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Assembling a large genome using next generation sequencing
reads requires large computer memory and a long execution time.
To reduce these requirements, we propose an extension-based
assembler, called JR-Assembler, where J and R stand for “jumping”
extension and read “remapping.” First, it uses the read count to
select good quality reads as seeds. Second, it extends each seed by
a whole-read extension process, which expedites the extension
process and can jump over short repeats. Third, it uses a dynamic
back trimming process to avoid extension termination due to se-
quencing errors. Fourth, it remaps reads to each assembled se-
quence, and if an assembly error occurs by the presence of a
repeat, it breaks the contig at the repeat boundaries. Fifth, it ap-
plies a less stringent extension criterion to connect low-coverage
regions. Finally, it merges contigs by unused reads. An extensive
comparison of JR-Assembler with current assemblers using data-
sets from small, medium, and large genomes shows that JR-Assem-
bler achieves a better or comparable overall assembly quality and
requires lower memory use and less central processing unit time,
especially for large genomes. Finally, a simulation study shows that
JR-Assembler achieves a superior performance on memory use and
central processing unit time than most current assemblers when the
read length is 150 bp or longer, indicating that the advantages of JR-
Assembler over current assemblers will increase as the read length
increases with advances in next generation sequencing technology.

Short read sequencing (SRS) platforms, such as HiSeq 2500,
have much higher throughputs and much lower costs than

traditional Sanger sequencing. However, genome assembly is
more difficult using SRS data than using Sanger data because the
amount of SRS data are huge [≥100 giga base pairs (Gb) per run]
and SRS reads (100∼250 bp) are much shorter than Sanger reads
(∼1,000 bp).
Most assemblers for Sanger data apply the overlap–layout–

consensus (OLC) approach (1). This approach is not suitable for
SRS data because the run time quadratically increases with the
number of reads. The long run time problem can be alleviated by
the indexing technique, as in Extract DENovo Assembler (Edena)
(2). However, Edena and string graph assembler (SGA) (3) are
perhaps the only two OLC assemblers for SRS data.
Currently, the two major types of SRS assemblers are exten-

sion-based and de Bruijn (or Eulerian) graph-based. Extension-
based assemblers [e.g., Short Sequence Assembly by K-mer
search and 3′ read Extension (SSAKE)] (4, 5) start from a seed
read and extend it by other reads that overlap with the seed.
Without constructing a layout graph, this approach saves both
computational time and memory. However, it is sensitive to se-
quencing errors and repeats and usually generates a fragmented
assembly. The de Bruijn graph approach is fast at the step of
finding overlaps between reads. It decomposes a read into con-
secutive k-mers, which are represented by nodes connected by
edges in a graph. By scanning all reads once, it rapidly finds the
overlaps between all reads because overlapping reads have the
same k-mer. The resulting graph contains all characteristics of
a genomic sequence. The constructed graph, however, has to be
reduced using various algorithms and heuristic rules to eliminate
sequencing errors and to resolve repeats. This approach is
adopted by several leading assemblers for SRS data, including

Assembly By Short Sequences (ABySS) (6), ALLPATHS-LG
(7), EULER-USR (8), SOAPdenovo (9, 10), and Velvet (11).
The de Bruijn graph approach requires more memory than

both the OLC and the extension approach because it needs to
save the entire graph in memory for assembly. To handle a large
genome such as a 3 Gb genome, ALLPATHS-LG and SOAP-
denovo (7, 9, 10) have been carefully engineered, but most other
de Bruijn graph assemblers cannot handle large genomes when
the memory is limited. Note that the memory requirement
increases dramatically as the read length increases, which will
occur as the sequencing technology advances. Although cor-
recting errors in sequencing reads can reduce the graph size and
increase the assembly quality, the execution time still increases
with the total read count and the read length. Therefore, bal-
ancing the assembly quality, memory requirement, and execution
time is a major challenge for de novo assembly.
In this paper, we propose a unique extension-based assembler

for SRS data, called JR-Assembler (J stands for jumping ex-
tension and R for read remapping). We revive the extension-
based approach because it is straightforward and economical in
run time and memory use. A key concept in our approach is that
instead of a base-by-base extension, JR-Assembler extends a
read by other whole reads—that is, it makes a jump. This ap-
proach speeds up extension and can readily jump over small
repeats. Second, it includes a dynamic back trimming process,
so that the extension can effectively avoid termination by se-
quencing errors. Finally, to avoid partial repeat resolutions, JR-
Assembler remaps reads to each assembled sequence, and if an
error is found due to the existence of repeats, it breaks the repeat
sequences at their boundaries and reconnects the broken contigs
at the stage of contig merging. We conducted performance
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comparisons of many assemblers using many datasets from
genomes of various sizes and using simulation. For large ge-
nomes, JR-Assembler was more efficient in memory use and run
time than current SRS assemblers, while achieving at least
a comparable genome assembly quality. For small- and medium-
size genomes, JR-Assembler performed better than most current
SRS assemblers. JR-Assembler is freely available at http://jr-
assembler.iis.sinica.edu.tw/.

Results
Overview of JR-Assembler. JR-Assembler runs in five steps: raw
read processing, seed selection, seed extension, repeat detection,
and contig merging (Fig. 1). First, all reads containing any base
“N” or any low-complexity region are filtered out. Second, it
selects “good” reads as seeds using the read count—that is, the
number of identical reads in the data. Third, JR-Assembler uses
a jumping extension, including many whole reads at a time (Fig.
2). Moreover, to deal with sequencing errors at read tails, JR-
Assembler uses back trimming to remove low-quality nucleotides
at the 3′-end of a read to facilitate extension (Fig. 3). Fourth,
when an extension is terminated, JR-Assembler checks whether
a misextension was made because of the existence of a repeat. If
a misextension occurs, it identifies the boundaries of the repeat
and breaks the sequence at the boundaries (Fig. 4). The three
steps of seed selection, seed extension, and misextension de-
tection are repeated until no unused seed remains. Finally, JR-
Assembler takes care of low-coverage regions by applying a less
stringent extension procedure to merge the assembled sequences.
JR-Assembler also incorporates a scaffolding program, SSAKE-
based Scaffolding of Pre-Assembled Contigs after Extension
(SSPACE) (12), for users to construct scaffolds. We will describe
each step in detail in Materials and Methods.

Performance Comparison for Assembling the Escherichia coli Genome.
We used the SRS data (10.3 million PE 101 bp reads, 450× cov-
erage) of the E. coli genome, which is small, so we could effi-
ciently scan a large parameter space to optimize each assembly

for a fair comparison (Table S1). We compared JR-Assembler
with ABySS (6), Edena (2), SOAPdenovo (9), Taipan (13), and
Velvet (11). For each assembler, we aligned the contigs to the
reference genome (retrieved from GenBank with accession
no. NC_000913) using BLAST-like alignment tool (BLAT)
(14) and checked misassemblies (see Table 1 for methods). For
all methods compared, the misassembled contigs were broken at the
junctions of misassemblies. The resulting pieces were also included
in the calculation of genome coverage.
Table 1 shows the assembly statistics by the six assemblers. JR-

Assembler was the best in most assembly metrics, including the
number of contigs, the maximal contig length, the N50 length,
the number of misassemblies, and the memory use. JR-Assem-
bler used only ∼5.1 gigabytes (GB) of memory, whereas the
others required 11–22 GB. The run times of JR-Assembler,
Taipan, and Velvet were all under 30 min, whereas SOAPdenovo
only required 7 min because it ran in multiple threads; the other
assemblers all ran in a single thread (Velvet had not then pro-
vided the multithread function yet when the experiment was
conducted). The genome coverages by Taipan, Velvet, and ABySS
contigs were slightly higher than that generated by JR-Assembler.
However, Velvet made three misassemblies.
We found that JR-Assembler could handle well low-coverage

regions in the E. coli genome assembly. We remapped the pro-
cessed reads to the E. coli reference genome and calculated the
coverage at each base. A low-coverage region was defined as
a region in which the coverage at each base was in the bottom
1% of the ranked coverages. In total, 386 low-coverage regions
were identified. JR-Assembler had a higher ratio (89.1%) of
contigs in low-coverage regions than Velvet (87.8%) and
SOAPdenovo (79.5%). Two examples are shown in Fig. S1.

Performance Comparison for Assembling Small and Medium Genomes.
The first dataset consists of a bacterial genome [Streptomyces
roseosporus, genome size 7.7 mega base pairs (Mb)] and three
fungal genomes (Neurospora crassa, Plasmodium falciparum, and
Saprolegnia parasitica, genome sizes 37.1, 22.9, and 53.1 Mb,
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Fig. 1. Workflow of JR-Assembler. JR-Assembler runs in five steps. (A) Raw read processing. Input reads containing any N or a low-complexity region are dis-
carded. Then, identical reads are collapsed into unique reads and stored in a table in alphabetical order. (B) Seed selection. The unique reads are ranked by read
count (from low to high). Unique reads with medium read counts are selected as seeds for extension. (C) Seed extension. A seed is extended at the 3′ and 5′
directions by jumping extension. (D) Repeat detection. When an extension is terminated, JR-Assembler determines if a misassembly has occurred due to the
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peated until no unused seed remains. (E) Contig merging. After all seeds are used, JR-Assembler merges the contigs that can be connected by unassembled reads.
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respectively). We assembled the datasets of S. roseosporus and
the three fungal genomes by the same six assemblers as above.
No assembler ranked highest among all metrics (Table 2). Thus,
we proposed a ranking approach to evaluate the overall per-
formance for an assembler. For each assembly metric and
dataset, we marked the top two values (in bold italic in Table 2).
We then counted the number of marked values as the voting
score for an assembler. The scores for JR-Assembler, Velvet,
SOAPdenovo, ABySS, and Edena were 22, 15, 9, 8, and 3, re-
spectively. Thus, JR-Assembler had the best overall perfor-
mance. We did not show the results by Taipan because it
produced no output on the four datasets.
The other dataset is the one used in the Genome Assembly

Gold-standard Evaluations (GAGE) assembly comparison (15)
and consists of two bacterial genomes (Staphylococcus aureus
and Rhodobacter sphaeroides, genome sizes of 2.9 and 4.6 Mb,
respectively) and human chromosome 14 (88.3 Mb). In the
GAGE study (15), all reads were error-corrected before assembly
by ABySS, ALLPATHS-LG, Bambus2, Celera Assembler with the
Best Overlap Graph (CABOG), Maryland Super-Reads Celera
Assembler (MSR-CA), SGA, SOAPdenovo, and Velvet. For a
fair comparison, we also obtained these corrected datasets for
use in JR-Assembler. Because the two bacterial genomes and
human chromosome 14 had been assembled using Sanger data,
each of them could be used as a reference assembly. We used the
assembly evaluation script provided by GAGE to assess various
assembly metrics. Briefly, the GAGE script aligns contigs to the
reference genome and calculates the corrected N50 length by
breaking contigs at misassembled sites.
Table 3 shows the assembly metrics for JR-Assembler and eight

others; the statistics for these eight assemblers were taken from

the GAGE study (15). For the S. aureus dataset, ALLPATHS-LG
and JR-Assembler achieved the longest corrected N50 lengths
(66.2 and 66.1 Mb, respectively). SOAPdenovo achieved a corrected
N50 length of 62.7 Mb, but made more misassemblies. Moreover,
its ratio of the corrected N50 length to the uncorrected length
(0.22) was much lower than those of ALLPATHS-LG (0.68) and
JR-Assembler (0.65). For the R. sphaeroides dataset, JR-Assembler
achieved the largest corrected N50 length and a high ratio (0.80)
of the corrected N50 length to the uncorrected length.
For the human chromosome 14 dataset, CABOG, ALLPATHS-

LG, and JR-Assembler were the top three assemblers in terms of
the corrected N50 length (23.7, 21.0, and 18.2 Mb, respectively),
whereas the corrected N50 length of the other assemblers were
less than 10 Mb. We inspected the contigs that were connected
by CABOG and ALLPATHS-LG but were broken by JR-As-
sembler. We found that 85% of the gaps between these JR-As-
sembler contigs contained low-complexity regions (all <200 bp),
as detected by DustMasker (16).

Performance Comparison for Assembling Larger Genomes. We used
four datasets. The mouse and human datasets had 4.4 and 3.2
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billion 101 bp reads, respectively. We compared our assemblies
of these two genomes with those obtained using SOAPdenovo
and ALLPATH-LG (7). We also obtained datasets of two other
vertebrates, Metriaclima zebra (fish; 1.4 Gb) and Sorex araneus
(shrew; 2.9 Gb); they had 1.27 and 4.23 billion 101 bp reads,
respectively.
We compared JR-Assembler with ALLPATHS-LG, SOAP-

denovo, and Velvet, which are three leading assemblers that can
assemble vertebrate-sized genomes (∼3 Gb). We first used the
base correction tool in the SOAPdenovo package to correct the
errors in mouse and human reads, using default parameter val-
ues. Because many characters at the first fifth base in the data
were Ns and the last 10 bases were often of low quality, we
trimmed the first five bases and the last 10 bases from each read.
We then assembled the processed reads by JR-Assembler using
its default parameter values. For the mouse dataset, 2.24 Gb
were assembled by JR-Assembler, 2.28 Gb by ALLPATHS-LG,
and 2.26 Gb by SOAPdenovo; for the last two assemblers, we

downloaded their assembled results and counted the total un-
ambiguous bases of each assembly. The N50 length for JR-
Assembler was 16 kilobases (kb), the same as generated by the
ALLPATHS-LG and SOAPdenovo assemblies (7). For the hu-
man dataset, ∼2.25 Gb were assembled by JR-Assembler, 2.61
Gb by ALLPATHS-LG, and 2.38 Gb by SOAPdenovo. The
N50 length (16 kb) of JR-Assembler was lower than that of
ALLPATHS-LG (24 kb), but higher than that by SOAPdenovo
(5.5 kb), as provided by ref. 7.
In terms of memory use, JR-Assembler used 418 and 433 GB

of memory for the human and mouse datasets, respectively. The
exact memory use by ALLPATHS-LG and SOAPdenovo were
not documented in ref. 7, but were smaller than 512 GB. About
the execution time, JR-Assembler took 1.5 central processing unit
(CPU) wk to complete each genome starting from base correction
to assembly completion. ALLPATHS-LG took 3 and 3.5 wk to
complete the assemblies of the human and mouse genomes, re-
spectively, whereas SOAPdenovo only took ∼3 d for the mouse
genome (Dell R815, 48 processors, 512 GB), as documented in
ref. 7. For ALLPATHS-LG and SOAPdenovo, the time recorded
was the run time rather than the CPU time. As both ALLPATHS-
LG and SOAPdenovo run in multiple threads, the sum of the
CPU times for all threads should be longer than the run time.
For almost all current assemblers, assembling large genomes

consumes high amounts of CPU time and memory. Therefore, for
the datasets of M. zebra and S. araneus, we only compared JR-
Assembler with SOAPdenovo and Velvet. As these two genomes
have no reference sequence available, we only considered the
memory requirements by these assemblers. In all three assemblers,
we trimmed the original raw reads to 76 bp to remove the poor
quality bases at read ends and filtered out the reads with one or
more Ns. In the assembly of theM. zebra genome, 1.27 billion raw
101 bp reads were used. The total numbers of assembled bases by
JR-Assembler and SOAPdenovo were 667.8 and 649.8 Mb, and
the N50 lengths were 4.5 and 2.2 kb, respectively. In terms of
memory use, JR-Assembler required only 160 GB, whereas
SOAPdenovo required 340 GB. Velvet did not output any result
due to a memory allocation error during assembly.
In the assembly of the S. araneus genome, 4.23 billion raw 101

bp reads were used. Running on a server with 1 TB of memory,
only JR-Assembler finished the assembly (it used 562 GB) and
produced an assembly with a total of 2.15 Gb assembled bases
and an N50 length of 3.6 kb. Both SOAPdenovo and Velvet ran
out of memory (1 TB). Therefore, JR-Assembler handles a much
larger genome than either SOAPdenovo or Velvet.

Memory Use and CPU Time for Assembling Longer Sequencing Reads.
As the SRS technology advances, reads will increase in length.
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Fig. 4. Repeat detection and resolution. (A) P is a precontig covered by a set
of full-length supporting reads Sw and two sets of partial-length supporting
reads S1 and S2. Blue parts in S1 and S2 indicate the regions that can be
aligned with the corresponding regions in P, and the parts in red indicate
that they cannot be aligned with P. Two possible genomic arrangements,
B and C, can explain the precontig P. (B) The precontig P is fully consistent
with the genomic region (P1–P2–P3). (C) The precontig P is only partially
consistent with two genomic regions (P1–P2–Q3 and Q1–P2–P3), although
each of the two local regions is supported by a subset of full-length reads.
(D) Because the true genomic arrangement is uncertain because of the re-
peat P2, JR-Assembler identifies the repeat boundaries (Xp1 and Xp2) by
finding a unique read rb that satisfies the following conditions: (i) rb is ex-
tendable, (ii) over 90% of prefix or suffix bases match to P perfectly, and (iii)
the remaining bases contain at least one mismatch to P. (E) JR-Assembler
breaks P into three separated contigs: P1, P2, and P3.

Table 1. Assembly statistics of the E. coli dataset by different assemblers

Assembler No. of contigs* Total†, Mb Max‡ Mean§ N50¶
Misassembled

contigsjj Time, min Memory, GB

JR-
Assembler

192 4.53 237,952 23,571 48,673 0 23 5.1

Edena 413 4.53 63,737 10,963 22,264 0 172 13.7
Taipan 345 4.53 135,114 13,124 25,506 0 11 11.8
Velvet 216 4.54 138,645 21,019 43,998 3 (38k) 26 19.0
ABySS 249 4.54 138,115 18,223 36,565 0 75 22.0
SOAPdenovo 285 4.53 117,147 15,904 31,136 0 7 19.8

*Contigs of length <300 bp were not counted.
†
“Total” refers to the total number of bases in the contigs.

‡
“Max” and “Mean” refer to the length of the longest contig and the mean length of contigs, respectively.

§N50 is the size of the smallest contig such that 50% of the assembled bases are in the contigs of size equal to or larger than the
N50 value.
¶A contig is misassembled if it cannot be aligned in full-length to the reference genome.
jjThe proportion of the reference genome covered by the aligned contigs.
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Therefore, we studied whether JR-Assembler will use memory
better than other assemblers as read length increases. We ob-
tained the Caenorhabditis elegans (nematode worm) genome
from the University of California Santa Cruz (UCSC) Genome
Bioinformatics Site (http://genome.ucsc.edu/) and simulated four
SRS datasets with read lengths of 100, 150, 200, and 250 bp,
respectively. We simulated 100 million reads for each dataset
and assumed a uniform distribution of reads across each ge-
nome. The error rate was set to 0.1% for the first half of the read
bases and quadratically increased from 0.1% to 0.2% for the
second half of the read bases. Due to the special input library
requirement by ALLPATHS-LG, we set 80% of them as frag-
ment pair-end (PE) reads and 20% of them as short-jump PE
reads. For each read length (l), the fragment PE reads were
generated by randomly selected sequences of length 1.8 × l from
the C. elegans genome, and for each PE pair, read 1 and read 2
were extracted from the 5′- and 3′-ends of the selected sequence,
respectively. For the short-jump PE reads, we randomly selected
3 kb sequences from the genome and each read 1 and read 2
were also retrieved from the 5′- and 3′-ends of the selected 3 kb
sequence, respectively. Here, we used the PE data for the
comparison because ALLPATHS-LG did not provide a stand-
alone program only for contig assembly. Thus, for a fair com-
parison, all of the compared assemblers were executed with the

default scaffolding functions, and JR-Assembler used SSPACE
(12) to scaffold the assembled contigs.
We recorded the maximum memory requirements and total

CPU times of JR-Assembler, ALLPATHS-LG, SOAPdenovo,
SOAPdenovo2, and Velvet; the k-mer sizes of the last three
assemblers were both set to 70% of the read length, and the li-
brary lengths were separately set 1.8 × l and 3,000 bp, respec-
tively, where l is the read length. For all four read lengths,
JR-Assembler required less memory use than ALLPATHS-LG,
SOAPdenovo, and Velvet but larger than SOAPdenovo2 (Fig. 5).
When the read length increased to 200 bp, SOAPdenovo and Vel-
vet required more than 256 GB, thus requiring a server with >256
GB of memory. For the cases of 200 and 250 bp, ALLPATHS-
LG required 126.9 and 159.9 GB, whereas JR-Assembler re-
quired only 59.8 and 71.3 GB, respectively. The memory uses of
SOAPdenovo2 were lower than those of the other assemblers
tested (Fig. S2A).
In terms of CPU time, ALLPATHS-LG required ∼135.2,

281.4, 445.8, and 560.7 h and SOAPdenovo2 required ∼12.6,
25.9, 51.4, and 116.1 h to complete the cases of l = 100, 150, 200,
and 250 bp, respectively (Fig. 5). In contrast, JR-Assembler only
required 2.6, 3.1, 3.6, and 4.4 h to complete for these cases (Fig.
5, Fig. S2B), indicating that JR-Assembler is potentially greater
than 100 times and 10 times faster than ALLPATHS-LG and

Table 2. Assembly statistics of S. roseosporus, N. crassa, S. parasitica, and P. falciparum

Species Assembler No. of contigs Total, Mb Max Mean N50 Time, min Memory, GB

S. roseosporus JR-Assembler 1,189* 7.68* 40,501 6,461* 11,374* 99* 26.1*
ABySS 1,127* 7.73* 55,078* 6,859* 12,499* 325 67.0
Velvet 1,192 7.49 61,423* 6,286 11,075 166 59.5
SOAPdenovo 2,453 7.65 24,303 3,120 4,691 19* 34.1*

N. crassa JR-Assembler 12,244* 38.61 58,672* 3,153* 6,074 76* 14.9*
ABySS 13,420 38.05 45,381 2,835 6,350* 191 31.9
Velvet 10,187* 36.11 45,599* 3,544* 6,781* 155 30.5
SOAPdenovo 16,261 40.25* 31,423 2,475 5,029 30* 19.7*
Edena 17,083 39.95* 42,952 2,338 4,534 659 20.4

S. parasitica JR-Assembler 40,587* 46.09* 119,543* 1,135* 1,510* 172 14.1*
ABySS 52,087* 38.26 94,931* 734 740 145 24.1
Velvet 53,736 47.38* 91,073 881* 1,021* 116* 22.0
SOAPdenovo 66,456 45.59 30,400 686 712 18* 32.5
Edena 62,357 44.13 41,473 707 746 610 19.5*

P. falciparum JR-Assembler 13,352* 11.02 7,939* 825* 975* 133 9.0*
ABySS 16,658 11.80 7,934 708 826 134 26.5
Velvet 16,423* 11.91* 7,940* 725* 848* 60* 18.2
SOAPdenovo 17,424 11.93* 7,939* 684 786 7* 21.5
Edena 16,531 11.76 7,936 711 831 359 13.4*

The assembly metrics here follow those in Table 1.
*The top two best values of each assembly metrics are marked in bold italic.

Table 3. Evaluation of JR-Assembler by GAGE

Dataset Contig statistics JR-Assembler ABySS ALLPATHS-LG Bambus2 CABOG MSR-CA SGA SOAPdenovo Velvet

S. aureus Contig No. 58 302 60 109 NA† 94 252 107 162
N50 101.4 29.2 96.7 50.2 NA† 59.2 4 288.2 48.4

N50 corr.* 66.1 24.8 66.2 16.7 NA† 48.2 4 62.7 41.5
R. sphaeroides Contig No. 319 1,915 204 177 322 395 3,067 204 583

N50 48 5.9 42.5 93.2 20.2 22.1 4.5 131.7 15.7
N50 corr.* 38.3 4.2 34.4 12.8 17.9 19.1 2.9 14.3 14.5

Human chromosome 14 Contig No. 4,893 51,924 4,529 13,592 3,361 30,103 56,939 22,689 45,564
N50 36.2 2 36.5 5.9 45.3 4.9 2.7 14.7 2.3

N50 corr.* 18.2 2 21 4.3 23.7 4.3 2.7 7.4 2.1

The assembly result of JR-Assembler is compared with the statistics of the assemblers reported in ref. 15.
*N50 corr., the N50 values of correction were computed after correcting contigs by breaking them at each misjoint or each indel longer than five bases.
†NA, could not run, incompatible read lengths in one library. All N50 and N50 corr. values are all in kb.
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SOAPdenovo2, respectively, when the read length is 200 bp or
longer. Fig. 5 shows that JR-Assembler required less memory use
than ALLPATHS-LG, Velvet, and SOAPdenovo and a shorter
CPU time than the other four assemblers. Thus, JR-Assembler is
likely to further outcompete other assemblers in memory use
(except for SOAPdenovo2) and CPU time as SRS reads are
sequenced in greater length.

Discussion
Selection of Datasets and Assemblers for Comparison. To have
a comprehensive performance comparison, we considered genomes
of a wide size range and compared assemblers using different
assembly algorithms. Edena is the only SRS assembler using the
OLC approach. ALLPATHS-LG, SOAPdenovo, Velvet, and
ABySS use the popular de Bruijn graph approach. Taipan ap-
plies a hybrid strategy that combines the extension-based and
graph-based approaches. Our JR-Assembler is a unique exten-
sion-based assembler. To make a fair comparison among these
approaches, we optimized the parameter values for each as-
sembler. For the genome assemblies studied by Gnerre et al. (7),
using ALLPATHS-LG and SOAPdenovo, we directly cited
their results.

Seed Selection. In an extension-based assembler, a good seed
should not contain any sequencing errors and should not be
selected from a repeat region. A read containing sequencing
errors usually has a very low read count (17). On the other hand,
a read from a repeat region usually has a high read count be-
cause identical reads from other repeat loci are counted as well.
Thus, in seed selection we avoided reads with a very low or a very
high read count.
We had also tried two other seed selection strategies. One

strategy selected seeds randomly and the other selected reads in
a descending order of read count. We used the E. coli dataset
and selected the same number of seeds to evaluate each strategy.
We defined a good seed as a read that matches uniquely and
perfectly to the reference sequence. We found that the pro-
portion of good seeds among the seeds selected was 84% for our

proposed approach, but only 52% for the descending read count
and 20% for the random approach.

Efficiency in Repeat Resolution. The jumping extension strategy in
JR-Assembler not only speeds up assembly, but also efficiently
resolves repeats smaller than the read length. Because JR-
Assembler does extension by using whole reads, a repeat completely
embedded in reads should be unnoticed during extension. On
the other hand, a repeat buried in reads cannot be easily resolved
by a de Bruijn graph-based assembler if the k-mer is shorter than
the repeat size.
To support the above argument, we simulated reads of length

100 bp from human chromosome 22 using a window of 100 bp,
sliding one base at a time. For simplicity, we assumed no sequencing
errors. We assembled the simulated reads by JR-Assembler (overlap
range set as 30∼35 bp), Velvet, and SOAPdenovo (k-mer size set
as 51, 61, 71, 81, and 91 bp). When the k-mer size was 51 bp (half
of the read length), the N50 length of Velvet and SOAPdenovo
contigs were both <5 kb (Fig. S3), only 10% of their best N50
lengths (45.0 and 47.2 kb, respectively), which were reached only
when the k-mer size was set to 91 bp, which is close to the read
length (i.e., 100 bp). In contrast, JR-Assembler achieved the
longest N50 length (49.6 kb) using a relatively short overlapping
range, 30∼35 bp. Thus, users do not need to scan a wide range of
parameters to find the optimal assembly by JR-Assembler.
One may argue that this should not be considered a disad-

vantage of SOAPdenovo and Velvet if it can be avoided by setting
a large k-mer size. However, a large k-mer length increases the
probability that a k-mer contains a sequencing error(s), be-
coming a “false” k-mer. As a result, the graph complexity in-
creases and pruning the false graph nodes becomes more
difficult. JR-Assembler’s advantage in repeat resolution will be-
come even greater as SRS reads become longer. Unless sequenc-
ing errors are also decreased to a very low level, a de Bruijn
graph assembler will not benefit from longer reads as much
as JR-Assembler.

Scaffolding. Here, we discuss whether the longer contigs assem-
bled by JR-Assembler also result in longer scaffolds. Using the
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Fig. 5. Memory use and total CPU time of assemblers under various read lengths. Four datasets each of 100 million reads (read length 100, 150, 200, and
250 bp, respectively) are simulated from the C. elegans genome. Each dataset was assembled by JR-Assembler, ALLPATH-LG, SOAPdenovo, SOAPdenovo2, and
Velvet, separately. The required memory use is in GB and the CPU time is in hours. With 200 bp reads, the memory uses by SOAPdenovo and Velvet exceeded the
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Velvet are colored by blue, read, light green, dark green, and deep purple, respectively. The labels near each data point indicate the read length.
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PE libraries of small and medium genomes as mentioned above,
we scaffolded the contigs assembled by JR-Assembler using
SSPACE (12). On average, the number of scaffolds was 46% of
the number of contigs, and the scaffold N50 length was 2.5-fold
of the contig N50 length. We also used the built-in scaffolding
tools of SOAPdenovo and Velvet to do scaffolding. By our
voting system, the voting scores of JR-Assembler+SSPACE,
Velvet, and SOAPdenovo were 22, 19, and 8, respectively (Table
S2). Thus, JR-Assembler+SSPACE has a better overall perfor-
mance in terms of scaffolding than Velvet and SOAPdenovo.

Assembly of Reads with Low-Quality Bases at the 3′-End.When input
reads have too many sequencing errors at the 3′end, JR-
Assembler may not be able to find correct overlapping reads for
selected seeds to do the extension and may thus generate a set of
very short contigs. One way to deal with this situation is to trim
input reads at the 3′-end into shorter but better quality reads.
However, how does a user know that input reads should be
trimmed? For this purpose, JR-Assembler calculates the pro-
portion of the seeds that can be extended or can be used by other
extensions among the total seeds and then outputs the value in
the final step for the user to judge. If the portion is very low, it
indicates that most seeds cannot be extended because of low
coverage or low quality. For the low-coverage problem, the user
may need to obtain more data to increase the coverage. For the
low-quality problem, the user can trim some 3′-end bases to get
a better quality of input data. We have implemented the trim-
ming process in JR-Assembler. However, how many bases need
to be trimmed depends on output results. One approach, for
example, may trim different lengths of 3′-end bases and check
whether the seed use proportion is above a suggested threshold.

Sequencing Strategies for JR-Assembler. Similar to the strategies
recommended by ALLPATHS-LG (7), we recommend that for
the Illumina technology one should use an overlapping paired-
end library with a suitable insert size to generate PE raw reads
for contig assembly and use several mate-pair libraries with dif-
ferent insert lengths to generate long-distant jumping reads for
scaffolding. The average genome coverage should be at least
≥100∼150× or higher. For generating overlapping paired-end
reads, we provide a simple formula to calculate the insert size for
constructing a paired-end library:

Insert size ¼ ðRead length  ðlÞ− # of bases to be trimmedÞ
× 2−maximum overlap lengthðmÞ:

For example, if the read length is l =150 bp, the maximum over-
lap length is m = 40 bp, and the number of bases to be trimmed
at the 3′-end is 30 bp, then the recommended insert size is
200 bp.
For a small or medium genome (≤50 Mb), we suggest to use

MiSeq to sequence the genome because MiSeq produces longer
reads than Hi-Seq200, so that it has a better chance to jump over
repeats. On the other hand, for a large genome (∼1 Gb or
larger) one should use HiSeq2000 to generate enough reads for
genome assembly.

Future Development. The current version of JR-Assembler only
allows the input reads of the same length because the initial
program kernel was designed for a fixed-length data structure.
However, for a large genome, users usually have several read sets
with different read lengths and qualities. These different read
sets can be from the same platform or from different platforms,
such as Roche 454, Illumina Hiseq2000, or MiSeq. For the for-
mer case, we have started to remodel the kernel to deal with this
problem. For the latter, it will be a challenge to develop a new
program to assemble the read sets simultaneously as the se-

quencing quality, error distribution, and throughputs are quite
different from these platforms.

Concluding Remarks. The two most important features of JR-
Assembler are the jumping extension and the read remapping
approach, which make memory use efficient and ensure a good
assembly quality. Thus, JR-Assembler can handle SRS data of
genomes of any size. For Illumina reads, the overall performance of
JR-Assembler is better than or comparable to those of the current
SRS assemblers we compared. Moreover, JR-Assembler requires
less memory use and a shorter CPU time than ALLPATHS-LG,
SOAPdenovo, and Velvet, especially when the read length is
longer than 150 bp. As the sequencing technology advances,
read length will increase, and we expect JR-Assembler to further
outperform competing assemblers in terms of memory use and
CPU time.
In this study, we have compared JR-Assembler with many

current assemblers but have not included some others because of
practical considerations. For example, SGA is a recent de novo
assembly tool that is highly memory efficient (3). However, in
a case study of the C. elegans genome (only ∼100 Mb), SGA’s
overall performance was not as good as Velvet and SOAP-
denovo, and it required 41 CPU h, whereas Velvet and SOAP-
denovo only required several hours (3). As SGA is expected to
take a very long CPU time for a large genome, we decided not to
include it in our comparison study. The version of SOAPdenovo
used in our comparison was SOAPdenovo1.05. SOAPdenovo2
includes improvements and new features, including the new
contig and scaffold construction improvements (11).

Materials and Methods
Major Steps of JR-Assembler. Step 1. Raw read processing. JR-Assembler filters
out the raw reads that contain any N, which is noninformative, or any low-
complexity region, which may lead to false positive overlaps with other
reads. As an option, DustMasker (16) may first be used to convert the low-
complexity parts of reads into Ns, and such reads are then removed by JR-
Assembler. Then the reads that are exactly the same—that is, the identical
reads—are collapsed into one unique read and the read count c—that is,
the number of identical reads—is recorded. As it is time consuming to
identify unique reads by directly comparing the whole raw reads one by one,
JR-Assembler builds a binary search tree to represent all unique reads in
alphabetical order. For each raw read, the reverse-complement is also used
for building the binary tree. A unique read table R is then constructed by
traversing the binary search tree as follows: traverse the left subtree, visit the
root, and then traverse the right subtree. The R table contains a set of tuples
(r, c), where r represents a unique read and c is its read count. Because all
unique reads in R have been stored in alphabetical order, the time complexity
for searching a unique read in R is only O(log2N), where N is the size of R.
Step 2. Seed selection. In JR-Assembler, each extension requires a unique read,
called a seed, to initiate the extension. Ideally, a good seed should be
a unique read without sequencing error and should not come from a repeat
region. A seed with sequencing errors may result in a short contig or a mis-
assembly. On the other hand, a seed from a repeat region may quickly
terminate the subsequent extension when the repeat boundary is encoun-
tered. Thus, selecting a set of good seeds is essential for fast and good quality
assembly by JR-Assembler. The current version of JR-Assembler uses the read
count as a criterion to select seeds (Discussion). First, all unique reads are
sorted by their read counts (from low to high). Then, those read counts
ranked in between 1% and 25% are selected as the seeds for extension.
Step 3. Seed extension. We first define some terms. Let l be the length of each
read, and x and y be two unique reads in the unique read table R. We say
that x and y overlap if the suffix t bases of x is identical to the prefix t bases
of y, where n ≤ t ≤ m (m and n are, respectively, the allowed maximal and
minimal numbers of overlapping bases) and 0 < n ≤ m ≤ l. More explicitly,
we say that the 3′-end of x overlaps with the 5′-end of y.

Given a seed, JR-Assembler first extends it at the 3′-end and then at the
5′-end. To extend a seed rseed at the 3′-end, JR-Assembler searches all un-
assembled unique reads for extendable reads. A read is extendable for rseed
if its 5′-end overlaps with the 3′-end of rseed and its 3′-end overlaps with one
or more unique reads—for example, rA and rB in Fig. 2A. The extendable
reads are also called bridging reads because they connect two unique reads.
For example, in case 1 in Fig. 2A, three bridging reads r1, r2, and r3 connect
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rseed and rA, and in case 2 two bridging reads r4 and r5 connect rseed and rB.
The process of connecting rseed and a unique read is termed a jump in this
study. In Fig. 2B, to fill the gap between rseed and rA, JR-Assembler constructs
a consensus sequence CA(r1,r2,r3) from the bridging reads. After a jump, an
extension candidate EA is built by concatenating rseed, CA(r4,r5), and rA (Fig.
2B). The extension candidate EA is evaluated by a supporting score SA, de-
fined as SA(EA) = KA/(lA – l +1), where lA is the length of EA and KA is the
number of unique reads in R that can be remapped onto EA (Fig. 2B). If the
score is less than the cutoff (0.3 by default)—that is, without enough read
support—the extension is neglected. When rseed comes from a repeat, there
can be more than one extension candidate (e.g., Fig. 2 B and C). In this case,
JR-Assembler selects the candidate with the highest score for extension and
deals with the repeat problem later. All unique reads that can be remapped
onto this extension are then labeled as assembled. Assembled unique reads
will not be used in the remaining extensions. The process is repeated until
the 3′- and 5′-ends cannot be extended anymore.

Often an extension cannot proceed because of sequencing errors at the
read tail. We propose a back trimming procedure to solve this problem (Fig.
3). JR-Assembler trims one base from the end of the last extended sequence
and checks whether a jump is possible from the trimmed sequence. If not,
the trimming continues until a jump is possible or until the previous ex-
tension is reached (Fig. 3). When a jump is made, the extension and back
trimming procedures resume until no jump can be made further. Once the
extension at the 3′-end is done, JR-Assembler starts to extend the 5′-end of
the initial seed by the same two procedures. After the extensions at both
ends are completed, we call the final extended sequence a “precontig.”
Step 4. Repeat detection. If a precontig contains a misassembly due to a repeat,
there should be reads that can be partially mapped to this precontig with the
remaining parts entirely or partially mapped to another precontig(s). As
shown in Fig. 4, P is a precontig covered by a set of full-length supporting
reads, Sw, and two sets of partial-length supporting reads, S1 and S2, in which
only partial sequences of the reads can be mapped onto P. Two possible
scenarios of genome arrangement can explain P (Fig. 4 B and C). In Fig. 4B,
the precontig P is correct in one region (P1–P2–P3), whereas both S1 and S2
support the other region (Q1–P2–Q3). Because all reads for assembling P2
cannot be used again after building P1–P2–P3, Q1–P2–Q3 cannot be rebuilt
directly. In the second case (Fig. 4C), the precontig P is incorrect in both
regions (P1–P2–Q3 and Q1–P2–P3), but each subregion (e.g., P1–P2 or P2–P3) is
supported by a subset of full-length reads. Both ambiguous cases (Fig. 4 B
and C) are due to the repeat P2.

To avoid ambiguity, JR-Assembler breaks the precontig P at each
boundary of the repeat P2 if there exists a read rb that satisfies the following
three conditions: (a) rb is extendable; (b) over 90% of prefix or suffix bases—
that is, at least read length×0.9 bases—of rb match perfectly to P; and (c) the
remaining bases have at least one mismatch to P. If one or more such reads
are found (Fig. 4D), JR-Assembler breaks P at the first/last mismatching base
according to the matching region at the 5′/3′-end, and outputs the sepa-
rated contigs (P1, P2, and P3 in Fig. 4E). These broken contigs may later be
merged into scaffolds at the scaffolding step.
Step 5. Contig merging in low-read coverage regions. In the seed extension step,
a precontig cannot be further extended if the supporting score—that is, read
coverage—is low. To extend such contigs over the regions of low-read
coverage, JR-Assembler relaxes the requirement of extendable reads—that
is, two or more reads bridging rseed and rA as in Fig. 2A. In this case, it connects
Ca and Cb without considering the minimum supporting score because there

exists a set of unassembled reads that overlap at least m bases one by one
from Ca to Cb. JR-Assembler uses a breadth-first search algorithm to find a
path of overlapping reads connecting Ca and Cb. To avoid false connections, it
only connects two contigs when the path of reads is unique. To consider contig
orientation, JR-Assembler generates the reverse complements of all contigs
and examines their connectivity in this step. Although it is an all-against-all
approach, this step is not time-consuming in most cases, because the total
numbers of unused reads and precontigs are usually much smaller than the
total read count.

Performance Comparisons, Datasets, and Running Environments.We compared
JR-Assembler with ABySS 1.2.6 (www.bcgsc.ca/platform/bioinfo/software/abyss)
(6), Edena 2.1.1 (www.genomic.ch/edena.php) (2), SOAPdenovo 1.0.5,
SOAPdenovo2 (http://soap.genomics.org.cn/soapdenovo.html) (9, 10), Taipan 1.0
(http://taipan.sourceforge.net/) (13), Velvet 1.0.19 (www.ebi.ac.uk/∼zerbino/
velvet/) (11), and ALLPATHS-LG 44683 (ftp://ftp.broadinstitute.org/pub/crd/
ALLPATHS/Release-LG/) (7).

The SRS datasets of E. coli, S. roseosporus, N. crassa, P. falciparum, and
S. parasitica genomes were downloaded from the National Center for Bio-
technology Information (NCBI) Short Read Archive (SRA) (www.ncbi.nlm.
nih.gov/sra) with the accession nos. SRX016044, SRX026747, SRX030834,
SRX022535, and SRX016057 and SRX016059, respectively. Another dataset
of two genomes (S. aureus and R. sphaeroides) and human chromosome 14
were downloaded from http://gage.cbcb.umd.edu/data/. The datasets of the
whole human and mouse genomes were also downloaded from NCBI SRA;
the accession numbers are listed in table S2 in ref. 7. The two datasets of
M. zebra and S. araneus were downloaded from the same NCBI site with the
accession nos. SRP004788 and SRP005678. The C. elegans genomic sequences
were downloaded from the UCSC Genome Bioinformatics Site (http://
hgdownload.soe.ucsc.edu/goldenPath/ce10).

The large genome datasets that included the genomes of human, mouse,
M. zebra, and S. araneus were assembled on an IBM ×3850 X5 server, which
has four 2.00 GHz eight-core Intel Xeon E7-4820 processors and 1 TB of RAM.
All other datasets were assembled on a DELL PowerEdge R910 sever with
two 2.67 GHz six-core Intel Xeon X7542 processors and 256 GB of RAM. Both
servers run on the Linux operating system.

Parameters of Kernel JR-Assembler Program. The kernel program of JR-
Assembler has four parameters: the maximum overlap length (m), the mini-
mum overlap length (n), the minimum remapping ratio (Rmin), and the
maximum number of threads (Tno). On the basis of a comprehensive test of
genome sizes from 4.5 Mb to 3 Gb and read lengths from 76 bp to 250 bp, as
shown in the article, we suggest that only the values ofm and nmay need to
be adjusted for different read lengths, whereas Rmin can be set as a constant
(=0.3) for all cases. We recommend the following: if the input read length is
76 bp, set n = 30 andm = 35, and if the input read length is 100 bp or longer,
set n = 40 and m = 45. Tno is dependent on the server running environment
and is determined by the user.
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