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Abstract
Islet cell transplantation has therapeutic potential to cure type 1 diabetes (T1D), which is
characterized by autoimmune-mediated destruction of insulin-producing β cells. However, current
success rates are limited by long-term decline in islet graft function resulting partially from poor
revascularization and immune destruction. MSCs have the potential to enhance islet
transplantation and prevent disease progression by a multifaceted approach. MSCs have been
shown to be effective at inhibiting inflammatory-mediated immune responses and at promoting
tissue regeneration. The immunomodulatory and tissue repairing properties of MSCs may benefit
β cell regeneration in the context of T1D. This review will elucidate how MSCs can minimize β
cell damage by providing survival signals and simultaneously modulate the immune response by
inhibiting activation and proliferation of several immune cell types. In addition, MSCs can
enhance islet graft revascularization, maintaining long-term β cell viability and function.
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I. Introduction
Mesenchymal stem cells (MSCs), also referred to as stromal cells or mesenchymal
progenitor cells, are non-hematopoietic multipotent stromal cells that can differentiate into a
variety of tissues.[1] Recently, MSCs have been investigated as a treatment for a wide range
of diseases due to their capacity for self-renewal and unique immunosuppressive and
regenerative properties.[2] For these reasons, MSCs have been studied as therapies in the
context of immunopathological disorders such as autoimmune encephalomyelitis (EAE) a
model of human multiple sclerosis (MS),[3] arthritis,[4] systemic lupus erythematosus
(SLE),[5] Crohn’s disease,[6] graft versus host disease,[7]. In these models, MSCs have
been shown to be effective at inhibiting immune inflammation and promoting tissue
regeneration. As immunomodulators, MSCs can use both direct and indirect mechanisms to
modulate the immune response in settings of inflammation, autoimmune diseases, and
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transplantation. In addition, the inherent regenerative properties of MSCs have been
demonstrated to aid in tissue repair by assisting endogenous cell function and
revascularization of damaged tissue. MSC-based therapeutic strategies are now under
investigation to overcome the autoimmune destruction of insulinproducing cells in type 1
diabetes (T1D) and the inflammatory mediated beta cell dysfunction and insulin resistance
in type 2 diabets (T2D).[8].

T1D is characterized as an autoimmune-mediated destruction of insulin-producing β cells by
proinflammatory autoreactive CD4+ and CD8+ T cells.[9] Prior to disease onset, a B cell
immune response has taken place producing antibodies to β cell antigens detected in the
peripheral blood.[10] These processes together result in reduced and insufficient β cell mass
to maintain glucose homeostasis rendering patients dependent on exogenous insulin. In
addition to insulin administration, other treatment options currently available to patients
with T1D include whole pancreas transplantation and islet transplantation. Islet
transplantation, primarily indicated in patients with unstable hypoglycemia, is advantageous
compared to whole pancreas transplantation because it is relatively non-invasive. But
significant challenges to islet transplantation still remain including: revascularization of the
islet cell graft, prevention of inflammation, rejection and autoimmune destruction of the
graft, requirement for lifelong immunosuppression which can be harmful to islet β cell
function, and lastly the limited supply of donor islets for widespread clinical therapies. In
this context, MSC-based therapies may become an alternative option in the prevention of
T1D disease onset and may also enhance tolerogenicity and engraftment of allo-islet graft
after transplantation.

This review first highlights the capacity of MSCs to modulate the autoimmune response
during the pathogenesis of T1D and the allo-immune response in the setting of islet
transplantation. Second, this review focuses on the role of MSCs in the repair of β cell mass
and function in both T1D and T2D. Lastly, it illustrates the promises and potential obstacles
for MSC therapies to become a clinically relevant approach to treatment of insulin
dependent diabetes.

II. MSC Characterization
Although rare, MSCs can be isolated from a variety of sources including: bone-marrow,
cord blood, dental pulp, adipose tissue, lung, placenta, tendons, synovial fluid, circulating
peripheral blood, and fetal liver.[11] MSC isolation and purification was initially performed
from bone marrow and defined by the Colony Forming Unit-Fibroblast (CFU-F) assay
utilizing the tendency of MSCs to adhere to plastic.[12] Isolation of MSCs from solid tissue
(ie fat, placenta) requires a collagenase digestion step. Isolated MSCs may be further
purified prior to culture by Fluorescence Activated Cell Sorting (FACS), using monoclonal
antibodies against common markers shared by all stromal cell precursors, such as STRO-1.
[13–16]

In vitro, MSCs proliferate, display fibroblast-like morphology and are further characterized
by their ability to differentiate into bone, cartilage and fat.[17] According to the
Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular
Therapy, MSCs are identifiable based upon their ability to adhere to plastic and stain
positive for the expression of surface markers CD105, CD73 and CD90.[18] Although there
is growing data suggesting that MSCs express additional surface markers, such as CD54,
CD44, CD29, CD49, CD71, and CD271, the expression of these markers largely depends on
culturing techniques, isolation methods, tissue sources, and species differences.[2, 19, 20]

Historically, MSCs have been considered hypo-immunogenic because of their limited
expression of MHC class II and costimulatory molecules and inability to stimulate T cell
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proliferation. However, MSCs are no longer considered immunologically silent.[21]
Costimulation with IFNγ can induce MSCs to express elevated levels of MHC class II, and
it has been shown that MSCs express MHC class I and other receptors that interact with
immune cells.[2] While MSCs’ immunosuppressive effects are well established, these
findings demonstrate the greater complexity and bi-directionality of MSCs’ interaction with
the immune system.

III. MSCs and T1D
MSCs-based therapies may play a role in the prevention of T1D disease onset and in islet
graft survival and function in the context of islet cell transplantation. MSCs have been
shown to prevent and/or delay disease onset [22] and to reduce the infiltration of
autoreactive T cells into the pancreas in both T cell-transferred and spontaneous diabetic
mouse models.[23] In addition to their immunomodulatory properties (Table 1), MSCs may
act as “repair cells” by regulating the expression of key anti-apoptotic and regenerative
genes in beta cells, and reverse β cell damage (Table 2). Lastly, MSCs can increase islet
graft β cell function by the secretion of trophic factors that can enhance insulin response and
graft revascularization, minimizing the loss of transplanted islets during the peritransplant
period. We will next discuss evidence for each of these potential mechanisms of MSCs as
“helper cells” in the context of T1D.

A. Immunomodulatory properties of MSCs in vitro
Numerous studies show that MSCs primarily modulate the effector arm of the T cell
immune response through the suppression of T cell proliferation and the inhibition of
dendritic cell (DC) differentiation. Additionally, MSC may modulate NK cell cytotoxic
activity, B cell proliferation, and immunoglobulin production.

1. MSC interaction with immune cells
a. direct cell-cell contact: MSCs can exert immunomodulatory properties on T cells by
direct cell-to-cell contact through the engagement of the inhibitory molecule programmed
cell death 1 (PD-1) to its ligand PD-L1. In vitro MSCs stimulated with recombinant IFN-γ
showed upregulated expression of the surface molecule PD-L1 and suppressed autoreactive
T cell proliferation; the suppression was reversed in the presence of a PD-L1 siRNA
knockdown.[24] Similarly in vivo, Fiornia et al. showed that PD-L1 expression levels were
high on MSCs that migrated to the pancreas of prediabetic NOD mice, delaying the onset of
T1D by suppressing the proliferation of autoreactive T cells.[22] These results suggest that
in the context of T1D, PD-L1 ligation on the surface of MSCs results in T cell
immunosuppression.

b. secretion of soluble immunomodulatory molecules: MSCs can suppress immune cell
proliferation by a second mechanism the secretion of soluble molecules. In mixed
lymphocyte reaction (MLR) cultures, MSCs down-regulated alloreactive T cell proliferation
through soluble factors including, 2,3-dioxygenase (IDO), prostaglandin-E2 (PGE2), nitric
oxide, and transforming growth factor-β (TGF-β) [25, 26].

TGF-β, IL-10 and HGF are the most commonly described MSC-secreted cytokines
mediating suppression of T cell activation and proliferation both in vitro and in vivo.[27–29]
TGF-β secretion was further increased in the presence of IFN-γ, supporting the notion that
inflammatory signals enhance MSCs immunosuppressive activity [29, 30]. In the context of
T1D, serum levels of TGF-β and IL-10 were increased in intravenous MSC-treated NOD
mice.[31] β cell-specific T cells harvested from diabetic NOD mice also showed decreased

Davis et al. Page 3

Curr Diab Rep. Author manuscript; available in PMC 2013 September 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



proliferation in vitro in the presence of MSCs, and the effect was reversed by neutralization
of TGF-β.[31]

PGE2 is constitutively expressed and secreted by MSCs and may be associated with their
immune suppressive effect in an MLR setting.[32] Whether the immune suppressive effects
of MSCs are mediated by PGE2 has been debated; however, mounting evidence suggests a
strong role of PGE2 in inhibition of T cell proliferation by MSCs, [33–36] and the
contradictory evidence [32] may be due to differences in isolation techniques[36]. A recent
study by Duffy, et al. established that MSCs inhibit Th17 cell proliferation and
differentiation from naïve and memory precursors through PGE2 via the EP4 receptor.[37]
In addition to the inhibition of T cell proliferation, MSCs inhibit DC differentiation and
reduce DCs ability to produce IL-12 and IFN-γ.[35]

MSCs also secrete IDO, a tryptophan-catabolizing enzyme that causes amino acid depletion
and the inhibition of proliferation and function of immune cells. MSCs do not constitutively
express IDO; however, IFN-γ triggered by paracrine signaling induces upregulation of IDO
expression by MSCs. [38] This upregulation of IDO expression has been shown to be
partially responsible for MSCs suppression of T cell proliferation.[39]

Similarly, nitric oxide is not constitutively expressed by MSCs but is induced and secreted
upon direct cell contact with activated T cells. [40] NO inhibits T cell proliferation by
reducing phosphorylation of the tyrosine residues of the Stat5 transcription factor.[41]. In
this way, NO blocks the Jak3/Stat5 signaling pathway, which locks the T cells in G0/G1
phase.[42]

Matrix metalloproteinases (MMPs) secreted by MSCs may also play a role in inhibiting T
cell proliferation. In vitro, MMP-2 and MMP-9 cleave CD25 from T cell surfaces rendering
them unresponsive to IL-2 and thus impeding activation and expansion of alloreactive T
cells.[43] In vivo, islet co-transplanted with MSCs into a diabetic mouse model showed
rapid reversal of hyperglycemia, however MMP inhibitor administration overturned the
protective effects afforded by the MSCs and resulted in islet graft failure [43].

MSCs also secrete galectins, carbohydrate-binding proteins that contribute to MSCs
immunsuppressive effects by inducing T cell apoptosis and interfering with immune cells
activation and secretory function.[44] Galectin-1 induces T cell apoptosis by binding to
CD45, CD43, and CD7,[45] and galectin-3 by binding to either CD7 and CD29 or CD45
and CD71.[46] The secretion of galectins by MSCs affects T cell development and
activation, apoptosis, cytokine secretion and regulatory T cell function.[47]

MSCs also have a suppressive effect on B lymphocyte proliferation, chemotactic behavior,
and immunoglobulin production. Soluble factors involved in B lymphocyte inhibition are
secreted by MSCs upon a paracrine signal from B cells, as shown in a transwell assay by
Corcione et al. [48]. As well, MSCs interact with NK cells through a combination of direct
cell-to-cell contact and soluble molecules (ie TGF-ß, PGE2). The MSC-NK cell interaction
has immunosuppressive effects resulting in decreased NK cell proliferation, IFN-γ
production, and cytotoxicity activity. [49]

2. MSC interaction with dendritic cells (DC)
a. DC maturation: DC and macrophage infiltration initiates general immune responses and
perinsulitis of the pancreas in which β cell mass is decreased. MSCs have suppressive
effects both on the maturation and function of DCs, suggesting that MSCs may be beneficial
in an islet-MSC co-transplant setting by protecting the β cells from DC infiltration. MSCs
may suppress the generation of inflammatory DCs through IL-6 secretion.[24]. In vitro,
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MSCs have been shown to inhibit the differentiation of monocytes into immature DC.[21,
50, 51] In the context of islet transplantation, DC isolated from allo-islet-MSC co-transplant
recipients showed inhibited maturation, impaired antigen-presentation capabilities, and
suppressed IL-12 secretion, which plays an important role in DC maturation and function.
[52] In addition to inhibiting DC maturation, MSCs may modulate the secretory function of
DCs. Co-culture of DCs and MSCs resulted in changes in the cytokine secretion profile of
DC with upregulated expression of regulatory cytokines (IL-10) and reduced expression of
inflammatory cytokines (TNF-α, IFN-γ, IL-12).[51, 53, 54]

b. DC migration: In the islet allograft setting, co-administration of MSCs may also enhance
graft survival by minimizing DC migration. DCs are involved in initiating cell-mediated
immunity by migrating to local lymph nodes and presenting allo-islet antigens to the T cells.
DC migration is controlled in part by upregulation of CCR7, a chemokine receptor
important for migration to lymph nodes, and downregulation of tissue anchoring proteins
such as E-cadherin.[55] English et al. demonstrated in vitro, that co-culture of DC and
MSCs resulted in low CCR7 expression on DC and decreased DC migration in response to
CCL19 (chemokine for CCR7).[55] Thus the co-localization of MSCs with an islet graft
may reduce DC migration and recruitment to the peripheral draining lymph nodes, limiting
allogeneic antigen presentation and immune rejection.

3. MSC expand regulatory T cells—MSCs are known to induce regulatory T cell
expansion both in vitro and in vivo.[34, 56] The differentiation and generation of regulatory
T cells is dependent in part on TGF-β [57, 58]. TGF-β gene therapy was shown to enhance β
cell function in diabetic NOD mice, [59–61] and this protection may be partially attributed
to the effect of TGF-β on generation of regulatory T cells. MSCs administered into a rat
model of streptozotocin-induced β cell injury also shifted peripheral T cells toward a Th2
phenotype with IL-10/IL-13 production and higher frequencies of CD4+/CD8+ Foxp3+

regulatory T cells.[62] The MSC-mediated upregulation of IL-10 secretion [63, 64] may
facilitate T cell differentiation toward a tolerogenic regulatory T cell phenotype. [65]

In an NOD T1D model Fiornia et al. observed only a marginal increase in regulatory T cells
in the pancreatic draining lymph nodes and no significant increase in these cells in the
spleens of NOD mice treated with MSCs compared to control NOD mice.[22] The MSC-
mediated shift toward the generation of regulatory T cells is more consistently confirmed
when MSCs are co-administered with the islets rather than injected systemically and
allowed to migrate to the β cells. This is supported by the finding that diabetic non-human
primate recipients presented with increased numbers of regulatory T cells in their peripheral
blood following allo-islet-MSC co-transplantation. [66]

Similarly, Wood demonstrated MSCs ability to modulate immune cells in a mouse islet
allograft model in which MSCs, co-localized with the islets, prevented islet allo-graft
rejection. Additionally, T cells isolated from the spleen of islet-MSC co-transplant mouse
recipients showed low levels of IFN-γ and TNF-α secretion upon ex-vivo activation
compared to T cells isolated from islet alone transplant recipients.[67]. The mechanism of
MSCs’ ability to regulate the cytokine profile of inflammatory cells remains under
investigation as the suppression of T cell responses either at T1D onset or after islet
transplantation will be important to protect β cell mass and function.

B. Regenerative and repairing properties of MSCs as a therapeutic approach for T1D
treatment

1. Migration to site of injury—MSCs selectively migrate to sites of injury and
participate in repair as shown in lung injury[68] and myocardial infarction.[69] In vitro, Lin
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et al. used a microfluidic device to show that freshly isolated islets secrete attractant signals
that encourage MSC migration towards them, resulting in improved islet cell survival and
function.[70] In T1D MSCs may use their migratory properties to localize at the site of islet
cell damage and aid in cellular repair as shown by Prockop et al.[71] Similarly, in a
streptozotocin-induced β cell injury rodent model, MSCs injected intravenously appeared in
the pancreas within 7 days and reversed hyperglycemia.[62] These observations suggest that
in vivo recruitment of MSCs to injured pancreatic islets might contribute in β cell repair.
Some of the functional chemokine receptor/ligand pairs involved in MSC migration were
identified as CX3CL1-CX3CR1 and CXCL12-CXCR4.[72]

2. Supporting ß cellular regeneration and function at the site of injury—Once
the MSCs have reached the site of islet cell injury, they may aid in islet regeneration, as
shown in experimental animal models. Human MSCs injected into NOD-SCID mice
reduced hyperglycemia by increasing pancreatic islet β cell mass.[71, 73] Furthermore, Lee
et al. found that new islets formed off of pancreatic ducts, suggesting that MSCs promote
islet regeneration.[71] As well, Ezquer et al. observed a significantly increased β cell mass
in streptozotocin-induced diabetic mice treated with a single injection of MSCs compared to
non-treated animals.[74] Although MSC-treated recipients did not perform better against a
high glucose challenge, the increased number of insulin-producing cells suggests that MSC
treatment contributes to newly regenerated β cells through induced proliferation and
differentiation of endogenous progenitors.

Another potential mechanism for MSCs therapeutic effect in T1D is the modulation of islet
gene expression. Islets co-cultured with MSCs showed increased β cell expression of anti-
apoptotic signaling molecules, XIAP,[75, 76] Bcl-2, and Bcl-xL.[77] In addition, islets
isolated from streptozotocin-induced diabetic animals treated with MSCs expressed high
levels of PDX-1, a transcription factor that regulates insulin gene expression and plays a role
in pancreatic development and differentiation.[62] The expression and activation of PDX-1
can potentially stimulate growth, survival, and differentiation of β cells, resulting in
enhanced β cell function.

MSCs secrete many bioactive growth factors and cytokines with paracrine and autocrine
activities that may be responsible for the observed increase in expression of PDX-1 and anti-
apoptotic molecules.[78] Freshly isolated islets were susceptible to β cell loss from
apoptosis, but when co-cultured with cord-blood derived MSCs, these islets showed
improved viability and function.[79] This enhanced viability and function was due to anti-
apoptotic proteins and active trophic agents secreted by the MSCs, [79] such as HO-1,[80]
IL-6, hepatocyte growth factor (HGF), and SDF-1.[62, 79] IL-6 may induce expression of β
cell anti-apoptotic signaling molecules Bcl-2 and Bcl-xL.[81–84] HGF, a β cell growth
factor, [85] may prevent primary nonfunction in islet grafts by inhibiting apoptosis, inducing
β cell proliferation [86], and improving β cell insulin response to high glucose.[87] SDF-1 is
involved in islet generation and differentiation from endocrine stem cells within the
pancreas [88] and enhances the β cell regeneration potential provided by HGF. The secretion
of trophic molecules may be a key mechanism in the ability of MSCs to minimize β cell loss
during T1D onset and protect islet cell engraftment after transplantation.

3. Angiogenesis—MSCs secrete angiogenic and arteriogenic cytokines including
vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), angiopoietin-1
(Ang-1), and transforming growth factor–β (TGF-β). While each of these signaling proteins
plays a role in angiogenesis, MSCs may promote islet vascularization primarily through
VEGF secretion.[89] Increased VEGF expression at the islet transplant site significantly
increased graft survival and function.[90] Similarly, a marginal islet cell mass that reversed
hyperglycemia within 2 weeks in mice co-transplanted with islets and MSCs showed

Davis et al. Page 6

Curr Diab Rep. Author manuscript; available in PMC 2013 September 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



enhanced expression of VEGF.[91] In diabetic rodent models the co-transplantation of
MSCs with pancreatic islets improves graft function significantly through islet remodeling
and revascularization mediated by the MSCs.[92, 93]

Johansson et al. utilized MSCs to enhance islet revascularization by co-culturing MSCs and
endothelial cells with islets in vitro.[94] The MSCs may promote islet engraftment by
initiating the formation of vessel-like structures through secretion of proteases that degrade
the islet extracellular matrix and allow the migration of endothelial cells into the islet. The
ability for MSCs to encourage revascularization might allow for exploration of alternative
sites for islet transplantation. Currently, the preferred transplantation site is the portal vein of
the liver, which is not optimal due to venous hypoxemia and the potential risk of thrombosis.
[95] Islet transplantation in the subcutaneous site would be more accessible and minimally
invasive; however, the lack of early vascularization of the graft may result in loss of
function and inability to restore normoglycemia due to poor graft oxygen supply. [96] [97–
99]

An emerging therapeutic strategy involves the use of biomaterials to encapsulate islets and
overcome these obstacles. Biomaterials may enhance islet function by providing a three-
dimensional cellular support and delivering proteins, growth factors, and
immunosuppressive agents [100, 101]. Some approaches are focused on islet encapsulation
platforms with prevascularization of the device prior to islet implantation.[102] Our
laboratory is developing a silk hydrogel-based biomaterial in which islets are encapsulated
with ECM proteins (laminin and collagen IV) and bone marrow-derived MSCs to enhance
islet cell graft revascularization survival and function (Figure 1). The use of a biomaterial-
based approach in MSC-islet co-transplantation aims to reestablish the islet
microenvironment, enhance islet function and provide the protective and angiogenic effects
of MSC therapy.

IV. MSC and T2D
T2D is characterized clinically by uncontrolled hyperglycemia resulting from both insulin
resistance and pancreatic beta-cell dysfunction[103]. Interestingly, inflammation seems to
play a role in impairing beta cell insulin response to high glucose.[104]. Thus the
immunomodulatory properties of MSCs may also be beneficial for the treatment of patients
with T2D.[8] Recent randomized clinical trials in T2D suggest a beneficial effect of bone
marrow–mononuclear cells containing MSCs on glycemic control with reduction in
Hemoglobin A1C levels following intra arterial infusion into the vasculature of the pancreas.
Thus B cell function is most likely improved as a result of the MSC infusion.

But a recent study by Si et al elucidates the mechanisms through which MSCs may improve
insulin sensitivity in a rat model of T2D. [105] including promoting β-cell function,
improving insulin sensitivity possibly by upregulating GLUT4 expression, and elevating
phosphorylated IRS-1 and Akt levels in insulin target tissues. Specifically MSCs were able
to restore the expression of total GLUT4 protein peripheral tissues (skeletal muscle, adipose
tissue, and liver) through an insulin-independent pathway[105]…..

V. Future Challenges
MSCs have been studied as therapies in many immunopathological disorders, including:
autoimmune encephalomyelitis, a model of human multiple sclerosis, arthritis, systemic
lupus erythematosus, Crohn’s disease, graft-versus-host-disease, and T1D.[2] MSCs are now
in clinical trials as therapies for more than 30 indications (http://clinicaltrials.gov). But some
key issues need to be addressed before MSC based therapies become a safe and viable
option.
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Most importantly, the standardization of MSC isolation, characterization and culture in vitro
needs to be addressed as MSC characteristics may vary according to culture conditions and
passage number. [25] Even though cultured MSCs show progressive senescence and growth
arrest without tumor transformation, [106] these may still acquire genetic abnormality and
become tumorigenic in vivo.[107] In the context of islet transplantation, it is unclear if co-
transplanted MSCs engraft and differentiate at the implantation site. Thus the long-term
stability of MSC activity and function in vivo after transplantation needs to be assessed and
safety criteria need to be defined prior to transplantation.

The majority of research to date has focused on bone marrow-derived MSCs, but MSCs
derived from other tissue sources, such as umbilical cord and adipose, may also have
immunomodulatory properties. [108, 109] The regenerative and immunomodulatory
properties of MSCs most likely will vary with the tissue source. For example, adipose-
derived MSCs show a greater angiogenic potential than bone marrow-derived MSCs in a
prevascularized biomaterial implanted in the subcutaneous tissue of diabetic rats [110]. In
addition, the question of appropriate donor source needs to be clarified on whether
autologous or allogeneic MSCs should be used. The ability to transplant autologous MSCs,
if viable, may be advantageous to further prevent an alloimmune response against MSCs.
[21] But in the case of T1D, autologous MSCs are less functional and of less therapeutic
value, as observed with allogeneic rather than autologous MSCs reversing hyperglycemia in
an NOD mouse model.[22] Thus the criteria for choosing a specific tissue and/or donor
MSC source may differ with the indication and whether the treatment is aimed at
modulating the autoimmune disease or enhancing pancreatic islet engraftment and
vascularization.

VI. Conclusions
MSC have the potential to aid in the treatment of T1D and overcome some of the current
limitations to islet transplantation. The immunomodulatory properties of MSCs may assist in
reducing inflammatory damage to the islets in the early peri-transplant period. MSCs may
also attenuate autoimmunity through their immunomodulatory properties while secreting
regulatory cytokines to control autoreactive T cells and alloreactive effector CD4+ and
CD8+ T cells. Thus MSCs may be a viable alternative to harmful immunosuppressive drugs
that can damage islets. The ability of MSCs to secrete trophic and angiogenic factors may
also prevent early islet damage and assist in engraftment. Together, MSCs may potentially
establish a microenvironment that stimulates growth, survival and differentiation of β cells
and minimizes apoptosis and necrosis. The multiple beneficiary roles that MSCs play could
help in alleviating donor shortages by reducing the number of islets needed per transplant,
decreasing early islet cell death and maintaining longterm graft function.
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Figure 1. Silk hydrogel-based biomaterial
Islets are co-encapsulated in a silk hydrogel with extracellular matrix proteins (ECM) and
with bone marrow-derived mesenschymal stem cells (MSC) to enhance islet cell graft
revascularization survival and function.

Davis et al. Page 15

Curr Diab Rep. Author manuscript; available in PMC 2013 September 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Davis et al. Page 16

Ta
bl

e 
I

Im
m

un
om

od
ul

at
or

y 
M

ol
ec

ul
es

 E
xp

re
ss

ed
 o

r 
Se

cr
et

ed
 b

y 
M

SC
s 

in
 th

e 
C

on
te

xt
 o

f 
T

yp
e 

I 
D

ia
be

te
s

M
ol

ec
ul

e
T

ar
ge

t 
C

el
l

E
ff

ec
t

R
ef

er
en

ce

PD
-1

A
ut

or
ea

ct
iv

e 
T

 c
el

ls
B

in
ds

 to
 P

D
-L

1 
an

d 
su

pp
re

ss
es

 p
ro

lif
er

at
io

n 
by

 d
ir

ec
t c

el
l c

on
ta

ct
Ju

re
w

ic
z,

 M
., 

et
 a

l. 
(2

01
0)

ID
O

A
ct

iv
at

ed
 T

 c
el

ls
N

K
 c

el
ls

D
ep

le
te

s 
am

in
o 

ac
id

s 
an

d 
in

hi
bi

ts
 im

m
un

e 
ce

ll 
pr

ol
if

er
at

io
n 

an
d 

fu
nc

tio
n

K
ra

m
pe

ra
, M

., 
L

. e
t a

l. 
(2

00
6)

M
M

Ps
A

ct
iv

at
ed

 T
 c

el
ls

R
ed

uc
es

 T
 c

el
l r

es
po

ns
iv

en
es

s 
to

 I
L

-2
D

in
g,

 Y
.C

., 
et

 a
l. 

(2
00

9)

PG
E

2
A

ct
iv

at
ed

 T
 c

el
ls

In
hi

bi
ts

 I
L

-2
 p

ro
du

ct
io

n 
an

d 
pr

ol
if

er
at

io
n 

by
 d

ir
ec

t a
ct

io
n 

on
 T

 c
el

ls
T

se
, W

. T
., 

et
 a

l. 
(2

00
3)

D
C

In
hi

bi
ts

 D
C

 f
un

ct
io

n 
an

d 
se

cr
et

io
n 

of
 I

L
-1

2 
an

d 
IF

N
-γ

.
C

he
n,

 L
., 

Z
ha

ng
, W

., 
et

 a
l. 

(2
00

7)

N
K

 C
el

ls
Su

pp
re

ss
es

 I
L

-2
–a

nd
 I

L
-1

5–
m

ed
ia

te
d 

cy
to

to
xi

ci
ty

 a
nd

 c
yt

ok
in

e 
pr

od
uc

tio
n.

So
tir

op
ou

lo
u,

 P
. A

., 
et

 a
l. 

(2
00

6)

N
O

A
ct

iv
at

ed
 T

 c
el

ls
In

hi
bi

ts
 T

 c
el

l a
ct

iv
at

io
n 

an
d 

ph
os

ph
or

yl
at

io
n 

of
 S

ta
t5

Sa
to

, K
., 

et
 a

l. 
(2

00
7)

T
G

F-
β

A
ct

iv
at

ed
 T

 c
el

ls
In

hi
bi

ts
 p

ro
lif

er
at

io
n

D
i N

ic
ol

a,
 M

., 
et

 a
l. 

(2
00

2)

R
eg

ul
at

or
y 

T
 c

el
ls

Fa
ci

lit
at

es
 e

xp
an

si
on

 a
nd

 g
en

er
at

io
n

C
as

ir
ag

hi
, A

zz
ol

lin
i e

t a
l. 

(2
00

8)

N
K

 c
el

ls
In

hi
bi

ts
 I

L
-2

-i
nd

uc
ed

 a
ct

iv
at

io
n 

of
 N

K
 p

ro
lif

er
at

io
n

Sp
ag

gi
ar

i, 
G

.M
., 

et
 a

l. 
(2

00
6)

IL
-6

D
C

In
hi

bi
ts

 d
if

fe
re

nt
ia

tio
n 

an
d 

m
at

ur
at

io
n

D
jo

ua
d,

 F
., 

et
 a

l. 
(2

00
7)

Ji
an

g,
 X

. X
., 

et
 a

l. 
(2

00
5)

R
eg

ul
at

or
y 

T
 c

el
ls

In
cr

ea
se

s 
IL

-1
0 

se
cr

et
io

n
E

ng
el

a,
 A

.U
., 

et
 a

l. 
(2

01
2)

C
ro

p,
 M

.J
., 

et
 a

l. 
(2

01
0)

H
G

F
A

ct
iv

at
ed

 T
 c

el
ls

Su
pp

re
ss

es
 p

ro
lif

er
at

io
n 

sy
ne

rg
is

tic
al

ly
 w

ith
 T

G
F-
β

D
i N

ic
ol

a,
 M

., 
et

 a
l. 

(2
00

2)

N
K

 c
el

ls
Su

pp
re

ss
es

 p
ro

lif
er

at
io

n,
 c

yt
ok

in
e 

se
cr

et
io

n,
 a

nd
 c

yt
ot

ox
ic

ity
So

tir
op

ou
lo

u,
 P

. A
., 

et
 a

l. 
(2

00
6)

G
al

ec
tin

s
T

 c
el

ls
In

du
ce

s 
ap

op
to

si
s

Si
ou

d,
 M

. e
t a

l. 
(2

01
1)

A
bb

re
vi

at
io

ns
: P

D
-1

, p
ro

gr
am

m
ed

 d
ea

th
 1

; P
D

-L
1,

 p
ro

gr
am

m
ed

 d
ea

th
 li

ga
nd

 1
; I

D
O

, 2
,3

-d
io

xy
ge

na
se

l; 
N

K
 c

el
ls

, n
at

ur
al

 k
ill

er
 c

el
ls

; M
M

Ps
, m

at
ri

x 
m

et
al

lo
pr

ot
ei

na
se

s;
 I

L
-2

, i
nt

er
le

uk
in

-2
; P

G
E

2,
pr

os
ta

gl
an

di
n-

E
2;

 D
C

, d
en

dr
iti

c 
ce

ll;
 I

L
-1

2,
 in

te
rl

eu
ki

n-
12

; T
G

F-
α

, t
ra

ns
fo

rm
in

g 
gr

ow
th

 f
ac

to
r 

al
ph

a;
 I

L
-1

5,
 in

te
rl

eu
ki

n-
15

; N
O

, n
itr

ic
 o

xi
de

; T
G

F-
β,

 tr
an

sf
or

m
in

g 
gr

ow
th

 f
ac

to
r 

be
ta

; I
L

-6
, i

nt
er

le
uk

in
-6

;
IL

-1
0,

 in
te

rl
eu

ki
n-

10
; H

G
F,

 h
ep

at
oc

yt
e 

gr
ow

th
 f

ac
to

r.

Curr Diab Rep. Author manuscript; available in PMC 2013 September 09.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Davis et al. Page 17

Ta
bl

e 
II

C
he

m
oa

ttr
ac

ta
nt

s 
an

d 
R

eg
en

er
at

iv
e 

M
ol

ec
ul

es
 S

up
po

rt
 β

 C
el

l R
ep

ai
r 

an
d 

Fu
nc

tio
n

R
eg

en
er

at
iv

e 
an

d 
R

ep
ai

ri
ng

P
ro

pe
rt

ie
s

C
he

m
oa

tt
ra

ct
an

t 
F

ac
to

r 
(c

el
l

of
 o

ri
gi

n)
T

ar
ge

t 
R

ec
ep

to
r/

C
el

l t
yp

e/
E

ff
ec

t
R

ef
er

en
ce

M
ig

ra
tio

n 
to

 s
ite

s 
of

 in
ju

ry

C
X

3C
L

-1
 (
β 

ce
ll)

C
X

3C
R

1/
M

SC
/I

nd
uc

es
 m

ig
ra

to
ry

 a
ct

iv
ity

.
So

rd
i, 

V
., 

et
 a

l. 
(2

00
5)

C
X

C
L

12
 (

in
tr

a 
is

le
t e

nd
ot

he
lia

l
ce

ll)
C

X
C

R
4/

M
SC

/A
ttr

ac
ts

 M
SC

s 
to

 is
le

ts

B
et

a-
ce

ll 
R

ep
ai

r 
an

d
P

ro
te

ct
io

n
P

ro
te

in
/C

yt
ok

in
e 

se
cr

et
ed

 b
y

M
SC

s
T

ar
ge

t 
M

ol
ec

ul
e 

or
 R

ec
ep

to
r/

E
ff

ec
t

R
ef

er
en

ce

A
nt

i-
ap

op
to

si
s

H
O

-1
Fr

ee
 H

em
e/

co
un

te
ra

ct
s 

in
fl

am
m

at
or

y 
re

ac
tio

ns
 o

f 
he

m
e 

m
et

ab
ol

ite
s

L
u,

 Y
., 

et
 a

l (
20

10
)

IL
-6

X
IA

P/
in

hi
bi

ts
 c

as
pa

se
-3

 a
nd

 c
as

pa
se

-9
 to

 in
te

rr
up

t t
he

 a
po

pt
os

is
 p

at
hw

ay
L

u,
 S

., 
et

 a
l. 

(2
01

1)
C

aj
a,

 L
., 

et
 a

l. 
(2

01
1)

B
cl

-2
/m

od
ul

at
es

 B
ax

 a
nd

 d
ow

n 
re

gu
la

te
s 

ap
op

to
si

s
L

u,
 S

., 
et

 a
l. 

(2
01

1)
Pa

rk
, K

. S
., 

et
 a

l. 
(2

00
9)

B
cl

-x
L

/in
te

ra
ct

s 
w

ith
 R

af
-1

 a
nd

 p
re

ve
nt

s 
ap

op
to

si
s.

β 
ce

ll 
fu

nc
tio

n
U

nk
no

w
n

PD
X

-1
/β

 c
el

l d
if

fe
re

nt
ia

tio
n 

an
d 

fu
nc

tio
n

B
ou

m
az

a,
 I

., 
et

 a
l. 

(2
00

9)

H
G

F
H

G
F/

SF
 r

ec
ep

to
r 

(c
-m

et
 p

ro
to

-o
nc

og
en

e 
pr

od
uc

t)
/β

 c
el

l g
ro

w
th

 a
nd

 in
su

lin
ot

ro
pi

c 
fa

ct
or

 th
at

in
hi

bi
ts

 a
po

pt
os

is
N

ak
an

o,
 M

., 
et

 a
l. 

(2
00

0)

A
ng

io
ge

ne
si

s
V

E
G

F
V

E
G

FR
1 

an
d 

V
E

G
FR

2/
in

iti
at

es
 f

or
m

at
io

n 
of

 v
es

se
l-

lik
e 

st
ru

ct
ur

es
 a

nd
 in

cr
ea

se
s 

va
sc

ul
ar

iz
at

io
n.

Pa
rk

, K
.S

. e
t a

l. 
(2

01
0)

Fi
gl

iu
zz

i, 
M

., 
et

 a
l. 

(2
00

9)

T
G

F-
β

T
G

F-
β/

m
od

ul
at

es
 a

ng
io

ge
ni

c 
pr

oc
es

se
s 

vi
a 

va
sc

ul
ar

 c
el

l r
ec

ep
to

rs
 A

L
K

-1
 a

nd
 A

K
L

-5
 a

nd
 e

nh
an

ce
s

V
E

G
F 

sy
nt

he
si

s
Pa

rk
, K

., 
et

 a
l. 

(2
00

9)

A
bb

re
vi

at
io

ns
: C

X
3C

L
-1

, c
he

m
ok

in
e 

(C
-X

3-
C

 m
ot

if
) 

lig
an

d 
1;

 C
X

3C
R

1,
 C

X
3C

 c
he

m
ok

in
e 

re
ce

pt
or

 1
; C

X
C

L
12

, C
X

C
L

12
 c

he
m

ok
in

e 
(C

-X
-C

 m
ot

if
) 

lig
an

d 
12

; C
X

C
R

4,
 C

-X
-C

 c
he

m
ok

in
e 

re
ce

pt
or

 ty
pe

4;
 H

O
-1

, h
em

e 
ox

yg
en

as
e-

1;
 I

L
-6

, i
nt

er
le

uk
in

-6
; X

IA
P,

 X
-l

in
ke

d 
in

hi
bi

to
r 

of
 a

po
pt

os
is

 p
ro

te
in

; B
cl

-2
, B

-c
el

l l
ym

ph
om

a 
2;

 B
ax

, B
cl

-2
–a

ss
oc

ia
te

d 
X

 p
ro

te
in

; B
cl

-x
L

, B
-c

el
l l

ym
ph

om
a-

ex
tr

a 
la

rg
e;

 P
D

X
-1

,
pa

nc
re

at
ic

 a
nd

 d
uo

de
na

l h
om

eo
bo

x 
1;

 H
G

F/
SF

, h
ep

at
oc

yt
e 

gr
ow

th
 f

ac
to

r/
sc

at
te

r 
fa

ct
or

; V
E

G
F,

 v
as

cu
la

r 
en

do
th

el
ia

l g
ro

w
th

 f
ac

to
r;

 V
E

G
FR

1,
 v

as
cu

la
r 

en
do

th
el

ia
l g

ro
w

th
 f

ac
to

r 
re

ce
pt

or
 1

; V
E

G
FR

2,
va

sc
ul

ar
 e

nd
ot

he
lia

l g
ro

w
th

 f
ac

to
r 

re
ce

pt
or

 2
; T

G
F-
β,

 tr
an

sf
or

m
in

g 
gr

ow
th

 f
ac

to
r-

be
ta

; A
L

K
-1

, a
ct

iv
in

 r
ec

ep
to

r-
lik

e 
ki

na
se

 1
; A

L
K

-5
, a

ct
iv

in
 r

ec
ep

to
r-

lik
e 

ki
na

se
 5

Curr Diab Rep. Author manuscript; available in PMC 2013 September 09.


