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Abstract
Multivariate pattern analysis (MVPA) methods such as support vector machines (SVMs) have
been increasingly applied to fMRI and sMRI analyses, enabling the detection of distinctive
imaging patterns. However, identifying brain regions that significantly contribute to the
classification/group separation requires computationally expensive permutation testing. In this
paper we show that the results of SVM-permutation testing can be analytically approximated. This
approximation leads to more than a thousand fold speed up of the permutation testing procedure,
thereby rendering it feasible to perform such tests on standard computers. The speed up achieved
makes SVM based group difference analysis competitive with standard univariate group
difference analysis methods.
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1. Introduction
Statistical parametric mapping (R.S.J. Frackowiak, 1997), voxel-based morphometry
(Ashburner and Friston, 2000; Davatzikos et al., 2001) and related methods that apply
voxel-wise statistical tests have been fundamental tools in modern neuroimaging. These
methods have made it possible to quantify group differences and understand spatial patterns
of functional activation/brain structure. Methods belonging to this family of mass-univariate
methods are amenable to standard statistical inference techniques. Typically these methods
associate a statistical significance measure such as a ’p-value’ with every voxel. This allows
for easy interpretation of the output from these methods. However, during the past decade,
the neuroimaging community has recognized that multi-variate relationships among
different brain regions cannot be captured by univariate analysis alone. This has lead to the
development of multi-variate image analysis methods, which provide a more complete
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picture of imaging patterns that relate to brain activity, structure and pathology (Fan et al.,
2007; Klöppel et al., 2008; Wang et al., 2007; Venkataraman et al., 2012; Langs et al., 2011;
Davatzikos et al., 2005; Mouro-Miranda et al., 2005; Xu et al., 2009; Craddock et al., 2009;
De Martino et al., 2008; Cuingnet et al., 2011; Fan et al., 2007; Koutsouleris et al., 2009;
Vemuri et al., 2008; Sabuncu and Van Leemput, 2011; Venkataraman et al., 2012; Richiardi
et al., 2011; Mingoia et al., 2012; Pereira et al., 1998). Among the most successful such
methods are SVM-based tools (Klöppel et al., 2008; Fan et al., 2007), which have been quite
widely used in functional (Wang et al., 2007; Davatzikos et al., 2005; Mouro-Miranda et al.,
2005; Craddock et al., 2009; De Martino et al., 2008) and structural (Klöppel et al., 2008;
Cuingnet et al., 2011; Fan et al., 2007; Koutsouleris et al., 2009; Vemuri et al., 2008)
neuroimaging analysis.

However, interpretation of SVM models is difficult because unlike univariate methods
(Ashburner and Friston, 2000), SVMs do not naturally provide statistical tests (and
corresponding p-values) associated with every voxel/region of an image. Rather, it is
considered normal to evaluate these models as ”black boxes” on the basis of cross-validation
accuracy, which is a measure of how accurately they detect the presence of disease based on
data from an image. While cross-validation provides an overall estimate of the separability
between two groups or conditions, it is unclear how each brain region contributes to the
construction of the multivariate discriminatory pattern that ultimately drives the detection of
disease. Further, while SVM models associate a ’weight coefficient’ with every voxel/region
of the image space they do not offer an analytic framework for estimating statistical
significance of these weights, an issue of fundamental importance. Hence permutation tests
have typically been used to understand what regions of the brain drive the SVM decision
(Mouro-Miranda et al., 2005; Wang et al., 2007). These permutation tests are extremely
expensive computationally. Hence they are largely prohibitive in many practical
applications. In this paper, we show that, given the high dimensional nature of neuroimaging
data, it is possible to analytically approximate the null distributions that we ordinarily
generate using permutation tests. We verify this approximation by comparing it with actual
permutation testing results obtained from several neuroimaging datasets. Some of this work
is based on concepts first presented by us in (Gaonkar and Davatzikos, 2012). However, the
derivations presented here are more generic. Further, we have added experiments that
establish a) the multivariate nature of the inference made using such tests b) advantages
compared to typical univariate testing machinery c) advantages compared to inference based
on sparse methods.

2. Materials and methods
2.1. Background

2.1.1. Support vector machines—The support vector machine attempts to learn a
model from data by finding the largest margin hyperplane that separates data from different
conditions (e.g. baseline/activation) or groups (e.g. patients/controls). Training is the process
of finding this hyperplane using data with known labels (condition, group, etc.). Now, for
data with unknown labels (test data), the SVM uses the hyperplane found (during training)
to estimate whether it belongs to a patient or to a control. The SVM treats individual data as
points located in a high dimensional space. Figure 1 illustrates the concept of the algorithm
in an imaginary 2D space: dots and crosses represent imaging scans taken from two groups
or conditions. Even though the two groups cannot be separated on the basis of values along
any one dimension the combination of two dimensions gives perfect separation. This
corresponds to the situation where a single anatomical region may not provide the necessary
discriminative power between groups, whereas the multivariate SVM can still find the
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relevant hyperplane. Typical imaging data lives in an extremely high dimensional space
determined by the number of voxels in each image.

To apply SVMs in neuroimaging data, we convert an image with D voxels into a vector
whose dth component is equal to the intensity value at the dth voxel in the image. Thus, we
re-organize the ith image into a D-dimensional point that lives in ℝD. Let us denote the ith

point by xi where i ∈ 1, ․…, m indexes all subjects in the study. In most imaging studies, we
also have a label associated with each image which tells us whether the image belongs to a
patient or a control subject. We denote these labels by y(i) ∈ {+1, −1}. Then the support
vector machine finds ’hyperplane coefficients’ denoted by w* and b* such that:

(1)

The weight vector w* represents the direction in which the SVM deems the two classes
(controls and patients) to differ the most. To determine the label associated with a new test
subject xtest we use ytest = sign (w*Txtest + b*). Since the data x(i) are in ℝD; the weight
vector w* is also in ℝD. Thus, w* can be represented as an image which we call
a ’discriminative map’. However, until now there has been a limited use of SVM based
discriminative maps in neuroscience. This is because these maps do not provide a measure
of statistical significance associated with a voxel/region of an image. What is the probability
that a particular image voxel would have a weight vector component at least as large as the
one observed in an experiment due to pure chance alone? To answer such a question, one
needs to establish a null distribution on the weight vector components at each image voxel.
An empirical approach for obtaining such a null distribution is through the use of
permutation tests. We describe permutation testing in the next section.

2.1.2. Permutation tests—Permutation testing can be used to establish a null distribution
on the weight vector components at each image voxel. The permutation testing procedure is
illustrated in figure 2. This procedure for permutation testing was applied in the context of
neuroimaging by (Mouro-Miranda et al., 2005; Wang et al., 2007). In figure 2, the dots
denote controls and the crosses denote patients. The first step involves the generation of a
large number of shuffled instances of data labels by random permutations. Each shuffled
instance is used to train one SVM. For each instance of shuffled labels, this generates one
hyperplane parameterized by the corresponding vector w. Then for any component of w, we
have one value corresponding to a specific shuffling of the labels. Collecting the values
corresponding to any one component of w allows us to construct a null distribution for that
component of w. Recall that each component of ’ w’ corresponds to a voxel location in the
original image space. Thus, we now have a null distribution associated with every voxel in
the image space. Comparing each component of w* with the corresponding null distribution
allows us to estimate statistical significance.

While we run tests on each coefficient separately, it is crucial to note that permutation
testing based inference is distinct from univariate inference. These tests are capable of
identifying multivariate phenomenon that univariate tests cannot find. We further clarify this
point using experiments on simulated data presented in the ’Experiments and results’
section.

Further, it is also vital to note that the permutation test based inference method described
here is distinct from thresholding SVM weights themselves which has been a popular in
literature. However, the thresholding approach is problematic and has also been repeatedly
criticized in machine learning literature because a larger weight value does not necessarily
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indicate higher feature relevance. Limitations of the weight vector component thresholding
do not simply carry over to the permutation testing methodology described here. We have
included a simulated experiment to establish this fact. In the ’Experiments and results:
Comparison with prior art’ section, we show using simulated data that the proposed
approach continues to work when SVM weight thresholding fails.

It is obvious that running 1000 permutation tests requires training 1000 support vector
machine classifiers. This requires a significant amount of time (a few hours in our case). (In
many applications, one might need 10,000 permutations or more). In contrast traditional
SPM based methods, (R.S.J. Frackowiak, 1997) can run in a few minutes. Further, some
SVM applications involve running separate SVMs on local 3D windows in MR images in
order to identify group differences (Xiao et al., 2008; Rao et al., 2011). In such cases, it is
computationally infeasible to run the required number of permutation tests experimentally.

2.2. Analytical approximation to permutation tests: the case of balanced data
The primary aim of this work is to show that the permutation testing procedure described
above can be replaced by an analytic alternative that can be computed in a small fraction of
the time (a few seconds in our case) it takes for performing the actual permutation tests(a
few hours for us). We use SVM theory in conjunction with certain observations that seem to
apply to high dimensional medical imaging data to derive the approximation. We start by
noting that Vapnik Chervonenkis theory (Vapnik, 1995) dictates that linear classifiers
shatter high dimension low sample size data. For example, 2 points labeled using any
combination of positive and negative labels can always be separated by a line in 2D space.
Thus, when the dimensionality is in the millions while the sample sizes are in the hundreds,
one can always find ’hyperplanes’ (the high dimensional analogue to lines) that can separate
any possible labelling of points. Thus, when using linear SVMs, for any permutation of y
one can always find a separating hyperplane that perfectly separates the training data. This
allows us to use the hard margin SVM formulation from (Vapnik, 1995) instead of (1) for
further analysis in this paper. We write the hard margin SVM (see (Vapnik, 1995))
formulation as:

(2)

It is required (see (Bishop, 2007)) that for the ’support vectors’ (indexed by l ∈ {1, 2, ‥,
nSV}) we have wTxl + b = yl ∀l. Now, if all our data were support vectors this would allow
us to write the constraints in optimization (2) as Xw + Jb = y where J is a column matrix of
ones and X is a super long matrix with each row representing one image. For all the medical
imaging datasets we investigated most data are support vectors for most permutations(figure
3). Thus, for most permutations we solve the following optimization instead of (2):

(3)

The above formulation is truly the heart of the approximation and is exactly the same as an
LS-SVM (Suykens and Vandewalle, 1999). This equivalence between the SVM and LS-
SVM for high dimensional low sample size data was also previously noted in (Ye and
Xiong, 2007) where it was based on observations about the distribution of such data as
elucidated in (Hall et al., 2005). This equivalence proves very useful because the LS-SVM,
(3) can be solved in the closed form (Suykens and Vandewalle, 1999). Note that all
equations from this point on apply as presented to the LS-SVM and are approximately true
for most permutations of regular SVMs operating on medical images in high dimensional
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spaces. We use the method of Lagrange multipliers to solve for w from (3). Next, we write
the Lagrangian and solve for w:

(4)

Setting  and  and solving for w yields:

(5)

Note that this expresses each component wj of w, where j ∈ ℝD as a linear combination of
yi’s. Thus, we can hypothesize about the probability distribution of the components of w,
given the distributions of yi. If we let yi attain any of the labels (either +1 or −1) with equal
probability, we have a Bernoulli like distribution on yi with E(yi) = 0 and Var(yi) = 1 (we
have extended the theory to the case of unequal priors in the next subsection). Since, (5)
expresses w as a linear combination of these yi we have:

(6)

where Cij are the components of the matrix C, which is defined as:

(7)

Further, the variance of each component of w, is controlled by the rows of the matrix C.
Thus:

(8)

These predicted variances agree well with variance estimates obtained from the actual
permutation testing (see results). At this point, we have an analytical method to approximate
the mean and the variance of the null distributions of components wj of w (that would
otherwise be obtained using permutation testing). We still need to uncover the probability
density function (pdf) of wj. Next, we use the Lyapunov central limit theorem to show that
when the number of subjects is large, the p.d.f of wj can be approximated by a normal
distribution. To this end, from (6) and (7), we have:

(9)

where we have defined a new random variable  which is linearly dependent on yi.

We can infer the expectation and variance of  from yi as:

(10)
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Thus,  are independent but not identically distributed and wj are linear combinations of .
Then according to the Lyapunov central limit theorem (CLT) wj is distributed normally if:

(11)

As is standard practice we check for δ = 1.

(12)

Thus, we can write the limit in (11) as:

(13)

Hence, given an adequate number of subjects, the Lyanpunov CLT allows us to approximate
the distribution of individual components of w using the normal distribution as:

(14)

These predicted distributions fit actual distributions obtained using permutation testing (see
Section 3). Thus, wj’s computed by an SVM model using true labels can now simply be
compared to the distribution given by (14) and statistical inference can be made. Thus, (14)
gives us a fast and efficient analytical alternative to actual permutation testing. Next we
extend the above theory to cases with unequal priors, the case of the soft margin SVM.

2.3. Analytical approximation of permutation testing: the case of unbalanced data
The above derivation assumes equal priors on labels. This assumption allows us to obtain
(6). For such an assumption to hold while performing permutation tests, the study dataset
needs to have an equal number of patients and controls. In actual clinical studies, this is
seldom the case. When the dataset in unbalanced the prior probabilities, P(yj = +1) and P(yj
= −1), are unequal. This requires substantial modification of the above approximation
procedure. In this section, we derive the approximate null distributions for permutation
testing using unbalanced data in SVMs. Let p denote the fraction of data with label +1. Then
we have:

(15)

Thus, the expected value and variance of the labels during permutations can be written as:

(16)

Then, we compute the expectation and variance of the components of w using (10) as:
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(17)

Rewriting equation (12) for δ = 1 gives us:

(18)

where μk = 2p − 1. The limit in (13) can be written as:

(19)

which tends to zero on its own.

Now each limit in the round brackets tends to zero as the denominator m → ∞ and the
Lyapunov CLT continues to apply. Thus, in the case of unbalanced data we still have a
normal distribution on the components of w. This distribution is given by:

(21)

We verify this approximation in the experiments section using real data from ADNI.

2.4. The case of the soft margin SVM
The above permutation testing approximation procedure applies directly to hard margin
SVMs. Suppose we were to use soft margin classification instead, how would it change the
approximation? First recall that typically for large values of the parameter ’C’ in (2), the
SVM penalizes errors in classification heavily. Hence, the slack ξi = 0∀i. When this happens
the solution to the soft margin and hard margin cases are the same. When perfect
separability exists (such as the case of high dimensional low sample size data) the advantage
of setting ξi ≠ 0 can be realized only at extremely small values of ’C’ where the optimizer
typically forces ‖w‖2, the first term in (2) to go to zero. When this happens the
approximation described above will break down. However, 1) This happens for an
extremely small range of values of C 2) the generalization performance of the classifier as
measured by cross validation is also poor in when ’C’ is extremely small (see figure 4) 3)
when C is not extremely small and, the data are high dimensional with low sample size ξi =
0∀i and the solution w remains the same for all values of C. Authors of (Rasmussen et al.,
2012) have previously noted this for neuroimaging data. We found this to be true in
experiments, as well, (see figure 4). Since, neuroimaging analysis usually concerns itself
with values of C where the accuracy is the highest, we do not concern ourselves with regions
where the approximation breaks down.

3. Experiments and results: Qualitative analysis
We performed 3 experiments in order to gain insight into the proposed analytic
approximation of permutation testing. In all experiments, we compared the analytically
predicted null distributions with the ones obtained from actual permutation testing. We have
presented these comparisons for three different magnetic resonance imaging (MRI) datasets.
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We perform experiments using one simulated and two real datasets. The first of the real
datasets is structural MRI data pertaining to Alzheimer’s disease. The second of the real
datasets is a functional MRI dataset pertaining to lie detection. We use LIBSVM (Chang and
Lin, 2011) for all experiments described here. Next, we provide a detailed description of the
data and the experiments.

3.1. Simulated data
We obtained grey matter tissue density maps (GM-TDMs) of 152 normal subjects from the
authors of (Davatzikos et al., 2011). The authors of (Davatzikos et al., 2011) generated these
GM-TDMs using the RAVENS (Davatzikos et al., 2001) approach. We divided the TDMs
into two equal groups. In one of the two groups, (simulated patients) we reduced the
intensity values of GM-TDMs over two large regions of the brain. We did this to simulate
the effect of grey matter atrophy. We constructed these artificial regions of atrophy using 3D
Gaussians. The maximal atrophy introduced at the center of each Gaussian was 33%. The
reduction in the regions surrounding the center of this Gaussian was much lesser than 33%.
We show the regions where we introduced artificial atrophy in figure 5c. We trained an
SVM model to separate simulated patients from controls. We also performed permutation
tests to obtain empirical approximations to null distributions of the wj. We compared the
components of the trained SVM models to the associated empirical null distributions for
obtaining ’empirical p-maps’. A similar comparison of SVM model components with
theoretically predicted null distributions yielded ’analytic p-maps’. Figure 5 presents a 2D
section of these p-maps as well as a scatter plot (using the full 3D image) of p-values
obtained experimentally vs those obtained analytically. Figure 6 presents a visual
comparison of the p-maps in 3D by thresholding p-maps at several arbitrarily chosen
thresholds. Figure 6 shows that analytically obtained p-maps are visually indistinguishable
from experimentally obtained ones.

3.2. Alzheimer’s Disease data
We present experimental results using data from the Alzheimer’s disease neuroimaging
initiative study. The authors of (Davatzikos et al., 2011) preprocessed raw T1-structural MR
images using a pipeline that involved skull stripping using BET (Smith, 2002), followed by
bias correction using N3 (Sled et al., 1998) and segmentation into grey matter (GM), white
matter (WM) and ventricular (VN) CSF using fuzzy c-means clustering (Pham and Prince,
1999). They then generated tissue density maps for each tissue type (GM,WM,VN) using
the RAVENS(Davatzikos et al., 2001) approach. For the experiment detailed next we
obtained these RAVENS maps directly from the authors of (Davatzikos et al., 2011). A total
of 278 GM, WM and ventricular tissue density maps were available for our experiment. The
processed dataset contained images corresponding to 152 controls and 126 Alzheimer’s
patients. All three tissue density maps of a particular subject were concatenated into a long
vector xi for analysis. Actual permutation tests were then performed to experimentally
generate the null distributions described in Section 2. The analytic null distributions were
predicted using equation (21). We then trained an SVM model using the original labels and
compared its’ components to the pre-computed experimental and analytic null distribution to
obtain analytic and experimental p-value maps. Figure 7 presents a 2D axial section of these
p-maps as well as a scatter plot(using the full 3D image) of p-values obtained
experimentally vs those obtained analytically. Figure 8 presents a visual comparison of the
p-maps in 3D by thresholding p-maps at several arbitrarily chosen thresholds. Figure 8
shows that the analytic and experimental p-maps are visually indistinguishable.
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3.3. Lie detection data(fMRI)
Functional data were preprocessed to obtain parameter Estimate Images (PEIs) as described
in (Davatzikos et al., 2005). A total of 44 PEIs, half of which consisted of lying responses
and half of which consisted of truth-telling responses were used for the analysis. These data
were obtained directly from the authors of (Davatzikos et al., 2005). Null distributions were
obtained using analytic and experimental permutation testing as before. An SVM was
trained using the actual labels as well. A section through the analytic and experimental p-
maps is presented in 9. The scatter plot of analytic vs experimental p-values generated using
the entire 3D volume is also shown in 9. This plot shows that the approximation is less
accurate here as compared to the simulated data or the Alzheimer’s disease data. This is
possibly due to the relatively smaller sample size. However, despite the relatively small
sample size of 44 in this experiment it is still visually difficult to tell the difference between
theoretically predicted and experimentally obtained p-maps (figure 10).

3.4. A note on classifier accuracies
The classifiers trained above are linear classifiers trained on high dimension low sample size
data. On the training set such classifiers are bound to be a 100% accurate. The generalization
accuracy of these classifiers can be estimated using leave one out cross validation accuracy
(LOOCV) (Vapnik, 1995)(Burges, 1998)(Bishop, 2007). The LOOCV accuracy of the linear
SVM classifier for the simulated dataset described in section 4.1 was 100%. For the
Alzheimer’s disease dataset LOOCV accuracy was 86% and for the lie detection dataset it
was 84%.

4. Experiments and results: Quantitative analysis
An important question that is left unanswered by the qualitative analysis is that of how the
performance of the approximation deteriorates. Specifically the effect of sample size and
dimensionality on the approximation is not outlined by the experiments described above.
Another interesting aspect is the study of how the number of permutations done in the
experimental permutation tests affect the convergence of the approximation. In this section
we present experiments to gain some insight into these questions. These experiments
required the performance of empirical permutation tests with images of different
dimensionality and datasets of different sizes all of which had to be generated stored and
loaded from memory on a large parallel cluster. As such an enormous amount of
computational time and has gone into producing figures 14–16.

For all experiments presented here we have computed p-maps using the analytic
approximation as well as empirical permutation testing. We use the average per voxel error
between the two p-maps as a measure of deviation of the approximate from the empirical
permutation testing result. Note that such a normalized measure of difference between
images is especially useful while studying the effect of dimensionality on the convergence
of the approximation. All three datasets described in the previous section have been used for
experiments performed in this section. In case of the Alzheimer’s disease dataset we
randomly chose a 100 patients and a 100 subjects instead of using the entire data. This was
done because it made it simpler to set up the experiment studying the effect of sample size.
We describe each set of experiments in more detail next.

4.1. Effect of number of permutations
We ran empirical permutation tests with 1500 permutations using all three datasets. We
stored the models corresponding to each permutation to disk. To obtain the approximation
accuracy for (randomly picked) one thousand permutations all we had to do was load results
of 1000 of the stored models, compute the empirical p-map and compare it with its analytic
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counterpart. We used this approach to generate figure 14. Figure 14 shows the average per
voxel error in p-values obtained using actual permutation tests and the analytical
approximation for all three datasets. Figure 14 indicates that the error reduces exponentially
as the number of permutations increase. We need to perform experiments with an even
larger number of permutations to confirm this trend. However, such experiments require a
substantial amount of computational power and storage space. We plan to perform these
experiments as a part of future work.

4.2. Effect of reducing dimensionality
In this section, we address the impact of data dimensionality on the accuracy of the proposed
approximation. To generate data of varying dimensionality we subsampled the imaging data
at several different subsampling rates. Each subsampling rate yielded a new dataset whose
dimensionality was much smaller than the original data. Then we ran empirical permutation
tests (1000 random permutations) with SVMs on this subsampled data. We also computed
the analytical approximation for each of the subsampled datasets. We plot the per voxel
error rate between the analytic approximation and experimental permutation testing in figure
15. It can be seen that reduced dimensionality leads to a higher error rate. This indicates that
the approximation works better when the data dimensionality is higher. We expected this
intuitively, given that the approximation of an SVM by an LS-SVM is better when the
dimensionality is higher. The experimental result simply confirms this intuition. From figure
15 one may speculate that increased dimensionality leads to an exponential decay in the
approximation error. However, this needs to be confirmed by future theoretical analysis.

4.3. Effect of reducing sample size
We have based the proposed analytic approximation on the central limit theorem. Hence we
expect that an increased sample size would improve approximation accuracy. To understand
the effect of sample size we consecutively halve the sample size and re-run both, the
empirical permutation tests (1000 random permutations) and the analytic approximations.
For instance, if we had 100 patients and 100 controls, we ran experiments with the whole
dataset, a dataset with 50 patients and 50 controls, 25 patients and 25 controls. In case of the
Alzheimer’s and fMRI datasets we added an extra point (75% of the full sample size) to
better map the effect of sample size in this range. Figure 16 shows the variation of
approximation accuracy with sample size for all three datasets that we ran experiments on.
As expected, a larger sample size leads to higher accuracy. Note that even for sample sizes
close to 20 the error in p-values is small (order of 10−5) for the fMRI data. In the
Alzheimer’s disease data where the dimensionality was substantially higher, the error is
always in the order of 10−6. Just like dimensionality, increased sample size also seems to
produce an exponential reduction in the error of approximation. However we will need
further theoretical work to confirm this.

5. Experiments and results: Comparison with prior art
The experiments presented above study the validity of the approximation in relation to
actual permutation testing. We present some simple experiments in this section that show
that permutation testing using SVMs weight vector coefficients can indeed detect
multivariate patterns and that using permutation tests is better than using SVM weights
directly. We also contrast the permutation testing based approach with some of the other
popular multivariate approaches based on sparsity.

5.1. Experiment comparing univariate analysis and permutation testing analysis
An important aspect of SVM weight based permutation testing is that it can detect
multivariate patterns that univariate analysis will miss. This is despite the fact that we are
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performing hypothesis testing on individual hyperplane coefficients. We demonstrate this
behavior with a simple experiment on simulated data. To simulate a multivariate effect we
constructed labels and data that could only be separated using two variables combined.
Thus, we simulated a bivariate pattern. Figure 11 (left) shows the simulated bivariate effect.
These bivariate variables which are represented by the red and green columns of Figure 11
are repeated column wise over and over again to simulate a differential effect between
positively and negatively labeled samples. Using this process we generated a hundred
relevant features. Further, we added 400 noise variables that had no relation with the labels
to obtain the final dataset. Figure 11 (right) illustrates the scheme of simulation. The matlab
code used to generate the simulated data is available online as a part of the supplementary
materials. See section 8 for details. Figure 12 (top-left) shows p-values obtained by running
feature by feature univariate t-tests. Figure 12 (top-right) shows p-values obtained using
SVM weight based permutation tests. Figure 12 (bottom) shows SVM weights obtained by
running a linear SVM using the data and the original labels. The figures show that the p-
values generated by univariate tests are in the range of [0.25 0.65] for all simulated bivariate
features. The p-values assigned by univariate testing to the remaining noise features also lie
in the same range. As opposed to this, p-values generated by permutation testing are in the
range [0 0.05] for relevant features. This range is much lower than the p-values the method
assigns to the irrelevant features. The weight values associated by the linear SVM with the
relevant features are not necessarily higher (or lower) than the weight values associated with
irrelevant features. Thus, the proposed permutation testing can detect multivariate patterns
that univariate testing (or SVM weight vector thresholding) might miss.

5.2. Experiment to investigate the multiple comparisons issue in comparison to univariate
analysis

This experiment is designed to show that false positive detection rate for SVM permutation
testing is much lower than that of univariate testing. For this experiment, we constructed a
simulated dataset as follows. We constructed labels and data that could be separated using
only one variable. We repeated the univariate effect variables over and over to obtain
sufficient dimensionality. This constitutes a multivariate pattern identifiable using univariate
analysis. This pattern of relevant features spanned over 150 features. As before we added a
large number of irrelevant noise variables that had no relationship with the labels. The
simulated dataset contained a total of 100 feature vectors (50 labeled +1 and 50 labeled −1)
of dimensionality 2000. We introduced the simulated univariate effect in 151 features. The
matlab code used to generate the simulated data is provided online as a part of the
supplementary materials. See section 8 for details. We performed univariate t-tests feature
by feature to obtain one p-value per feature. We then plotted these p-values in Figure 13
(left). We also performed SVM permutation tests using the procedure described in the paper
and plotted the resulting p-values in Figure 13 (right). Figure 13 shows that univariate, as
well as the proposed multivariate analyses, recover the features of interest. However, the
univariate analysis machinery has a far higher rate of false positive detection as compared to
permutation testing based analysis. The possible reasons for this behavior are further
discussed in the discussions section.

5.3. Experiment for the comparison of permutation testing with sparsity based multivariate
inference methods

A substantial body of literature has been developing around so called sparse methods for
multivariate image analysis. For instance, methods described in (Sabuncu and Van Leemput,
2011; Batmanghelich et al., 2012; Ryali et al., 2010; Gaonkar et al., 2011) attempt to apply
sparsity to make interpretations/inferences. This is a growing body of literature and
comparing permutation testing with every possible method out there is beyond the scope of
this paper. A large fraction of sparse methods use L-1 norm minimization. Hence we
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compared the proposed method with two methods that we believed to be representative of
this literature, namely the LASSO and the elastic net. The data simulation used was the same
as for section 5.2. The matlab code for generating this data is available in the supplementary
materials. See section 8 for more details. We ran LASSO for variable selection repeatedly
with decreasing parameter values until the procedure started picking up false positives
(started behaving like ordinary unregularized regression). We also ran elastic nets with
several parameter settings, recorded the results and compared with the SVM permutations
based method. We tabulated results for the LASSO in table 9 and the results for the elastic
net in table 9. From the tables, we can see that the LASSO can never find more features than
the number of samples. This is a known limitation of the LASSO and one of the primary
reasons for using Elastic nets. Selection of the minimum number of features using cross
validation will yield an answer of 1. This alone is reason enough to avoid using the LASSO
in neuroimaging analysis. We wish to find regions associated with diseased pathology and
not eliminate them. The SVM based permutation approach does not suffer from this
limitation of the LASSO. The elastic net remedies the limitation of the LASSO and can find
all the features introduced for certain parameter values. However, it still suffers from the
parameter selection problem. In the simulated case, where relevant features are highly
correlated cross validation based parameter selection would give the same accuracies
whether we select one relevant feature or 151 relevant features. In such a case cross
validation based parameter selection fails, as well. Again SVM based permutation tests do
not suffer from these limitations.

6. Discussion
In this section we first provide a brief synopsis of the paper followed by a discussion of
some of the advantages of the permutation testing approach as compared to classical
methods. Then we discuss some implications of the approximation on multiple comparisons
testing. Finally, we end the section with a discussion of possible future work.

6.1. Synopsis
We have described a fast and efficient way to approximate the results of computationally
intensive permutation testing. We can apply this technique to perform permutation testing
quickly in order to interpret SVM models and to derive image wide statistical significance
maps. While people have used SVM classifiers for distinguishing between patients and
controls on the basis of medical image data, it has been difficult to interpret the SVM model,
which the classifier uses to drive its decisions. Interpreting these SVM models is essential in
order to understand which regions/features contribute statistically significantly to the
classifier decision. Previously, obtaining such interpretations required hours or days of
computation to perform permutation tests. This work describes an analytical short-cut that
cuts this time down to a few seconds of computation. Thus, statistical inference for SVM
based multivariate image analysis is now possible in a time frame comparable to that of
univariate methods such as voxel based morphometry. This is significant because
multivariate analysis offers several advantages over univariate analysis (Davatzikos, 2004).
The most notable advantage of multivariate image analysis is that there is the possibility of
identifying networks of non proximal brain regions (multivariate patterns) that produce
pathology. This fact is not generally be true of univariate type of analysis (Davatzikos,
2004). Such network analysis is highly relevant while exploring neuroimaging data due to
the high degree of interconnectivity of several brain regions. As such, SVM based image
classification has become routine in neuroimaging and this paper aims to make it equally
easy to perform multivariate morphometric analysis using SVMs.
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6.2. The multiple comparisons problem needs to be handled differently for SVM based
permutation tests

Classical methods used for correcting for multiple comparisons used in neuroimaging
include the Bonferroni correction, false discovery rate and cluster size inference. These
paradigms were designed with multiple independent univariate tests in mind. For instance in
the experiment used to generate figure 13 the univariate t-tests are independent of each
other. In contrast to this, in SVM based permutation testing uses individual weight vector
coefficients that depend on each other. Thus, the multiple comparisons issue has to be
addressed differently for SVM based permutation testing because the coefficients wj are not
independent of each other. In fact, these coefficients are linearly dependent on each other as
long as the approximation holds. To see this, note that (as long as subjects are linearly
independent of each other):

(22)

Thus, there must exist atleast m ’independent’ rows in the matrix C. Let Cind ∈ ℝm×m be a
matrix formed using these independent rows. Also, let wind ∈ ℝm contain the weight vector
coefficients corresponding to the rows chosen from C to generate Cind. Then for any
permutation we have:

(23)

Since such a Cind would be full rank and square. Hence one could invert it to have:

(24)

Now using (7) and (5) we can say:

(25)

C does not change from one permutation to the next. Neither do the locations of wind in w.
This maintains linear dependence between coefficients across models trained using different
sets of permuted labels. Thus, at most m components of the vector w can be considered to be
independent of each other. Further, equation (5) uses information from the entire set of
images to derive every coefficient w. Thus, as noted before a statistical test performed on a
specific coefficient considers multivariate information, and is not a univariate test. This
dependence structure makes the application of traditional correction methods to p-values
obtained from SVM permutation testing excessively conservative. This dependency might
be a possible explanation for figure 13. It is important to note that the above mentioned
theory does not solve the multiple comparisons issue. It merely hints at the fact that multiple
comparisons for SVM based permutation testing might need to be dealt with in a manner
different from standard univariate multiple control procedures.

6.3. Extensions to other multivariate methods
Future work also needs to address the possibility of such approximations in case of other
linear as well as nonlinear classifiers. Often, in case of SVMs nonlinear kernel definitions
can be interpreted as solving (1) after projecting the data from the original low dimensional
to a kernel specific high dimensional space. If the theory, developed above holds in the
kernel specific high dimensional space then it should be possible to develop a theoretical
approximation to permutation testing using nonlinear SVMs.
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We have not addressed this potential extension here, but it will be part of future work.

Clinically, SVM based regression is gaining importance. SVM regression can be used to
predict clinical scores and variables like age directly from brain images. It is crucial to note
that the above approximation to permutation testing strictly applies only in the case of SVM
classification. An extension to SVM regression if possible is non trivial and is a definite
topic of future development.

Another avenue of future work lies in expanding this work to dictionary learning analysis.
SVM analysis is not well suited for exploring data heterogeneity. For instance, suppose we
had a hypothesis that two separate brain networks that are acting together to produce an
effect. Permutation testing with SVMs can only detect a single network. Dictionary learning
methods like independent components analysis (ICA) can reveal the existence of these
disparate networks. FMRI analysis routinely uses these methods. However, just as in SVMs,
apart from permutation tests there exists no way to interpret the results of dictionary
learning. Hence, it would be useful to develop and apply some variant of the above
technique in this context, as well.

7. Conclusion
In conclusion, we have shown in this article that there exists an analytical approximation to
permutation testing using SVMs if we are using high dimensional medical imaging data.
Further, the analytical computation can be completed in a small fraction of the time it would
take in order to perform a permutation test. This approximation can thus save a tremendous
amount of time and allow for a faster interpretation of SVM models in medical imaging.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Support vector machines (SVM) use multivariate imaging information for
diagnosis.

• Permutation tests using SVM models can be used for population wide
morphometric analysis

• Permutation testing is computationally expensive

• We approximate permutation testing results using an inexpensive analytic
shortcut

• We validate and analyze the approximation using experiments with real and
simulated data
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Figure 1.
Illustration of the SVM concept in two dimensions
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Figure 2.
Illustration of the permutation testing procedure
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Figure 3.
For most permutations the number of support vectors in the learnt model is almost equal to
the total number of samples (a) simulated dataset(b) real dataset with Alzheimer’s patients
and controls (c) real dataset with liars and truth tellers
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Figure 4.
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Figure 5.
Results of experiments with simulated data (a)A sagittal section through p-maps obtained
from experimental and analytical permutation tests (b) A scatter plot of p-values from
experimental and analytical p-value maps (c) Regions where simulated atrophy was
introduced
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Figure 6.
Simulated data: Experimental and analytical p-value maps thresholded at arbitrary p-values
(3D)
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Figure 7.
Results of experiments with simulated data (a)An axial section through p-maps obtained
from experimental and analytical permutation tests (b) A scatter plot of p-values
experimental and analytical p-value maps
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Figure 8.
Alzheimers disease: Experimental and analytical p-value maps thresholded at arbitrary p-
values (3D)
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Figure 9.
Results of experiments with fMRI lie detection data (a)An axial section through p-maps
obtained from experimental and analytical permutation tests (b) A scatter plot of p-values
experimental and analytical p-value maps
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Figure 10.
fMRI lie detection data: Experimental and analytical p-value maps thresholded at arbitrary
p-values (3D)
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Figure 11.
(Left) Bivariate pattern simulated using two features, (Right) Illustration of simulation
procedure
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Figure 12.
(Top-Left) p-values generated by univariate t-tests,(Top-Right) p-values generated by SVM
based permutation tests. (Bottom)
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Figure 13.
(Left) p-values generated using univariate tests which detect the effect and many false
positives (Right) p-values generated using SVM based permutation tests
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Figure 14.
Approximation accuracy and number of permutations
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Figure 15.
Approximation accuracy and dimensionality
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Figure 16.
Approximation accuracy and dimensionality
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