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We consider, in the modern setting of high-dimensional statistics, the
classic problem of optimizing the objective function in regression
using M-estimates when the error distribution is assumed to be
known. We propose an algorithm to compute this optimal objective
function that takes into account the dimensionality of the problem.
Although optimality is achieved under assumptions on the design
matrix that will not always be satisfied, our analysis reveals generally
interesting families of dimension-dependent objective functions.

robust regression | prox function

In this article, we study a classical statistical problem: how to pick
optimally (among regression M-estimates) the objective to be

minimized in a parametric regression when we know the error dis-
tribution. Our study is carried out in the modern setting where the
number of predictors is proportional to the number of observations.
The classical answer to the problem we posed at the beginning,

maximum likelihood, was given by Fisher (1) in the specific case
of multinomial models and then at succeeding levels of gener-
ality by Cramér (2), Hájek (3), and, above all, Le Cam (4). For
instance, for p fixed or p=n→ 0 fast enough, least squares is
optimal for Gaussian errors, whereas least absolute deviations
(LAD) is optimal for double-exponential errors. We shall show
that this is no longer true in the regime we consider with the
answer depending, in general, on the limit of the ratio p=n as well
as the form of the error distribution. Our analysis in this paper is
carried out in the setting of Gaussian predictors, although as we
explain below, this assumption should be relaxable to a situation
in which the distribution of the predictors satisfy certain con-
centration properties for quadratic forms.
We carry out our analysis in a regime that has been essentially

unexplored, namely 0 � p=n< 1, where p is the number of pre-
dictor variables and n is the number of independent observa-
tions. Because in most fields of application, situations in which p
as well as n are large have become paramount, there has been
a huge amount of literature on the case where p=n � 0 but the
number of “relevant” predictors is small. In this case, the ob-
jective function, quadratic (least squares) or otherwise (ℓ1 for
LAD) has been modified to include a penalty (usually ℓ1) on the
regression coefficients, which forces sparsity (5). The price paid
for this modification is that estimates of individual coefficients
are seriously biased and statistical inference, as opposed to
prediction, often becomes problematic.
In ref. 6, we showed† that this price need not be paid if p=n

stays bounded away from 1, even if the regression does not
have a sparse representation. We review the main theoretical
results from this previous paper in Result 1 below. Some of our key
findings were as follows: (i) Surprisingly, when 0 � p=n< 1− e, it
is no longer true that LAD is necessarily better than least squares
for heavy-tailed errors. This behavior is unlike that in the classical
regime p bounded or p=n→ 0 fast enough studied, for instance, in
ref. 7. (ii) Linear combinations of regression coefficients are un-
biased and still asymptotically Gaussian at rate‡ 1=

ffiffiffi
n

p
.

This article contains three main parts: Background and Main
Results contains needed background and a description of our
findings. In Computing the Optimal Objective, we give two exam-
ples of interest to statisticians: the case of Gaussian errors and the
case of double-exponential errors. We present our derivations in
the last section.

Background and Main Results
We consider a problem in which we observe n independent, iden-
tically distributed pairs ðXi;YiÞ, where Xi is a p-dimensional vector
of predictors, and Yi is a scalar response. We call the problem high-
dimensional when the ratio p=n is not close to 0. In effect, we are
considering an asymptotic setting where lim inf p=n is not 0. We
also limit ourselves to the case in which lim sup p=n< 1. As far as
we know, all of the very large body of work developed in robust
regression (following ref. 7) is concerned with situations in which
p=n tends to 0, as n tends to infinity.
Let us briefly recall the details of the robust regression prob-

lem. We consider the estimator

β̂= argminβ∈Rp

Xn
i= 1

ρðYi −X ′iβÞ;

where ρ is a function from R to R, which we will assume throughout
is convex.§ Furthermore, we consider a linear regression model

Yi = ei +X ′iβ0;

where β0ð∈RpÞ is unknown and feigni=1 are random errors, inde-
pendent of Xi’s. Naturally, our aim is to estimate β0 from our
observations fðXi;YiÞgni=1 and the question is therefore, which ρ
we should choose. We can separate this into the following two
questions: (i) What choice of ρ minimizes the asymptotic error
for estimating an individual regression coefficient (or a given linear
form in β0)? (ii) What choice of ρ minimizes the asymptotic pre-
diction error for a new observation ðXnew;YnewÞ given the training
data? The answers to (i) and (ii) turn out to be the same in the
high-dimensional and Gaussian setting we are considering, just as
in the low-dimensional case, but the extension is surprising.

Some Recent High-Dimensional Results. In a recent paper (6), we
found heuristically the following.

Result 1. [See El Karoui et al. (6).] Suppose Xi are independent
identically distributed (i.i.d) Nð0;ΣÞ, with Σ positive definite.
Suppose Yi = ei +X ′iβ0, e′i s are i.i.d, independent of Xi, β0 ∈Rp is
deterministic, and n≥ p. Call

β̂ðρ; β0;ΣÞ= argminβ∈Rp

Xn
i= 1

ρðYi −X ′iβÞ:

Then we have the stochastic representation
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β̂ðρ; β0;ΣÞ=L β0 +Σ−1=2β̂
�
ρ; 0; Idp

�
; =L β0 +

����β̂�ρ; 0; Idp�
����Σ−1=2u;

where u is uniform on Sp−1(the unit sphere in Rp) and independent
of kβ̂ðρ; 0; IdpÞk.
Let us call rρðp; nÞ= kβ̂ðρ; 0; IdpÞk. As p and n tend to infinity,

while p≤ n and limn→∞ p=n= κ< 1, rρðp; nÞ→ rρðκÞ in probability
(under regularity conditions on ρ and «), where rρðκÞ is de-
terministic. Define ẑe = e+ rρðκÞZ, where Z∼Nð0; 1Þ is in-
dependent of «, and « has the same distribution as ei. We can
determine rρðκÞ through8><

>:
E
�
½ proxcðρÞ�′

�
ẑe
��

= 1− κ;

E
��
ẑe − proxcðρÞ

�
ẑe
�	2�

= κr2ρðκÞ;
[S]

where c is a positive deterministic constant to be determined from
the previous system.
The definition and details about the prox mapping are given in

Appendix: Reminders. This formulation is important because it
shows that what matters about an objective function in high di-
mension is not really the objective itself but rather its prox, in
connection with the distribution of the errors. We also note that
our analysis in ref. 6 highlights the fact that the result concerning
rρðκÞ should hold when normality of the predictors is replaced by
a concentration of quadratic form assumption. System S is the
basis of our analysis.
Consequences for estimation of β0. If v is a given deterministic vector,
we see that v′β̂ðρ; β0;ΣÞ is unbiased for v′β0 and

var
�
v′β̂ðρ; β0;ΣÞ

�
=
v′Σ−1v

p
E

����β̂�ρ; 0; Idp�����2

�
:

In other words, in high dimension, the simple estimator v′β̂ðρ; β0;ΣÞ
is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=ðv′Σ−1vÞ

q
-consistent for v′β0. We further note thatffiffiffi

p
p

v′β̂ðρ; β0;ΣÞ is asymptotically normal, and its variance can
be estimated, so inference about v′β0 is easy. More details are
in SI Text, including for instance explicit confidence intervals.
Picking v to be the kth canonical basis vector, ek, we also see
that we can consistently estimate the kth coordinate of β0,

β0ðkÞ, at rate
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=ðe′kΣ−1ekÞ

q
.

A similar analysis can be performed to obtain unbiased (and
consistent) estimators of quadratic forms in β0, i.e., quantities of
the form β′0Σ2β0, where Σ2 is a given covariance matrix.
The situation in which the vector v is random (and for instance

dependent on the design) is beyond the scope of this paper. We
note that Huber (7) has early very partial results on this problem.
On expected prediction error. In the case in which ðXnew;YnewÞ fol-
lows the model above and is independent of fðXi;YiÞgni=1, we
immediately see that

EPE=E

�

Ynew −X ′newβ̂
�2�

= σ2e +E

����β̂�ρ; 0; Idp�����2

�
:

Picking ρ to minimize the quantity Eðjjβ̂ðρ; 0; IdpÞjj2Þ (viewed as
a function of ρ) will allow us to get the best estimators (in the class
we are considering) for both expected prediction error (EPE) and,
as it turns out, linear forms in β0.

Potential Limitations of the Model. Assumptions concerning the pre-
dictors. The impact of changing the distributional assumptions of
the predictors on Result 1 is explored and explained in details in
our papers (6) and especially ref. 8. We present in ref. 8 design

matrices for which Result 1 does not hold. For those designs,
using the family of objective functions described in Theorem 1
below will not yield optimal results—however, using dimension-
dependent objective functions may still yield improvement over
using standard, dimension-independent objective functions.
We also note that parts of Result 1 hold under less restrictive
assumptions, but one key limitation is that our generalizations
do not include categorical predictors.
The question of intercept. The model and estimation problem de-
scribed in Result 1 do not include an intercept. Furthermore, both
Xi and Yi are assumed to have mean 0. However, if we recenter
both the responses Yi’s and the predictors Xi’s and fit a linear
model (without intercept) on this recentered dataset, we have
a solution to these problems that essentially fits into the frame-
work of our analysis. The corresponding β̂ðρ; 0; IdpÞ has the same
stochastic representation properties as the ones described in
Result 1, and hence inference about β0 is possible in this case,
too. More details and justifications are provided in SI Text.
We note that, as presented in this paper, our results do not
allow us to address inferential questions involving the in-
tercept. However, in separate and ongoing work, we have
obtained results that suggest that we will be able to answer
some of these inferential questions as well as issues pertaining
to the fitted values [see Huber (7), remarks 2 and 3, pp. 803–
804, for early comments about the difficulty they pose in the
high-dimensional setting].
The rest of the paper is focused on the model and statistical

problem discussed in Result 1.

Main Result. We propose an algorithm to determine the asymp-
totically optimal objective function to use in robust regression. As
explained in SI Text, under the assumptions of Result 1, this optimal
objective function is the same regardless of the norm chosen to
assess the performance of our regression estimator. Just as in the
classical case, determining the optimal objective function requires
knowledge of the distribution of the errors, which we call «. We call
the density of the errors fe and assume that fe is log-concave.
If ϕr is the normal density with variance r2 and fr;e =ϕr ⋆ fe,

where ⋆ is the usual convolution operation, fr;e is log-concave. As
a matter of fact, it is well known (9, 10) that the convolution of
two log-concave densities is log-concave.
We call IeðrÞ=

R ðf ′r;eÞ2=fr;e the information of fr;e, which we
assume exists for all r≥ 0. It is known that, when « has a density,
r2IeðrÞ is continuous in r (11), where it is explained that Ieð

ffiffi
r

p Þ is
differentiable or see ref. 12.
Throughout the paper, we denote by p2 the function taking value

p2ðxÞ= x2=2:

Here is our theorem.

Theorem 1. If rρ is a solution of system S, we have rρ ≥ roptðκÞ, where
roptðκÞ=minfr : r2IeðrÞ= κg.
Furthermore, roptðκÞ is the solution of system S when ρ= ρopt, and

ρopt is the convex function

ρopt =
�
p2 + r2optðκÞlog

�
ϕroptðκÞ ⋆ fe

��p
− p2:

[For a function g, g* is its (Fenchel–Legendre) conjugate, i.e.,
g*ðxÞ= supy½xy− gðyÞ�.]
We give an alternative representation of ρopt in Appendix:

Reminders.
We propose the following algorithm for computing the opti-

mal objective function under the assumptions of the theorem.

1. Solve for r the equation
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r2IeðrÞ= p=n: [1]

Define ropt =minfr : r2IeðrÞ= p=ng.
2. Use the objective function{

ρopt =
�
p2 + r2optlog

�
ϕropt ⋆ fe

��* − p2: [2]

The theorem and the algorithm raise a few questions: Is there
a solution to the equation in step 1? Is the min well defined? Is
the objective function in step 2 convex? We address all these
questions in the course of the paper.
The significance of the algorithm lies in the fact that we are now

able to incorporate dimensionality in our optimal choice of ρ. In
other words, different objectives turn out to be optimal as the ratio of
dimensions varies. Naturally, the optimality of the objective function
is restricted to situations in which our assumptions on the design
matrix are satisfied. However, more generally, our results provide
practitioners with a “natural” family of objective functions that could
be tried if one would like to use a dimension-dependent objective
function in a high-dimensional regression problem. This family of
functions is also qualitatively different from the ones that appear
naturally in the small p setting, as our derivation (see below) shows.
Because our estimators are M-estimators, they are not immune

to inadmissibility problems, as has been understood, in an even sim-
pler context, since the appearance of James–Stein estimators. Picking
ρopt instead of another ρ, although improving performance when
ourassumptionsare satisfied,doesnot remove thispotentialproblem.
It should also be noted that at least numerically, computing ρopt

is not very hard. Similarly, solving Eq. 1 is not hard numerically.
Hence, the algorithm is effective as soon as we have information
about the distribution of «.
As the reader will have noticed, a crucial role is played by

β̂ðρ; 0; IdpÞ. In the rest of the paper, we use the lighter notation

β̂ρ ≜ β̂
�
ρ; 0; Idp

�
:

The dependence of β̂ρ on p and n is left implicit in general, but
will be brought back when there are any risks of confusion.
Next, we illustrate our algorithm in a few special cases.

Computing the Optimal Objective
The Case of Gaussian Errors.

Corollary 1. In the setting of i.i.d Gaussian predictors, among all
convex objective functions, l2 is optimal in regression when the
errors are Gaussian.
In the case of Gaussian «, it is clear that ϕropt ⋆ fe is a Gaussian

density. Hence, ðp2+r2opt logðϕropt ⋆ feÞÞ* is a multiple of p2 (up to
centering) and so is ρopt. General arguments given later guarantee
that this latter multiple is strictly positive. Therefore, ρopt is p2,
up to positive scaling and centering. Carrying out the computa-
tions detailed in the algorithm, we actually arrive at ρoptðxÞ= x2

2�
p=n

1− p=n

�
−K . Details are in SI Text.

The Case of Double-Exponential Errors. We recall that in low di-
mension (e.g., p fixed, n goes to infinity), classic results show that
the optimal objective is ℓ1. As we will see, it is not at all of the
case when p and n grow in such a way that p=n has a finite limit in
ð0; 1Þ. We recall that, in ref. 6, we observed that when p=n was
greater than 0.3 or so, ℓ2 actually performed better than ℓ1 for
double-exponential errors.

Although there is no analytic form for the optimal objective, it
can be computed numerically. We discuss how and present a pic-
ture to get a better understanding of the solution of our problem.

The Optimal Objective. For r> 0, r∈R, and Φ, the Gaussian cu-
mulative distribution function, let us define

RrðxÞ= r2log

 
e
ðx− r2Þ2

2r2 Φ


x− r2

r

�
+ e

ðx+ r2Þ2
2r2 Φ



−
x+ r2

r

�!

+ r2log

 ffiffiffi

π

2

r
r
�
:

It is easy to verify that, when the errors are double exponential,
−r2logðϕr ⋆ feÞðxÞ= x2=2−RrðxÞ. Hence, effectively the optimal
objective is the function taking values

ρoptðxÞ=R*
roptðxÞ− x2=2:

It is of course important to be able to compute this function
and the estimate β̂opt based on it. We show below that Rr is a
smooth convex function for all r. Hence, in the case we are
considering, R′r is increasing and therefore invertible. If we call
y*ðxÞ= ðR′roptÞ−1ðxÞ, we see that ρoptðxÞ= xy*ðxÞ−Rroptðy*ðxÞÞ−
x2=2. We also need to be able to compute the derivative of
ρopt (denoted ψopt) to implement a gradient descent algorithm
to compute β̂opt. For this, we can use a well-known result in
convex analysis, which says that for a convex function h (under
regularity conditions) ðh*Þ′= ðh′Þ−1 (see ref. 13, corollary 23.5.1).
We present a plot to get an intuitive feeling for how this func-

tion ρopt behaves (more can be found in SI Text). Fig. 1 compares
ρopt to other objective functions of potential interest in the case of
p=n= 0:5. All of the functions we compare are normalized so that
they take value 0 at 0 and 1 at 1.

Comparison of Asymptotic Performance of ρopt Against Other Objective
Functions.We compare r2opt to the results we would get using other
objective functions ρ in the case of double-exponential errors.
Recall that our system S allows us to compute the asymptotic value
of jjβ̂ρjj2, r2ρ , as n and p go to infinity for any convex (and suffi-
ciently regular) ρ.

Plot of optimal loss, p/n=.5, double exponential errors

Fig. 1. p=n= 0:5: comparison of ρopt (optimal objective) to l2 and l1. ropt is
the solution of r2IeðrÞ=p=n; for p=n= 0:5, ropt ’ 1:35.

{Note that any λρopt + ξ, where λ and ξ are real valued with λ>0, yields the same solution
for β̂.
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Comparison of ρopt to ℓ2.We compare r2opt to r2ℓ2 in Fig. 2. Interestingly,
ρopt yields a β̂ρ that is twice as efficient as β̂ℓ2 as p=n goes to 0. From
classical results in robust regression (p bounded), we know that this
is optimal because ℓ1 objective is optimal in that setting, and also
yields estimators that are twice as efficient as β̂ℓ2 .
Comparison of ρopt to ℓ1. We compare r2opt to r2ℓ1 in Fig. 3. Naturally,
the ratio goes to 1 when p=n goes to 0, because ℓ1, as we just
mentioned, is known to be the optimal objective function for
p=n tending to 0.

Simulations. We investigate the empirical behavior of estimators
computed under our proposed objective function. We call those
estimators β̂opt. Table 1 shows Eðr2optðp; nÞÞ=Eðr2ℓ2ðp; nÞÞ over 1,000
simulations when n= 500 for different ratios of dimensions and
compares the empirical results to r2optðκÞ=r2ℓ2 ðκÞ, the theoretical

values. We used β0 = 0, Σ= Idp and double-exponential errors in
our simulations.
In SI Text, we also provide statistics concerning jjβ̂opt − β0jj2=

jjβ̂ℓ2 − β0jj2 computed over 1,000 simulations. We note that our
predictions concerning jjβ̂opt − β0jj2 work very well in expectation
when p and n are a few 100’s, even though in these dimensions,
jjβ̂opt − β0jj is not yet close to being deterministic (see SI Text for
details—these remarks also apply to jjβ̂ρjj2 for more general ρ).

Derivations
We prove Theorem 1 assuming the validity of Result 1.

Phrasing the Problem as a Convex Feasibility Problem. Let us call
rρðκÞ= limn→∞jjβ̂ðρ; 0; IdpÞjj, where p=n→ κ< 1. We now assume
throughout that p=n→ κ and call rρðκÞ simply rρ for notational
simplicity. We recall that for c> 0 proxcðρÞ= prox1ðcρÞ (Appen-
dix: Reminders). From now on, we call prox1 just prox. If rρ is
feasible for our problem, there is a ρ that realizes it and the
system S is therefore, with ẑe = rρZ+ e,8><

>:
E
�
½proxðcρÞ�′�ẑe�� = 1− κ;

E
��
ẑe − proxðcρÞ�ẑe�	2� = κr2ρ :

Now it is clear that if we replace ρ by λρ, λ> 0, we do not change
β̂ρ. In particular, if we call ρ0 = cρ, where c is the real appearing in
the system above, we have, if rρ is feasible: there exists ρ0 such that8><

>:
E
�
½proxðρ0Þ�′

�
ẑe
��

= 1− κ;

E
��
ẑe − proxðρ0Þ

�
ẑe
�	2�

= κr2ρ :

We can now rephrase this system using the fundamental equality
(see ref. 14 and Appendix: Reminders) proxðρÞ+ proxðρ*Þ= x,
where ρ* is the (Fenchel–Legendre) conjugate of ρ. It becomes8><

>:
E
��
prox

�
ρ*0
�	
′
�
ẑe
��

= κ;

E
��
prox

�
ρ*0
��
ẑe
�	2�

= κr2ρ :

Prox mappings are known to belong to subdifferentials of convex
functions and to be contractive (see ref. 14, p. 292, corollaire 10.
c). Let us call g= proxðρ*0Þ and recall that fr;e denotes the density
of ẑe = rZ+ e. Because g is contractive, jgðxÞ=xj≤ 1 as jxj→∞.
Because fr;e is a log-concave density (as a convolution of two
log-concave densities—see refs. 9 and 10) with support R, it goes
to zero at infinity exponentially fast (see ref. 15, p. 332). We can
therefore use integration by parts in the first equation to rewrite
the previous system as (we now use r instead of rρ for simplicity)8>>><

>>>:
−
Z

gðxÞf ′r;eðxÞdx = κ;

Z
g2ðxÞfr;eðxÞdx = κr2:

Because fr;eðxÞ> 0, for all x, we can multiply and divide by
ffiffiffiffiffiffi
fr;e

p
inside the integral of the first equation and use the Cauchy–
Schwarz inequality to get

κ = −
Z

gðxÞf ′r;eðxÞdx≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

g2fr;e

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ �
f ′r;e
�2

fr;e

vuut
;

κr2 =
Z

g2ðxÞfr;eðxÞdx:

8>>>>>><
>>>>>>:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Ratio r2

opt
(κ)/r2

L2
(κ)

r2 op
t(κ

)/r
2 L2

(κ
)

κ=lim p/n

Fig. 2. Ratio r2optðκÞ=r2ℓ2 ðκÞ for double-exponential errors: the ratio is always
less than 1, showing the superiority of the objective we propose over ℓ2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

κ = lim p/n

Ratio r2
opt(κ)/r2

L1(κ)

r2 op
t(κ

)/r
2 L1

(κ
)

Fig. 3. Ratio r2optðκÞ=r2ℓ1 ðκÞ: the ratio is always less than 1, showing the su-
periority of the objective we propose over ℓ1. Naturally, the ratio goes to 1 at
0, because we know that ℓ1 is the optimal objective when p=n→ 0 for dou-
ble-exponential errors.
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It follows that

lim
n→∞

p
n
= κ≤ r2pðκÞIe

�
rρðκÞ

�
: [3]

We now seek a ρ to achieve this lower bound on r2ρðκÞIeðrρðκÞÞ.
Achieving the Lower Bound. It is clear that a good g [which is
proxðρ*0Þ] should saturate the Cauchy–Schwarz inequality above.
Let roptðκÞ=minfr : r2IeðrÞ= κg. A natural candidate is

gopt = − r2optðκÞ
f ′roptðκÞ;e
froptðκÞ;e

= − r2optðκÞ
h
log froptðκÞ;e

i
′:

It is easy to see that for this function gopt, the two equations of the
system are satisfied (the way we have chosen ropt is of course key
here). However, we need to make sure that gopt is a valid choice; in
other words, it needs to be the prox of a certain (convex) function.
We can do so by using ref. 14. By proposition 9.b on p. 289 in

ref. 14, it suffices to establish that, for all r> 0,

Hr;eðxÞ= − r2   log  fr;e ðxÞ

is convex and less convex than p2. That is, there exists a convex
function γ such that Hr;e = p2 − γ.
When « has a log-concave density, it is well known that fr;e is

log-concave. Hr;e is therefore convex.
Furthermore, for a constant K,

Hr;eðxÞ= x2

2
− r2  log 

Z∞
−∞

eðxy=r2Þe−y2=ð2r2ÞfeðyÞdy+K:

It is clear that r2   log 
R∞
−∞ eðxy=r

2Þe−y
2=ð2r2ÞfeðyÞdy is convex in x.

Hence, Hr;e is less convex than p2. Thus, gopt is a prox function
and a valid choice for our problem.

Determining ρopt from gopt. Let us now recall another result of ref. 14.
We denote the inf-convolution operation by ⋆inf . More details about
⋆inf are given in SI Text and Appendix: Reminders. If γ is a (proper,
closed) convex function, and ζ= p2 ⋆ infγ, we have (see ref. 14, p. 286)

∇ζ= prox
�
γ*
�
:

Recall that gopt = proxðρ*optÞ=∇Hropt ;e. So up to constants that do
not matter, we have

Hropt ;e = p2 ⋆ infρopt:

It is easy to see (SI Text) that, for any function f,

f ⋆ infp2 = p2 − ðf + p2Þ*:

So we have Hropt ;e = p2 − ðρopt+p2Þ*. Now, for a proper, closed,
convex function γ, we know that γ** = γ. Hence,

ρopt =
�
p2 −Hropt ;e

� p − p2:

Convexity of ρopt. We still need to make sure that the function
ρopt we have obtained is convex. We once again appeal to ref. 14,
proposition 9.b. Because Hropt;e is less convex than p2, p2 −Hropt;e is
convex. However, because Hropt;e is convex, p2 −Hropt;e is less
convex than p2. Therefore, ðp2 −Hropt;eÞ* is more convex than p2,
which implies that ρopt is convex.

Minimality of ropt. The fundamental inequality we have obtained
is Eq. 3, which says that, for any feasible rρ, when p=n→ κ,
κ≤ r2ρðκÞIeðrρðκÞÞ. Our theorem requires solving the equation
r2IeðrÞ= κ. Let us study the properties of the solutions of
this equation.
Let us call ξ the function such that ξðrÞ= r2IeðrÞ.We note that ξðrÞ

is the information of Z+ e=r, where Z∼Nð0; 1Þ and independent
of «. Hence ξðrÞ→ 0 as r→ 0 and ξðrÞ→ 1 as r→∞. This is easily
established using the information inequality IðX +Y Þ≤ IðXÞwhenX
and Y are independent (I is the Fisher information; see, e.g., ref. 16).
As a matter of fact, ξðrÞ= r2IðrZ+ eÞ≤ r2IðeÞ→ 0 as r→ 0: How-
ever, ξðrÞ= IðZ+ e=rÞ≤ IðZÞ= 1. Finally, as r→∞, it is clear that
ξðrÞ→ IðZÞ= 1 (see SI Text for details). Using the fact that ξ is
continuous (see, e.g., ref. 11), we see that the equation ξðrÞ= κ has at
least one solution for all κ∈ ½0; 1Þ.
Let us recall that we defined our solution as roptðκÞ=

minfr : r2IeðrÞ= κg. Denote r1 = inffr : r2IeðrÞ= κg. We need to
show two facts to guarantee optimality of ropt: (i) the inf is really
a min; (ii) r≥ roptðκÞ, for all feasible r’s (i.e., r’s such that
r2IeðrÞ≥ κ). (i) follows easily from the continuity of ξ and lower
bounds on ξðrÞ detailed in SI Text.
We now show that, for all feasible r’s, r≥ roptðκÞ. Suppose it is

not the case. Then, there exists r2, which is asymptotically feasible
and r2 < roptðκÞ. Because r2 is asymptotically feasible, ξðr2Þ≥ κ.
Clearly, ξðr2Þ> κ, for otherwise we would have ξðr2Þ= κ with
r2 < roptðκÞ, which would violate the definition of roptðκÞ. Now
recall that ξð0Þ= 0. By continuity of ξ, because ξðr2Þ> κ, there
exists r3 ∈ ð0; r2Þ such that ξðr3Þ= κ. However, r3 < r2 < roptðκÞ,
which violates the definition of roptðκÞ.
Appendix: Reminders
Convex Analysis Reminders. Inf-convolution and conjugation. Recall
the definition of the inf-convolution (see, e.g., ref. 13, p. 34). If
f and g are two functions,

f ⋆ infgðxÞ= inf
y
½f ðx− yÞ+ gðyÞ�:

Recall also that the (Fenchel–Legendre) conjugate of a function f is

f *ðxÞ= sup
y
½xy− f ðyÞ�:

A standard result says that, when f is closed, proper, and convex,
ðf *Þ*= f (ref. 13, theorem 12.2).
We also need a simple remark about relation between inf-

convolution and conjugation. Recall that p2ðxÞ= x2=2. Then (we
give details in SI Text),

f ⋆ infp2 = p2 − ðf + p2Þ p :

The prox function. The prox function seems to have been in-
troduced in convex analysis by Moreau (refs. 13, pp. 339–340,

Table 1. n = 500: meanðkβ̂ opt − β0k2Þ=meanðkβ̂ ℓ2 − β0k2Þ over 1,000 independent simulations

p/n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Observed mean ratio 0.6924 0.7732 0.8296 0.8862 0.9264 0.9614 0.9840 0.9959 0.9997
Predicted mean ratio 0.6842 0.7626 0.8224 0.8715 0.9124 0.9460 0.9721 0.9898 0.9986
jRelative errorj, % 1.2 1.4 0.8 1.7 1.5 1.6 1.2 0.6 0.1
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and 14). The definition follows. We assume that f is a proper,
closed, convex function. Then, when f: R→R, and c> 0 is a scalar,

prox1ðf ÞðxÞ= proxðf ÞðxÞ= argminy
ðx− yÞ2

2
+ f ðyÞ;

proxcðf ÞðxÞ= proxðcf ÞðxÞ= argminy
ðx− yÞ2

2c
+ f ðyÞ;

proxðf ÞðxÞ= ðId+ ∂f Þ−1ðxÞ:

In the last equation, ∂f is in general a subdifferential of f. Al-
though this could be a multivalued mapping when f is not
differentiable, the prox is indeed well defined as a (single-
valued) function.
A fundamental result connecting prox mapping and conjuga-

tion is the equality

proxðf ÞðxÞ+ prox
�
f *
�
ðxÞ= x:

AnAlternativeRepresentation forψopt.Wegive an alternative represen-
tation for ψopt. Recall that we had gopt=proxðρ*optÞ=−r2opt f ′ropt;e=fropt ;e.
Using proxðρoptÞ= Id− proxðρ*optÞ, we see that proxðρoptÞ=
Id+ r2opt f ′ropt;e=fropt ;e. In the case in which ρopt is differentiable,
this gives immediately

ψopt

 
x+ r2opt

f ′ropt ;eðxÞ
fropt ;eðxÞ

!
= − r2opt

f ′ropt ;eðxÞ
fropt ;eðxÞ

:

Because ψopt is defined up to a positive scaling factor,

~ψopt

 
x+ r2opt

f ′ropt ;eðxÞ
fropt ;eðxÞ

!
= −

f ′ropt ;eðxÞ
fropt ;eðxÞ

is an equally valid choice.
Interestingly, for κ= lim  p=n near 0, ropt will be near zero too,

and the previous equation shows that ~ψopt will be essentially
−f ′e=fe, corresponding to the objective derived from maximum-
likelihood theory.
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