only two amino acids are different in the ligand
binding pocket between ERα and ERβ (despite that they have 61% amino acid identity in
LBD). All the SERMs discussed previously were designed against ERα and have low
subtype selection in terms of binding affinity. In contrast to the focus on ERα and breast
cancer, most of ER subtype selective SERMs are developed for diseases other than breast
cancer. In animal models, ERβ-selective agonists ERB041 and diaryl-propionitrile (DPN)
have been shown to have anti-inflammatory properties and antidepressant-like effects,
respectively [209, 210]. An ERβ agonist, 8-vinylestra-1,3,5 (10)-triene-3,17β-diol,
stimulates ovarian follicular development in hypophysectomized rats and gonadotropin-
releasing hormone a tagonist-treated mice [211], thus this drug could be used to enhance
fertility [198]. A few ERβ agonists are being developed for clinical applications in
Alzheimer’s disease and rheumatoid arthritis [212]. For breast cancer prevention and
treatment, it is conceivable that ERβ agonist might have potential for ERα-and-β-positive
tumors, especially in combination of an ERα selective antagonist, since the preclinical
studies indicate a protective role of ERβ. However, this strategy poses a difficult
pharmacologic issue of tissue pharmacodynamics. Nevertheless, a couple of ERβ modulators
have been shown with positive effects to treat advanced postmenopausal breast cancer,
which will be discussed below.

4.4.1. Trilostane (Modrenal)—Trilostane (17) (Fig. (6)) is an inhibitor of 3β-
hydroxysteroid dehydrogenase, a critical enzyme in the conversion of DHEA to estradiol in
breast tumors [213]. Trilostane increases the maximum binding of estradiol to ERβ but not
ERα in MCF-7 breast cancer cells [214], and it increased the expression of ERβ in MCF-7
cells and rat uterine [215]. Trilostane is approved in UK to treat advanced postmenopausal
breast cancer after relapse to initial hormone therapy and is currently under investigation to
be used in prostate cancer and premenopausal breast cancer [213].

4.4.2. TAS-108 (SR16234)—Another type of subtype selective SERM that might be
relevant to breast cancer is a combined ERα antagonist but ERβ agonist. TAS-108 (18) (Fig.
(5)) is a steroidal antiestrogen for ERα and a partial agonist on ERβ [216]. TAS-108 has
pure antiestrogenic effects for ERα in the presence or absence of estrogen but exhibits
partial agonist activity on ERβ using in vitro reporter assay. TAS-108 inhibits the growth of
tamoxifen-resistant breast cancer cells, DMBA-induced mammary tumor in rats and
estrogen-stimulated growth of MCF7 xenografts with little uterotrophic effect [216, 217].
Phase I trial indicate that TAS-108 has anti-tumor activity, is well tolerated, and does not
have effects on an endometrial thickness based on an evaluation using trans-vaginal
ultrasound [218, 219]. Similar results were obtained in Phase II trials that recruited
postmenopausal women with advanced breast cancer, according to presentations at San
Antonio Breast Cancer Symposium (SABCS) in December, 2008. A phase III trial is
planned [217]. TAS-108 did not increase bone loss like fulvestrant, which could be due to its
agonistic property on ERβ. Another advantage over fulvestrant is that TAS-108 is orally
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administered [220]. TAS-108 is therefore a promising breast cancer drug, even for patients
who have relapsed after tamoxifen.

5. CONCLUDING REMARKS
Endocrine therapy targeting to ERα has been very successful in the treatment and prevention
of breast cancer [221, 222]. It is very effective and less toxic compared to combinational
cytotoxic chemotherapy that was the only option 30 years ago. In the ensuing period,
multiple strategies have been developed to antagonize estrogen action. Most experience has
accumulated with the competitive inhibitor of estrogen action tamoxifen, but targeting
aromatase to deplete estrogen with AIs in postmenopausal patients or to induce ER
degradation with SERDs have been valuable innovations in therapies. The goal for treatment
is to create a “no-estrogen environment”. However, SERMs that maintain the beneficial
effects of estrogen but antagonize the harmful effects of estrogen have great potential in the
prevention of multiple diseases in common. It is clear that many new SERMs are being
developed that could provide better choices for patients in the future.

To overcome the unwanted side effects and problems with drug resistance, combination
therapy might be another important direction in addition to the development of new SERMs.
For example, combination of SERM acolbifene and DHEA could be protective against
breast cancer and osteoporosis with beneficial effects to stimulate vaginal maturation and
decrease skin dryness [182]. As traditional HRT is less acceptable to regulatory authorities
because of the increased risk of breast cancer, a combination of HRT and a SERM may be a
reasonable idea to relieve unpleasant menopausal effects while decrease breast cancer risks.
With regards to avoiding drug resistance, combining a SERM and an inhibitor targeting
significant survival signal transduction pathway is under active evaluation. By way of
example, a combination of tamoxifen and inhibitors of the HER2 signal transduction
pathway may prevent acquired tamoxifen resistance [223]. Similarly, SERM pipendoxifene
and mTOR inhibitor temsirolimus synergistically inhibits the proliferation of MCF7 breast
cancer cells and xenograft at suboptimal concentrations [168]. Additionally, combinations of
a SERM (arzoxifene or acolbifene) and a rexinoid LG100268 are effective to prevent and
treat ER-negative mammary tumors in animal models [155]. The potential combination
seems endless but the marriage of molecular biology and medicine holds great promise for
advances in targeted therapeutics based on the SERM model.

In summary, it is clear that the original idea of targeting specific hormone receptor with
selective medicine has proven its worth by advancing medicine with the SERMs tamoxifen
and raloxifene. Now there are a whole range of new SERMs poised for clinical applications.
But this is not the end of the story. Novel selective modulators of all members of the nuclear
receptor superfamily are under investigation addressing the treatment or prevention of
diseases never before considered possible [57, 222].
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Fig. (1).
Schematic comparison of human ER-α and ER-β structure. The structural domains are
shown, and the percentage of amino acid identity shared by the two ERs is indicated for
each domain. The horizontal bars highlight areas of different functions.
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Fig. (2).
Schematic representation of different liganded-ER complexes interacting with co-regulators
and consequent transcriptional activities. ERs that bind to estrogenic ligands interact with
co-activators (CoA) and activate transcription. Anti-estrogen liganded-ER complexes
interact with co-repressors (CoR) and inactivate transcription of responsive genes. Selective
estrogen receptor modulators (SERMs) bind to ERs and interact with either co-activator or
co-repressor complexes eliciting partial transcriptional activity depending upon the cellular
context.
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Fig. (3).
SERMs with a structure mimicking tamoxifen containing a triphenylethylene core.
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Fig. (4).
SERMs with a structure mimicking raloxifene.
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Fig. (5).
Steroidal SERMs
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Fig. (6).
Structure of ERβ-selective agonists.
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Table

Current status of new SERMs

Drug Name Category (Structure) Effects Preclinical Results Clinical Status

Toremifene Tamoxifen-like Breast cancer treatment Fewer genotoxic
effects than
tamoxifen [113],
bone effects similar
to tamoxifen [119]

FDA approved
for metastatic
breast cancer

Heart protection Phase II trial
(65 women)
better than
tamoxifen
regulating lipid
metabolism
[121, 122]

Mastalgia treatment Phase II trials
(62 and 195
women)
effective [126,
127]

Prostate cancer prevention Phase II trial
(514 men)
decreases
prostate cancer
incidence [128]

Relieve side effects of
androgen deprivation
therapy

Phase III trial
(1,389 men)
improves lipid
profiles [130]

Phase III trial
(1,392 men)
increases bone
mineral density
[129]

Ospemifene Tamoxifen-like Vaginal atrophy treatment Estrogenic effects
on vaginal
epithelium that is
not observed with
tamoxifen or
raloxifene [134–
136]

Phase III trial
(826 women)
relieves vaginal
dryness

Osteoporosis treatment Phase II trial
(118 women):
Comparable to
or slightly better
than raloxifene
[139]

Phase III trial
planned (detail
not available)

Breast cancer prevention Inhibits tumor
growth in animal
models as effective
as tamoxifen [140,
141]

Not available

GW5638 (DPC974) & GW7604 Tamoxifen-like Breast cancer treatment
(2nd line therapy)

Works as a SERM
and as a SERD
[148], effective in
tamoxifen-resistant
tumors [144, 145];
functions as an ER
agonist in bone and
cardiovascular
system but an
antagonist in breast

Phase I trial (9
patients who
failed first-line
hormone
therapy) low
toxicity [ASCO

Anticancer Agents Med Chem. Author manuscript; available in PMC 2013 September 09.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Peng et al. Page 38

Drug Name Category (Structure) Effects Preclinical Results Clinical Status

and endometrium
[142]

meeting 2002,
abstract 452]

Arzoxifene (LY353381) Raloxifene-like Breast cancer treatment Antiestrogenic in
breast and
endometrium,
estrogenic in bone
and lipids [150]

Phase III trial
(200 patients)
inferior to
tamoxifen [154]

Breast cancer prevention Effective to
prevent ER-
positive and ER-
negative mammary
tumors especially
in combination
with LG100268
[140, 155]

Phase I trials
(50 and 76
women) low
toxicity and
favorable
biomarker
profile [156]

Lasofoxifene (CP-336156, Fablyn) Raloxifene-like Osteoporosis treatment
and prevention

Higher potency
than tamoxifen and
raloxifene [158];
higher oral
bioavailability than
raloxifene [160]

Phase III trial
(1,907 women)
significantly
increases bone
mineral density
compared to
placebo, no
endometrial
effects, no
association with
thromboembolic
disorder [159]

Phase III trial to
compare with
raloxifene
(CORAL trial,
details not
available)

Vaginal atrophy treatment Phase III trail
(445 patients)
improves
vaginal atrophy
compared to
placebo

Breast cancer treatment
and prevention

Effects similar to
tamoxifen to
prevent and treat
NMU-induced
mammary tumor in
rats [163]

Phase III trial
(PEARL trial
with 8,556
women),
reduces ER-
positive breast
cancer
incidence
compared to
placebo;
slightly
decreases major
coronary
disease risk;
reduces
vertebral and
non-vertebral
fractures;
increases risks
of venous
thromboembolic
events but not
stroke; no
endometrial
effects [SABCS
2008, abstract
11]

Heart disease prevention
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Drug Name Category (Structure) Effects Preclinical Results Clinical Status

Pipendoxifene (ERA-923) Raloxifene-like Breast cancer treatment Inhibits tamoxifen-
sensitive and -
resistant tumors in
mice and rats no
uterotrophic
activities compared
to raloxifene [167]

Phase II trial to
treat tamoxifen-
refractory breast
cancer in
postmenopausal
women (details
not available)

Bazedoxifene (TSE-424 WAY-140424) Raloxifene-like Osteoporosis treatment
and prevention

Increases bone
density with little
uterine or
vasomotor effects

Phase III trial
(7,492 women)
reduces
vertebral and
non-vertebral
fracture
incidences,
while raloxifene
is not effective
against non-
vertebral
fracture [171]

Phase III trial
(497 women)
reduces
endometrial
thickness,
unique property
among known
SERMs [170]

Breast cancer prevention Inhibits estrogen-
stimulated breast
cancer cells growth
[169]

Not available

Acolbifene (EM-652, SCH57068) &
EM-800 (SCH57050)

Raloxifene-like Breast cancer treatment
(2nd line therapy)

Highest affinity for
ER, inhibit growth
of multiple breast
cancer cells in vitro
and in vivo [180]

Phase III trial,
less effective
than anastrozole
to treat
tamoxifen-
resistance breast
cancer, study
halted [182]

Breast cancer treatment
(1st line therapy)

Phase III trial
planned [182]

Breast cancer prevention Phase II trial
(started in
February, 2009)
for
premenopausal
women

CHF4227 Raloxifene-like Breast cancer and
osteoporosis prevention

Prevents DMBA-
induced mammary
tumors and
preserves bone
mass in rats [184,
185];

Phase I trials
(24 and 56
women)
beneficial on
bone markers
and lipid
metabolism; no
effects on
endometrium;
not causing hot
flashes

SP500263 Raloxifene-like Breast cancer and
osteoporosis treatment

Inhibits breast
cancer cell growth
in vitro and in vivo
without stimulating
uterine weight gain

Not available
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Drug Name Category (Structure) Effects Preclinical Results Clinical Status

[188, 189], protects
bone in vitro [190]

HMR3339 Steroidal Osteoporosis and
cardiovascular disease
prevention

Better than
raloxifene to
protect cancellous
bones [191]

Phase II trials
(96 and 118 and
94 women)
better than
raloxifene at
improving some
beneficial
cardiovascular
markers [192–
194]

PSK3471 Steroidal Osteoporosis and breast
cancer prevention and
treatment

Prevents bone loss
in vivo, inhibits
growth of breast
cancer cells in vivo
[197]

Not available

Trilostane (Modrenal) ER subtype-selective Breast cancer treatment Increases estradiol
binding to ERβ,
increases ERβ
expression,
partially inhibits
estrogen
production [214,
215]

Approved in
UK to treat
advanced
postmenopausal
breast cancer
after relapse to
initial hormone
therapy

Phase III trial
(714 women
with advanced
breast cancer)
effective for
both ER-
positive and
ER-negative
breast cancer,
effective for
endocrine
therapy-
resistant cancer

Phase II trial for
use in
premenopausal
breast cancer
(details not
available)

Prostate cancer treatment Phase II trial
with hormone-
refractory
prostate cancer
(details not
available)

TAS-108 (SR16234) Steroidal, ER subtype-selective Breast cancer treatment
and prevention

Inhibits growth of
tamoxifen- and AI-
sensitive and
resistant cancer
cells in vitro and in
vivo; inhibits
DMBA-induced
tumor growth in
rats [216]

Phase I trials
(16 and 15
women)
effective and
well tolerated
[218, 219]

Phase II trails
(145 and 97
postmenopausal
women with
advanced breast
cancer)
beneficial
effects, well
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Drug Name Category (Structure) Effects Preclinical Results Clinical Status

tolerated
[SABCS, 2008,
abstract 2131
and 2132]
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