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Although the universe of protein structures is vast, these innumer-
able structures can be categorized into a finite number of folds. New
functions commonly evolve by elaboration of existing scaffolds,
for example, via domain insertions. Thus, understanding structural
diversity of a protein fold evolving via domain insertions is a funda-
mental challenge. The haloalkanoic dehalogenase superfamily
serves as an excellent model system wherein a variable cap domain
accessorizes the ubiquitous Rossmann-fold core domain. Here, we
determine the impact of the cap-domain insertion on the sequence
and structure divergence of the core domain. Through quantitative
analysis on a unique dataset of 154 core-domain-only and cap-
domain-only structures, basic principles of their evolution have
been uncovered. The relationship between sequence and structure
divergence of the core domain is shown to be monotonic and
independent of the corresponding type of domain insert, reflecting
the robustness of the Rossmann fold to mutation. However, core
domains with the same cap type share greater similarity at the
sequence and structure levels, suggesting interplay between the
cap and core domains. Notably, results reveal that the variance in
structure maps to α-helices flanking the central β-sheet and not to
the domain–domain interface. Collectively, these results hint at
intramolecular coevolution where the fold diverges differentially
in the context of an accessory domain, a feature that might also
apply to other multidomain superfamilies.
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The universe of protein structures is vast and diverse, yet these
innumerable structures can be categorized into a finite num-

ber of folds (1). Ideally, the protein fold has a robust yet evolvable
architecture to deliver chemistry, bind interaction partners, or
provide scaffolding. A popular strategy for the acquisition of new
function(s) is the topological alteration of the fold to provide
a new evolutionary platform. More frequently, existing and stable
scaffolds are elaborated to attain diversity that is due to accu-
mulation of stochastic, independent, and near-neutral mutations
in the protein sequence. In a large number of cases, the ex-
pansion of functional space has been achieved by the tandem
fusion of two or three domains to form evolutionary modules
known as supradomains (2). An analysis of catalytic domains
fused to the nucleotide-binding Rossmann domain has revealed
that the sequential order of their connections is conserved be-
cause each pairing arose from a single recombination event (3).
Another common structural embellishment is that of domain
insertion(s) into existing folds (4)—a strategy that is ubiqui-
tous in all structural classes, i.e., all α, all β, α + β, and α/β (5).
For example, members of the A, B, and Y DNA polymerase
superfamilies, Rab geranylgeranyl transferase superfamily,
and alcohol dehydrogenase superfamily have inserted different
domains into the native fold to fine tune their cellular functions
(6–8). The analysis of such noncontiguous domain organization
has been facilitated by the availability of structures bearing

insertions of domains that also occur as independent folds. It
has been estimated that 9% of domain combinations observed
in protein-structure databases are insertions (5). However, the
way in which the sequence–structure relationship changes within
a protein fold in the context of such domain insertions has yet to
be fully understood. In this study, we assess how the insertion of
an accessory domain affects the sequence–structure relationship
of the Rossmann fold, a superfold used by at least 10 different
protein superfamilies (9).
Function-driven changes come with their own costs: most

molecular modifications of proteins tend to be thermodynami-
cally destabilizing (10). Although long hypothesized (11), it has
been shown only recently that the stability of a fold promotes
evolvability by allowing a high degree of structural plasticity (12).
As a consequence, protein folds follow a power-law distribution
where a few intrinsically stable folds, referred to as superfolds,
have numerous members, and a multitude of folds have few
members (9). Due to this interplay between stability and evolv-
ability, it has been suggested that superfolds are compatible with
a much larger set of sequences than other folds (13). This pro-
posal raises the question of how protein sequence and structural
diversity are related to one another. Pioneering work by Chothia
and Lesk (14) illustrated that structural similarity is correlated
with sequence similarity. Although the 3D structure retains the
common fold during neutral drift, it undergoes subtle changes
as sequence diverges, mainly due to packing modifications and
backbone conformational changes. In a focused study, Halaby et al.
(15) have shown that sequence diverges to a greater extent than
structure in the Ig fold. More recently, Panchenko and co-
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workers noted a similar trend in a systematic study spanning
81 homologous protein families (16).
We queried how large inserts into a protein fold shape the

relationship between sequence and structure divergence, using as
a model system, the Haloalkanoate Dehalogenase Superfamily
(HADSF), where the inserts into a Rossmann catalytic domain
impart substrate specificity. The HADSF is a highly successful
family, and, with close to 80,000 members to date (17), it is one
of the largest enzyme superfamilies. The HADSF is well-repre-
sented in all domains of life, and the majority of its members
catalyze phosphate ester hydrolysis (18, 19). HADSF members
have attained functional diversity via accessorization of the con-
served core Rossmann-fold domain by the insertion of a cap do-
main. The Rossmann fold is a primordial nucleotide-binding fold
that plays a significant role in maintenance and evolution of life
(6). Structurally, it is organized as a three-layered sandwich made
up of multiple α/β units. The fold is similar across superfamilies,
apart from stochastic thermal fluctuations and structural di-
vergence. Notably, the inserted cap domains in the HADSF
have not yet been observed as independent folds in extant
organisms (the term domain is defined here as an apparently
stable arrangement of secondary structural units). The pres-
ence of the cap domains leads to a natural classification of the
superfamily into different structural classes—C0 (no or mini-
mal cap insert), C1 (α-helical cap insert after the first strand),
C2 (α-helical and β-strand cap insert after the third strand,
further subdivided into C2a and C2b depending on topology),
and C1 + C2 (inserts in both positions), based on topology
and location of the insert (20) (SI Appendix, Fig. S1). These
characteristics make the HADSF an excellent model system
for the study of the sequence–structure–function relationship
in multidomain proteins.
The unique cap–core architecture of the HADSF raises

several intriguing biophysical and biochemical questions re-
garding molecular evolution. In a typical HADSF member, the
substrate leaving group and the phosphoryl group are bound by
the cap and core domains, respectively. However, binding and
catalysis cannot be independent of one another (reflected in the
definition of the specificity constant kcat/Km). How this func-
tional codependence between the two domains manifests itself
in the structure is an important question with implications for
evolution and rational design of multidomain proteins. As cap
and core domains form a single polypeptide chain, substrate
binding and catalysis are inherently linked although the details
of this linkage have yet to be defined. Another perplexing issue
is the evolutionary mechanism of cap-domain evolution. Did it
involve a rapid stage where the cap domain was grafted onto the
core domain, followed by a slow stage where neutral mutations
were accumulated? Or was there a gradual and continuous
change where a small cap domain was inserted followed by
subsequent duplication and elaboration? Herein, we attempt to
answer such questions by analyzing a unique dataset of core-
domain-only and cap-domain-only structures using quantitative
informatics analyses. The relationship between sequence and
structure divergence in the core fold is shown to be monotonic,
as is generally the case, and notably, to be independent of the
corresponding cap type. However, core domains with the same
cap type bear a greater similarity at the sequence and structure
level than do the core domains with different cap types, sug-
gesting interplay between the cap and core domains. Surpris-
ingly, we find that the variation between cap types maps to the
flanking helices of the Rossmann fold rather than to the in-
terface, suggesting that the core has changed more globally to
accommodate the cap. Overall, our results suggest that the
structure space of a superfamily has an underlying organizing
principle despite its diversity.

Results
Relationship Between Sequence and Structure Divergence in the
Conserved HADSF Core Domain. To study the relationship be-
tween sequence and structure in the HADSF core domain, we
constructed a dataset of protein structures representing all known
HADSF structures, determined at resolutions better than 3.6 Å,
resulting in 154 unique structures (Materials and Methods). To
investigate the influence of the cap domain on the core domain, we
generated cap-domain-only and core-domain-only datasets by
manually dissecting the experimentally determined structures
into their respective cap and core domains. For estimating the
degree of structural similarity between two proteins, we used the
pairwise structure-alignment algorithms TM-align (21) and SAP
(22). Results from both alignment algorithms are qualitatively
similar (SI Appendix, Fig. S3). Thus, data are presented from one
representative algorithm, TM-align, hereon. Root-mean-square
deviation (RMSD), the traditional metric of structural similarity,
is length-dependent and scales linearly with radius of gyration
(23), which makes it problematic for use in making comparisons
across different structures and types of alignments. Additionally,
the alignment algorithms report different scores as measures of
similarity. To circumvent these limitations, structural similarity
was assessed using a generic metric—fTM score (24). Significant
correlation was observed between the fTM score and RMSD for
both datasets (SI Appendix, Fig. S4).
Initially, we analyzed the level of sequence divergence (percent

sequence identity) and structure divergence (fTM score) in the
core-domain-only dataset using Spearman’s Rank Correlation as it
captures nonlinear trends and can tolerate outliers. A strong,
statistically significant correlation was observed between percent
sequence identity [the metric used by Chothia and Lesk in their
studies (14)] and fTM score (Spearman ρ = 0.69, P value < 10−10)
(Fig. 1A). Notably, the plot contains many sequences with high
structure similarity despite low sequence identity. A qualitatively
similar trend is observed using a less stringent measure to estimate
sequence divergence—percent sequence similarity (SI Appendix,
Fig. S5). The trend indicates that, in the case of the HADSF, the
sequence diverges to a greater extent than does the structure. This
deduction is consistent with the findings from earlier studies of
single domain protein families (14–16).
To investigate the influence of the cap domains on the cor-

relation between sequence identity and fTM score, computations
were carried out using a dataset of core domains with (1) the
same cap type and (2) different cap types. Remarkably, the re-
lationship between the sequence divergence and the structure
divergence does not depend on the type of the appended cap
domain (Fig. 1B) and is invariant with respect to the choice of
cap type (SI Appendix, Fig. S6). However, the correlation is
marginally higher for core domains with the same cap type
(Spearman ρ = 0.80, P value < 10−10) versus core domains with
different cap types (Spearman ρ = 0.62, P value < 10−10). One
might argue that the structures corresponding to different cap
types represent different protein folds as the only commonality is
the topology of the Rossmann fold. It has yet to be shown that
the removal of the cap domain does not disrupt the Rossmann-
fold architecture (which would argue against treating the two
domains as one fold). Unexpectedly, the relationship between
sequence and structure divergence in the common-core domain
is largely independent of the significant evolutionary event of
cap-domain insertion.

Core Domains with the Same Cap Type Have High Similarity. Al-
though the difference in sequence–structure divergence between
core domains with the same cap type and core domains with
different cap types is only marginal, it is statistically significant.
The distributions of sequence and structure similarity scores
(sequence alignment is based on pairwise structure alignment)
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(Materials and Methods) between different core domains show that
core domains with the same cap type (mean sequence identity =
16.3%, mean fTM score = 0.66) tend to have higher mean simi-
larity than those with different cap type (mean sequence identity =
12.8%, mean fTM score = 0.60). Next, the distribution of the
similarity scores of core domains was subdivided into each cap type
to elucidate any underlying trend(s). The distributions (Fig. 2) show
that core domains with minimal or no cap (cap type C0) have the
lowest mean similarity (mean sequence identity = 15.5%, mean
fTM score = 0.62) whereas core domains with the αβ cap type (cap
typeC2a) have the highestmean similarity (mean sequence identity
= 29.9%, mean fTM score = 0.84). The differences in the means
are statistically significant (Welch’s two-tailed P value < 10−10).
Thus, the type of domain insert influences sequence and structure
diversity in the core domain, and core domains freed from cap-
domain influence (type C0) display the greatest divergence. The
null hypothesis is that all Rossmann folds would be similar apart
from stochastic thermal fluctuations and structural divergence. The
unexpected finding is that they are not; the structural variation of
the core domain is modulated by the appended cap domain.
To describe the cap-domain-dependent core domain divergence,

we generated structure-similarity networks for the core and cap

domains independently (Fig. 3). Structure-similarity networks,
graphs where nodes represent protein structures and edges
represent structural similarity above a given threshold between
the two structures, provide a global view of structure space. Such
networks can be used to depict relationships relevant for probing
the evolutionary history of protein-structure space (25, 26). In
Fig. 3A, similar cap types cluster together (with few edges across
cap-type clusters) as cap domains fall into distinct topological
classes (as C0 members are the most diverse, they separate into
a few clusters on the core domain network; however, examina-
tion shows these to be isofunctional proteins so there is no need
for further division of the C0 structural class). Surprisingly, we
observe distinct clustering in the core domain network based on
the corresponding cap type (Fig. 3B). This observation, coupled
with the difference in the similarity scores (Fig. 2), suggests that
there is a fundamental structural difference between core domains
associated with cap domains of a different type.
Next, we investigate whether the cap domain affects this cap-

type-based core-domain classification. For each pair of proteins,
the core domain structural similarity was plotted against the cap
domain structural similarity (Fig. 4). Remarkably, a significant
correlation between the two (Spearman ρ = 0.47, P value < 10−10)
is observed, suggesting a coupling in structural divergence between
the two domains (Fig. 4A). This linear relationship between cap
and core domain structural similarities is unanticipated as they are
spatially separate entities (i.e., the domains are connected by sol-
vent accessible linkers) (SI Appendix, Fig. S1). Next, we recom-
puted the correlations for comparisons within the same cap type
and comparisons across different cap-type classes (Fig. 4B). The
correlation can be explained exclusively by the comparisons be-
tween core domains with similar cap types (Spearman ρ = 0.75,
P value < 10−10). As different cap domains have significantly dif-
ferent topologies, their comparisons have negligible contribution
to the overall correlation (Spearman ρ = -0.01, P value = 0.35)
and serve as a negative control with all core pairs having a mean
fTM score of ∼0.2.

Structural Diversity in the HADSF Has Small Intrinsic Dimensionality.
Our results suggested that the cap domain influences the sequence
and structural variance of the core domain, but the structural basis
of this influence was still unclear. Given the atomic structures
determined by X-ray crystallography, the observed structural var-
iance has ∼6,000 degrees of freedom (∼130 residues × 15 atoms
per residue × 3 coordinates per atom). However, the number of
“effective” degrees of freedom in the evolution of the HAD fold is
significantly smaller because it is limited by constraints of sec-
ondary structure and packing that preserve the Rossmann fold. To
find the most variable degrees of freedom, Probabilistic Principal
Component Analysis (PPCA) was performed on all core domain
structures (Materials and Methods). PPCA calculates a linear

Fig. 1. Correlation between sequence identity and structural similarity in
the HADSF core domain. Each point denotes one protein pair with percent
sequence identity value plotted on the x axis and the fTM score plotted on
the y axis. A shows data for the entire dataset (number of points = 11,781)
whereas B shows the dataset split into core domains with the same cap type
(red, number of points = 3,606) and core domains with different cap type
(blue, number of points = 8,175). Inset shows Spearman’s rank correlation
coefficient for the three individual sets.

Fig. 2. Distribution of similarity scores for the HADSF core domain. The
distribution of the fTM structure similarity scores (binned into 0.1-unit
intervals) categorized by the cap type insert is shown.
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combination of components that describe a characteristic of the
data (in this case the atomic positions), thus defining in-
dependent descriptors. To bypass any potential bias in this
method from the sequence alignment, two different approaches,
SALIGN (27, 28), and TM-align and Staccato (29), were used.
Both methods yielded similar results (Fig. 5 and SI Appendix,
Fig. S7); the results from SALIGN are discussed in detail.
In contrast to the large number of potential degrees of free-

dom, the PPCA analysis explains most structural variance with
a relatively small number of principal components. Although, no
single distinct number can be estimated given the smooth de-
pendence of variance on the number of principal components (SI
Appendix, Fig. S8): ∼50% of variance is explained by the first three
principal components. Intuitively, as structural differences between
core domains become subtler, it takes a greater number of eigen-
vectors to capture the structural variance. Thus, the plot of con-
tribution of the principal components to structural variance is
continuous. Plotting the first two principal components against one
another reveals a cap-type-based classification, i.e., core domains
with similar cap types cluster together (Fig. 5A). Quantitatively,
points derived from core domains with different cap-type insertions
are more distant (mean distance = 23.14 ± 0.2) than those from
core domains with similar cap types (mean distance = 16.33 ±
0.32) in the coordinate system. The overall classification appears
qualitatively similar to the structure similarity network in Fig. 3,
showing similar clusters and intercluster connectivity. As a negative
control, each of the other principal components was plotted against
the first principal component, resulting in the disappearance of the
trend (for a typical example, see SI Appendix, Fig. S9). The struc-
tural fluctuations we observe are nonstochastic as the variance is
significantly greater than the random background (calculated by
using unit vectors) where all principal components are needed to
explain the entire variance (Fig. 5B).
To analyze the structural variation, the positional variance of

the Cα-coordinates from the multiple structure alignment was
mapped onto a representative structure (PDB ID code 2HSZ)
(Fig. 6A); this representative structure was chosen because it lies
at the center of the structural similarity network [i.e., on average,
it bears the highest structural similarity (fTM score) to all other
structures]. The central β-sheet of the Rossmann fold exhibits
the lowest structural variance whereas the α-helices flanking the
sheet and connecting loops have a high degree of structural
variance. Notably, the core face interacting with the cap domain

is largely invariant. Moreover, the structural variation does not
correlate with the dynamic or static disorder in the structure as
there is no correlation between the observed positional variation
and the atomic displacement parameters (B-factors) of the rep-
resentative structure (Fig. 6 B and C). As the cap–core interface is
critical for catalysis, we suggest that nonlocal interactions be-
tween the two domains control the structural variability. Thus, the
interface has significantly less variation than the loops and flanking
helices. This analysis suggests a global rearrangement of the
Rossmann fold, akin to a “breathing motion,” correlated with
the presence of different cap domains. These results are com-
parable to those obtained by PPCA (whereas SI Appendix, Fig. S10
considers only the first three principal components, the con-
clusions do not change when the first ten are included). In sum-
mary, these findings are indicative of a relatively small number of
degrees of freedom in the structural variation of the Rossmann
fold that dominate the plasticity of their respective structural
classes; moreover, these degrees of freedom are dependent on the
presence of different cap domains.

Discussion
The explosion in the amount of sequence and structure information
necessitates the development of reliable automated strategies

Fig. 3. Structure similarity networks for the HADSF cap domain (A) and core
domain (B). Each node represents a single protein structure and an edge is
drawn if fTM score is higher than the thresholds of ≥0.3 (A) and ≥0.7 (B), re-
spectively. The network shown in A does not contain C0 class members. An-
notation information, including cap type (obtained from manual examination
of the structures), was associated with each node. The network was visualized
using Cytoscape version 2.8 (45) with the yFiles organic layout scheme.

Fig. 4. Correlation between cap domain and core domain structural similarity.
Each point represents a pair of proteins with the core domain fTM score along
the x axis and cap domain fTM score along the y axis. (A) All of the pair-wise
comparisons with the linear best-squares fit to data represented by the line. (B)
The comparisons between core domains with the same type and core domains
with different cap type in red and blue, respectively. The continuous line
represents the linear best-squares fit to data for all comparisons with the same
cap type, and the dotted represents line comparisons with different cap type.
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to annotate protein function. However, the availability of these
data has enabled large-scale investigation of protein sequence–
structure–function relationships. Our approach provides a frame-
work for deconstructing patterns in protein evolution in a system-
atic and quantitative manner. By using a large protein structure
dataset, we have shown that (i) the sequence–structure relationship
within the Rossmann superfold is robust toward the significant
evolutionary event of domain insertion, (ii) the HADSF Rossmann
fold is the product of interplay with the corresponding domain
insertions, and (iii) the structural variation of the HADSF
Rossmann fold is dominated by relatively few dimensions that
are modulated by inserted domains and this variation does not
map to the domain–domain interface. Although these relation-
ships have been shown here for the HADSF, they may also occur
for other folds.
The Rossmann fold can withstand significant sequence changes;

i.e., as many as 90% of residues can change while still maintaining
the same fold. For example, a representative pair of HADSF
members with 10% sequence identity demonstrate RMSD
value of ∼3.2 Å (fTM score ∼ 0.4). This tolerance implies that
the fold is highly adaptable as major changes in sequence result

in relatively moderate changes in structure, consistent with existing
theories that suggest that superfolds can accommodate a signifi-
cantly higher number of sequences than folds with a relatively
small number of members (13). Aravind et al. (6) have proposed
the concept of a positive feedback loop where duplication of
superfamily members leads to gain of new functions and these
new functional frontiers allow further biased selection of ad-
ditional members from the same superfamily. Presumably, it is
primarily due to this process that more than 79,000 HADSF
members can currently be identified in the public sequence
databases (17). It has been shown that few critical contacts are
important to properly maintain a fold (30). Based on that model,
we conclude that the interresidue contact network within the
Rossmann fold is modular and extremely resilient to mutations.
In fact, we have uncovered a much higher degree of permis-
siveness in the Rossmann fold than resilience to single point
mutations as the sequence–structure relationship appears to be
capable of withstanding a change as significant as a cap-domain
insertion without the loss of secondary and tertiary structural
characteristics (Fig. 1).
When the average structural similarity of core domains with no

or minimal cap inserts is compared with that of core domains with
large cap domains, the core domains without a significant cap
domain (C0 cap type, <15 residues) tend to have a lower mean
structural similarity and a greater variance. This finding can be
rationalized by a biophysical argument. One can imagine the space
of all allowable Rossmann fold structures as a “structure cloud.”
During evolution, sequences are free to traverse the structure
cloud. We propose that the addition of these cap domains imposes
limits on this structure cloud. Because cap domains impose unique
biophysical constraints on the divergence of the core domain,
members with no or minimal cap inserts have the maximum
structural diversity. A caveat to this hypothesis is that C0 mem-
bers may arise by the loss of a cap from a C1 or C2 progenitor;
however, such events are rarely observed as only one example has
been identified thus far (31). Furthermore, these domain inserts
may permit the core domain to traverse an extended, previously
inaccessible sector of the structure cloud, thereby allowing
unique modifications to the Rossmann fold.
One striking observation is that cap domains of different types

tend to have core domains that are different from one another;
structural similarities of the cap and core domains are linearly
correlated. Two alternative models seem most plausible a priori.
First, the linear trend may be a result of structural coevolution
between the core and cap domains. When the core domain un-
derwent structural divergence, the cap domain mutations that
enhanced functional fitness might have been fixed and/or vice
versa. Such fixation of compensatory mutations and structural
rearrangements across both domains could allow for inter-
domain substrate binding and dynamics as well as facilitate ca-
talysis. Second, as the core domains diverged, the cap domains
may have diverged independently, also resulting in a correlation
between the similarities of the cap and core domains.
Which of these scenarios is more likely? Importantly, Bur-

roughs et al. (20) predicted that the last universal common
ancestor (LUCA) had five distinct HAD members—a repre-
sentative HADSF member from each cap subtype. Addition-
ally, different cap types have evolved to catalyze the various
types of chemistries, and, thus, they appear to be under similar
selective constraints during evolution. For example, sugar phos-
phatase, sugar phosphomutase, and nucleotidase activities have
been observed in the C1 and C2 cap types (32–37). In such a
scenario, structural divergence of the core domain is expected to
be similar across all cap types, in contrast to what is observed (SI
Appendix, Fig. S11). As discussed earlier, cap type C0, which has
a minimal insert, is the most divergent. We suggest that this
greater divergence is due to the absence of a domain insert
leading to relaxed evolutionary constraints on the core domain.

Fig. 5. Primary Components from Probabilistic Principal Component Anal-
ysis using SALIGN. (A) Core domain structural data projected onto Principal
Component 1 (PC1) plotted against data projected onto Principal Compo-
nent 2 (PC2). Core domains are colored according to corresponding cap type.
(B) The plot of cumulative variance described by the principal components
(red) and random (black).
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Thus, we speculate that structural coevolution is a more plau-
sible explanation for the observed trend in the HADSF than is
the independent divergence. The data are most consistent with
a model where a small cap domain was inserted into the core
domain (pre-LUCA), followed by subsequent intradomain dupli-
cation and elaboration (consistent with the model in ref. 20).
It is of fundamental importance to study molecular evolution via

analyzing protein structures to understand how they perform cel-
lular function, how they are regulated, and how improved variants
can be rationally designed. Unfortunately, clustering proteins using
sequence and structure information is problematic, which makes
functional annotation difficult and fraught with errors. In the case
of HADSF, these errors in alignment and clustering are mainly
due to extensive divergence further complicated by the location of
the active site at the domain–domain interface. Our findings hint
at protein design principles that might be useful in synthetic bi-
ology approaches. We find that protein folds undergo co-
dependent evolution in the case of interacting domains where the
sequence–structure diversity is modulated by the inserted domains.
Notably, the variation is not located at the domain–domain in-
terface. Thus, a more efficient conformational sampling scheme
for improved modeling of multidomain protein structures and
multiprotein complexes may be developed. Traditional directed
evolution experiments have primarily tested amino acid residue
substitution as the modification mechanism, without exploring the
role of insertions and deletions. Recently, there has been con-
siderable interest in using domain insertions to regulate protein
activity (38). Our work suggests that superfolds are tolerant to
relatively large domain insertions when followed by accommo-
dating mutations in the scaffold. This structural robustness may
facilitate the development of directed evolution technologies
that incorporate domains into existing scaffolds.

Materials and Methods
Data Collection and Curation. All of the HADSF structures in the Protein Data
Bank (PDB) were filtered to yield a representative set of structures related to
each other at less than 90% sequence identity according to program uclust
(39) or corresponding to a unique UniProt ID (Dataset S1). Preference was
given to structures determined at resolutions better than 3.6 Å and having
chains with a minimal number of missing residues. For structures containing
multiple chains, a single chain was chosen, with a preference for those
chains with a minimal number of chain breaks. This set of criteria resulted in
a collection of 154 HADSF structures. Subsequently, any additional domains
not corresponding to the HADSF core or cap domain regions were removed.
Resulting HADSF domains were manually divided into Rossmann-fold core
and variable cap domains with the flexible linkers included with the core
domains. The termini of the cap domain were judged to be those points
where the secondary structural elements began and ended.

The large number of sequences (>79,000) and relatively small number of
structures (>150) equates to an apparent coverage of ∼0.25% of the su-
perfamily. However, we estimated the “true” structural coverage, using
automated comparative modeling, creating comparative models for all su-
perfamily members that are detectibly related to a known structure [de-
posited in ModBase (21)], and yielding models for ∼22% of the HADSF
member sequences at a cutoff of 40% sequence identity and 90% target-
template overlap. As the sequence space is highly redundant and the
structure space has reasonable coverage, we posit that the experimental
dataset provides a broad sampling of the sequence space with minimal bias
due to any one subfamily (as assessed by mapping onto a sequence similarity
network (40) (SI Appendix, Fig. S2)). It should be noted that only the ex-
perimentally determined coordinates were used in the dataset.

Structure Alignments and Similarity Networks. The TM-align and SAP pro-
grams were used to perform all-by-all structural alignments of both the core
and cap region structure sets. To facilitate comparison of scores between the
different superposition methods, the fTM score was calculated for each

Fig. 6. Visualizing structural variation in the Rossmann fold. A depicts po-
sitional variance of Cα coordinates from multiple structure alignment map-
ped onto representative core domain 2HSZ, chain A, whereas B depicts B-
factors for the same structure. Structures are colored as a color ramp
according to corresponding values, with blue denoting the lowest value and
red the highest. C shows lack of correlation (Pearson R2 = 0.09) between
positional variance and B-factor for each residue position for 2HSZ, chain A.
The typical HAD Rossmann fold consists of the central β-sheet [strand 1 (6–9),

strand 2 (133–118), strand 3 (140–142), strand 4 (171–175), and strand 5 (211–
213)] and flanking α-helices [helix 1 (100–110), helix 2 (122–132), helix 3
(154–161), and helix 4 (178–187).
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structural superposition. Sequence-identity and sequence-similarity values
were computed from sequence alignments (based on structural super-
positions) by custom scripts. Structure-similarity networks were created for
each domain (core and cap) and each superposition method (TM-align and
SAP), using the fTM score as an edge weight.

Sequence-Similarity Networks. All-versus-all BLAST e-value information was
extracted from the Structure–Function Linkage Database (17) using an
e-value cutoff of 10−20. A representative sequence similarity network was
constructed using Pythoscape (41), with mean e-value as edge weight. Each
node represents a 40% ID cluster of sequences from CD-HIT (42).

Principal-Component Analysis. Structure-based Multiple Sequence Alignment
(MSA) was generated by the SALIGN (27, 28) module in MODELLER (excluding
divergent structures; n = 131). Initially, we divided the structure set into two
subsets, followed by aligning the sequences within the subsets using the itera-
tive structure alignment option of SALIGN. We then combined the aligned
subsets of sequences iteratively while restraining the alignment of several cat-
alytic residues in the individual structures. Optimal 3D gap penalty parameters
were determined by trial-and-error and used to create the final structural
alignment. An alternate MSA was generated by combining all pairwise struc-
ture-based sequence alignments (made by TM-align) using Staccato (29).

The sequence alignments contained several gaps arising from variable
loops and topological variations. A heuristic algorithm was applied to esti-
mate the number of gaps in the alignment as a measure of number of

columns included in the analysis. It resulted in a curve (SI Appendix, Fig. S12)
that was used to select an appropriate cutoff for the number of columns (L =
132). Similar to Emberly et al. (43), all of the structures were realigned to the
“center” structure (2HSZ, chain A). We created an N × 3L coordinate matrix,
where each row represents individual structures and each column represents
Cα-coordinates of the amino acid residues from the columns in the MSA. As
the input matrix contained missing information corresponding to coor-
dinates for gaps in the MSA, traditional principal-component analysis could
not be used. Thus, Probabilistic Principal Component Analysis (PPCA) on the
resulting coordinate matrix was performed using the PCAMV package (44)
and custom scripts in MATLAB. Resulting eigenvectors were mapped onto
the center structure using the sum of squares.

Statistical Analysis. Statistical parameters, including Spearman rank correla-
tion and two-tailed Welch’s t test, were computed using the statlib library in
Python. Graphs were generated using Microsoft Excel and MATLAB.
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