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Abstract
While accurate measures of heritability are needed to understand the pharmacogenetic basis of
drug treatment response, these are generally not available, since it is unfeasible to give
medications to individuals for which treatment is not indicated. Using a polygenic linear mixed
modeling approach, we estimated lower-bounds on asthma heritability and the heritability of two
related drug-response phenotypes, bronchodilator response and airway hyperreactivity, using
genome-wide SNP data from existing asthma cohorts. Our estimate of the heritability for
bronchodilator response is 28.5% (se 16%, p = 0.043) and airway hyperresponsiveness is 51.1%
(se 34%, p = 0.064), while we estimate asthma genetic liability at 61.5% (se 16%, p < 0.001). Our
results agree with previously published estimates of the heritability of these traits, suggesting that
the LMM method is useful for computing the heritability of other pharmacogenetic traits.
Furthermore, our results indicate that multiple SNP main-effects, including SNPs as yet
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unidentified by GWAS methods, together explain a sizable portion of the heritability of these
traits.
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Main Text
The extent to which genomic medicine is applicable to a disease or drug-response phenotype
is limited by the genetic architecture and heritability of the traits, and is thus of paramount
importance to pharmacogenetics. Such heritability estimates are generally not available for
pharmacological responses, since it is unfeasible to give medications to individuals for
which treatment is not indicated in family studies. Herein, we employed a recent method for
estimating heritability from genome-wide SNP data, polygenic linear mixed modeling
(LMM) using genome-wide complex trait analysis (GCTA),1, 2 and we applied these
approaches to analysis of asthma and two asthma-related pharmacological phenotypes for
which there are existing heritability estimates: bronchodilator response (BDR) and airway
hyperresponsiveness (AHR).

Bronchodilators, of which short-acting beta2-agonists are most common, are the most
frequently used asthma drug.3 However, it has long been observed that patients have
variable responses to these medications.4 BDR, measured by the change in forced expiratory
volume in 1 second (FEV1) before and after beta2-agonist administration, has a significant
genetic component contributing to the variable bronchodilator response in different
patients.5

AHR refers to the characteristic airway obstruction produced by a variety of stimuli in
asthmatics.6 AHR is assessed by provocative concentration of methacholine producing a
20% decline in forced expiratory volume in one second (PC20). AHR is the phenotype that
changes the most with steroid (anti-inflammatory) treatment7 and has also been shown to be
highly heritable across a number of studies and populations.8, 9

Using LMM, estimates of the proportion of phenotypic variance attributable to additive
genetic effects,2 or narrow-sense heritability (h2), can be established independent of familial
data. Narrow-sense heritability is a subset of the total, or broad-sense, heritability (h2).
Heritability measured by LMM (h2) does not include other types of genetic effects such as
dominance effects, gene-environment interaction, and gene-gene or variant-variant effects.10

The LMM method looks for variance explained by SNPs in aggregate assuming that many
SNPs may be associated with the trait of interest, albeit with effect sizes small enough that
they would not be detected in traditional association studies. It is, in effect, answering the
question: if we could find every associated SNP, how much heritability will all those genetic
effects explain?

This method has been used previously to argue that the heritability of height is almost
entirely due to additive effects.2 It has further been applied to metabolic syndrome traits,11

where lower-bounds were given for BMI (15%), and systolic blood pressure (24%). The
method has also shown one third of the individual variation in liability to schizophrenia
(23% of 70%) is due to additive SNP effects.12 To date, however, this method has not been
applied to the study of drug treatment responses, which, in contrast to studies of baseline
quantitative traits or affection status, are not typically amenable to classic familial studies of
heritability. We hypothesized that LMM would provide reliable heritability estimates of
pharmacogenetic and affection traits in asthma. We tested our hypothesis on the BDR, AHR,
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and affection phenotypes, which permitted correlation of the LMM results with previously
published heritability estimates for these traits.

Methods
We utilized subjects from various asthma clinical trials: ACRN,13 CAMP,14 CARE,15

LOCCS,16 LODO,17 and Sepracor.5 These have been described in detail in the provided
references. To assess the heritability of asthma, we utilized Caucasian participants of
ACRN, CAMP, and CARE, together with publicly available Caucasian controls from
iControlDB (Illumina Inc, San Diego, CA). For BDR, we utilized participants from ACRN,
CAMP, CARE, LOCCS, LODO, and Sepracor. The AHR cohort was composed of patients
from ACRN, CAMP, and CARE. These cohorts are described in more detail in Table 1.
These cohorts have elsewhere been used successfully in traditional genome-wide association
analyses for asthma18, BDR19, and AHR (forthcoming).

BDR was measured by FEV1 change before and after the administration of a bronchodilator
(albuterol); where BDR was defined as the change in FEV1 as a percentage of the pre-
bronchodilator FEV1. AHR was assessed by methacholine challenge and measured by the
log provocative concentration of methacholine resulting in a 20% decrease in airway
capacity (measured by FEV1). In the asthma case-control study, asthma cases were defined
as any participant in an asthma trial and controls were defined as any of the patients from
iControlDB.

Heritability computations with the LMM method were performed using the GCTA software
tool.1 Following the guidelines of Yang et al.,2 we excluded SNPs with minor allele
frequency < 0.05, missing rate > 0.005, p-value for being outside Hardy-Weinberg
equilibrium < 0.001, MaCH20 imputation r2 quality scores < 0.9, and a genomic relatedness
score > 0.025. The genomic relatedness filter removed one of each pair of participants with
more than 2.5% genomic similarity, which corresponds to removing anyone related as
closely as (approximately) 3rd or 4th cousins.21 We included age, sex, height, study and the
top 20 genotype principle components as covariates in the LMM model. Although
genotyping was performed on each cohort separately, in many cases on separate chips and in
separate laboratories (table 1), the inclusion of study and genotype principal components
resulted in stratification-free analysis, as evidenced by a genomic inflation factor of 1.017 in
a qq-plot of association with asthma affection status in the case-control analysis. Including
the top 20 principal components as covariates removes any variance explained by the
population structure they might represent from the estimate of heritability.21 Since
heritability of case-control traits depends on the prevalence, GCTA measures heritability on
an underlying liability scale, where attributable genetic risk has a normal distribution.22 To
adjust the estimate of asthma heritability to the liability scale, we assumed a prevalence of
10% for asthma. P-values for statistical significance are reported from GCTA output, and for
heritability measurements represent probability of difference from zero.

Results
The cohorts utilized in this analysis are summarized in Table 1. To increase the quality of
our LMM estimates, we combined our study cohorts for each phenotype, yielding a total
sample size of 2633 for asthma affection status, 1497 for bronchodilator response, and 1054
for AHR.

We computed narrow-sense heritability estimates for asthma and two pharmacogenetic
phenotypes: BDR and AHR.1 The estimated heritability of asthma was 61.5% (se 16%, p <
0.001). BDR was 28.6% (se 16%, p = 0.043) and AHR was 51.1% (se 34%, p = 0.064).
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Results are summarized in Table 2. We next compared our results to published heritability
results for each of these three traits (Table 2). Overall, the GTCA results reflected a
minimum of 67–76% of the published heritability estimates.

Even though asthma is known to have different prevalences among child and adult cases, we
were not able to conduct separate heritability estimates without reducing our sample size
below the point of usable results. For purposes of comparison, we did alter the estimate of
asthma prevalence used in the GCTA method (10%), and arrived at somewhat different
results: assuming a 5% prevalence gives a heritability estimate of 49.6% (se 13%), and
assuming a 15% prevalence gives 69.9% (se 18%). We also compared heritability estimates
for each phenotype when including differing numbers of genotype principal components as
covariates (figure 1). This largely resulted in similar estimates of heritability, although
including too few (less than 10) or too many PCs (more than 35) could lead to poorer
results: as either stratification and batch effects are not sufficiently adjusted for, or too many
PCs siphon away increasing amounts of the true genetic variance. That the estimates for
AHR seem to be most variable for different numbers of PC covariates is probably due to that
phenotype having the smallest sample size and consequently the largest error associated
with its heritability estimates.

Discussion
Overall, the heritability estimates we obtained using LMM were very consistent with
estimates established by pedigree studies, with each of the results reflecting a minimum of
67–76% of the published heritability estimates. The estimates are based on the coverage of
the genome provided by the SNP array employed, and thus represent a lower-bound on the
narrow-sense heritability (h2). As such, this method is a valid approach for estimating
heritability from GWAS data in studies in which familial data is unavailable, or unfeasible,
such as pharmacogenetic studies. However, it does not include other types of additive
genetic effects which may not be in linkage disequilibrium with the SNP array used,
including rare alleles and alleles with very-low minor allele frequency.21

The heritability of asthma has been assessed in a variety of twin studies, the majority of
which have estimated heritability between 70% and 90%,23 a value approached by our
estimate of 61%. This indicates that a substantial portion of the total variance in individual
liability to asthma is due to the additive effects of common variants, a result consistent with
the theory of asthma as a complex polygenic disorder. Some researchers have included as
covariates in the LMM models SNPs representing loci known to account for significant
portions of the heritability of the phenotype, and thus measured the heritability of genomic
variants uncorrelated with these loci.24 In our analysis, we included 13 SNPs robustly
associated with asthma from recent GWAS meta-studies: GABRIEL25 and EVE.26 This did
not result in a significant reduction in heritability of asthma (p = 0.5, compared with 13
random SNPs), indicating that these 13 variants do not by themselves constitute a significant
fraction of the genomic liability of asthma.

There have been a few previous studies that measured the heritability of AHR or BDR. Two
variance component analyses looked at the heritability of AHR in pedigree studies,
obtaining estimates between 50% and 65%,8, 9 while two similar studies of BDR found
estimates of heritability of 10% and 10.5%.27, 28 Others have computed the intraclass
correlation coefficient (ICC) of AHR and BDR, where the ICC is a ratio of the within-
subject variance to the total variance, and represents an upper-bound on the broad-sense
heritability (H2). ICCs of 67%29 and 40%30 for AHR_ENREF_24 have been reported, as
well as 40%29 for BDR. Another study measured the familial correlation of BDR at between
9% and 16%,31 corresponding to a heritability estimation between 12.7% and 22.6%.
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Since the heritability of BDR and AHR are much lower than that of asthma itself, and
certain ranges of BDR are frequently used as inclusion criteria for clinical trials and genetic
studies, it is possible that important sources of genetic determinants of asthma are missed in
such studies. Similarly, since the heritabilities of AHR and BDR are substantially different,
this suggests that the biological underpinnings of airway constriction and dilation may be
quite different, even though they are sometimes conflated.

Furthermore, our estimates include only heritability due to additive SNP effects. The fact
that these numbers are quite close to the heritability estimates established through other
means indicates that a significant portion of the genetic liability of these conditions is due to
additive effects of simple, common variants. Thus future interrogation of GWAS data
related to BDR, AHR, and asthma itself should turn up increasingly more variants associated
with these conditions as those GWAS become increasingly well-powered to detect variants
with small effects. However, it is likely that foreseeable increases in GWAS sample size will
not be sufficient to find all the associated variants, particularly those of smallest effect, and
that greater methodological advancements will be required to move the field forward.

In conclusion, our work further establishes narrow-sense heritability estimates for BDR and
AHR, two drug-response phenotypes of interest in asthma treatment and diagnosis, as well
as for heritability of asthma itself. Application of this method to pharmacogenetic
phenotypes will enhance the ability to better appraise the relative value of individual
pharmacogenetic variants to the overall response profile and subsequently improve the
ability to formulate predictive pharmacogenomic models.
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Figure 1.
Heritability of Asthma, BDR, and AHR by different numbers of genotype principal
components included. Heritability values above 1.0 represent model convergence failures,
and do not represent stable estimates of true heritability. This figure shows that the
heritability estimates of each phenotype can vary with the number of included genotype
PCs, but remain mostly stable for a range of PCs between 10 and 35.
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