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Abstract

There is compelling in vivo evidence from reports on human genetic mutations and transgenic mice that some microRNAs
(miRNAs) play an important functional role in regulating skeletal development and growth. A number of published in vitro
studies also point toward a role for miRNAs in controlling chondrocyte gene expression and differentiation. However,
information on miRNAs that may regulate a specific phase of chondrocyte differentiation (i.e. production of progenitor,
differentiated or hypertrophic chondrocytes) is lacking. To attempt to bridge this knowledge gap, we have investigated
miRNA expression patterns in human embryonic cartilage tissue. Specifically, a developmental time point was selected, prior
to endochondral ossification in the embryonic limb, to permit analysis of three distinct populations of chondrocytes. The
location of chondroprogenitor cells, differentiated chondrocytes and hypertrophic chondrocytes in gestational day 54–56
human embryonic limb tissue sections was confirmed both histologically and by specific collagen expression patterns. Laser
capture microdissection was utilized to separate the three chondrocyte populations and a miRNA profiling study was
carried out using TaqManH OpenArrayH Human MicroRNA Panels (Applied BiosystemsH). Here we report on abundantly
expressed miRNAs in human embryonic cartilage tissue and, more importantly, we have identified miRNAs that are
significantly differentially expressed between precursor, differentiated and hypertrophic chondrocytes by 2-fold or more.
Some of the miRNAs identified in this study have been described in other aspects of cartilage or bone biology, while others
have not yet been reported in chondrocytes. Finally, a bioinformatics approach was applied to begin to decipher
developmental cellular pathways that may be regulated by groups of differentially expressed miRNAs during distinct stages
of chondrogenesis. Data obtained from this work will serve as an important resource of information for the field of cartilage
biology and will enhance our understanding of miRNA-driven mechanisms regulating cartilage and endochondral bone
development, regeneration and repair.
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Introduction

Development of cartilage tissue begins by the condensation of

mesenchymal stem cells (MSCs) and subsequent differentiation of

these cells toward the chondrocyte lineage. Cells within the

cartilage anlagen proliferate and generate an extracellular matrix

(ECM) rich in type II collagen and proteoglycans, thus permitting

cartilage growth and subsequent limb formation [1]. Cartilage of

the growth plate serves as a template for long bone formation

whereby proliferating chondrocytes terminally differentiate to

become large hypertrophic cells that specifically synthesize type X

collagen. Preceding apoptotic cell death, hypertrophic chondro-

cytes regulate matrix mineralization and blood vessel invasion

resulting in cancellous bone formation by a process known as

endochondral ossification [2]. Articular cartilage is found at the

bone epiphyses lining our joints and functions to lubricate and

distribute load within the joint. This hyaline cartilage is distinct

from growth plate cartilage in that chondrocytes do not terminally

differentiate toward hypertrophy and the mature tissue remains

avascular [3–5]. Many genes encoding a wide range of molecules

such as histone modifying proteins, transcription factors, growth

factors, ECM components, ECM modifying enzymes, cell

receptors etc are known to regulate specific stages of chondrocyte

differentiation. Mutations in or ablation of such cartilage-

regulatory genes are known to cause skeletal abnormalities,

resulting in diseases such as chondrodysplasias (growth plate

cartilage defects) or osteoarthritis (articular cartilage defects).

It has been estimated that as many as 60% of coding genes are

regulated by the family of small, non-coding RNAs called

microRNAs (miRNAs) [6]. This introduces another level of

complexity into the mechanisms that control cellular functions

for proper development of tissues and organs of the body,

including those of the skeletal system. With respect to miRNA

biogenesis, large primary (pri) miRNAs are first transcribed from

intergenic regions of the genome, or from introns of coding genes,

and then processed in the nucleus by a Drosha-containing protein

complex to smaller, 70–100 nucleotide (nt) precursor (pre)

miRNAs. Pre-miRNAs are transported from the nucleus to the
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cytoplasm by Exportin 5 and then further processed by another

protein complex containing the enzyme Dicer to generate small

(,19–24 nt) imperfect double-stranded miRNA duplexes. These

miRNA duplexes enter the RNA induced silencing complex

(RISC) containing important proteins called Argonautes that guide

interaction of either the 5p or 3p miRNA strand with its target

mRNA sequence [7]. These target sequences are commonly

located in 39UTRs but there are increased reports that miRNAs

can also bind to sequences within exons [8]. The overall effect of

these miRNA-target gene interactions is to down-regulate protein

expression via translational repression or mRNA degradation

[9,10].

Since their discovery in C. elegans in 1993, we now understand a

lot about the physiological roles of miRNAs in the mammalian

system with respect to controlling cell proliferation, lineage

determination, differentiation, apoptosis, etc [11,12]. Dysregula-

tion of miRNAs has been associated with a number of disease

states including cancers, cardiomyopathies, neurological disorders

and deafness [13–17]. However, there are only a few reports of

genetic mutations leading to skeletal defects in humans. One study

showed that germline deletion of the miR-17,92 cluster causes

human skeletal and growth defects involving microcephaly, short

stature and digital abnormalities [18]. A mutation in the 39UTR of

the human HDAC6 gene, which disrupts a miR-433 binding site,

was reported to cause a dominant X-linked chondrodysplasia [19].

Another report revealed a link between human juvenile osteopo-

rosis and a mutation in the precursor sequence of miR-2861 [20].

It is predicted that many more mutations will be reported as we

continue to learn about the functions of miRNAs in skeletal

biology [21–23].

To date, there is limited information on the expression and

function of specific miRNAs in cartilage development in vivo. What

is known, however, has predominantly come from studies in mice.

Conditional knock-out of the pre-miRNA processing enzyme,

Dicer, was shown to cause severe skeletal growth defects due to

alterations in chondrocyte proliferation and hypertrophy [24]. To

date, miR-140 is the best-described miRNA in cartilage since it

was identified as abundantly expressed and almost specific to

cartilaginous tissues during zebrafish and mouse development

[25,26]. miR-140 null mice have been generated by two

independent groups that reported craniofacial deformities and

dwarfism due to defects in growth plate cartilage of long bones

[27,28]. A role for miR-140 in regulating homeostasis of mature

articular cartilage has also been proposed [27]. In addition to

studies on miR-140, there is an increasing number of reports on

expression and function of other miRNAs in vitro. Among such

studies, attempts have been made to define miRNA expression

patterns and function during in vitro chondrogenesis of primary

stem cells or precursor cell lines [29–31]. Approaches have also

been applied to study miRNA expression in primary chondrocytes,

comparing differentiated vs de-differentiated cells or normal vs

osteoarthritic chondrocytes, for example [31–39]. While these

studies are important, they have not provided information on the

role of miRNAs in regulating specific phases of chondrocyte

differentiation in vivo during growth plate or articular cartilage

development, for example. To attempt to bridge this knowledge

gap, we investigated differential miRNA expression patterns

within human embryonic cartilage tissue. Specifically, we chose

a time point of development prior to endochondral bone

formation (gestational day 54–56) where three populations of

chondrocytes can be distinguished in tissue sections of the human

embryonic limb. Utilizing laser capture microdissection, cartilage

tissue containing either precursor chondrocytes, differentiated

chondrocytes or hypertrophic chondrocytes was isolated and

expression of miRNAs in each region was determined by

TaqManH OpenArrayH analysis. Here, we report on those

miRNAs that were found to be significantly differentially expressed

between chondrocytes in vivo at these three specific stages of

development. Data acquired from this study will be an important

resource of information toward a better understanding of miRNA

function in regulating cartilage and long bone development and

disease. Additionally, findings from this research may aid toward

the development of future miR-based tissue engineering strategies

to promote articular cartilage or endochondral bone repair or

regeneration.

Materials and Methods

Tissue source and ethics statement
Human, normal embryonic tissue samples (limbs) at gestational

day 54–56 were obtained from a tissue collection and distribution

program at the Laboratory of Developmental Biology (LDB)

within the Department of Pediatrics and Medicine at the

University of Washington in Seattle. This service provides

precisely-staged normal human embryonic tissue specimens to

grant-funded researchers nationally and internationally [40–42].

Activities of this Laboratory are IRB-approved by the University

of Washington Human Subjects Division (protocol # 41557).

These approved activities include the documentation of written

informed consent by the donor participants to collect tissue

following surgery and to distribute the tissue to researchers.

Funding for this tissue collection and distribution service is

currently provided from the National Institute of Child Health and

Human Development of the National Institutes of Health (R24

HD000836). Request to work with this human embryonic tissue

was reviewed by the Human Research Protection Office (HRPO)

at Washington University in St Louis. This project was deemed

exempt since it did not constitute human subjects research. This

was due to the fact that receiving embryonic tissue from University

of Washington would not involve obtaining data through

intervention or interaction with a living individual. Also, other

than gestational age, no identifying information was provided

upon receipt of the tissue. Limb tissues obtained by LDB Staff

were frozen immediately in coronal orientation in Tissue-TekH
O.C.T. compound and shipped overnight to the McAlinden

Laboratory. Tissue was stored at minus 80uC for no longer than 2

wk before collecting frozen sections. In some cases, tissue collected

by LDB Staff was immediately fixed in 10% formalin and shipped

to the McAlinden Laboratory within 24 h. Upon receipt, tissue

was processed immediately for paraffin embedding.

Histology and immunofluorescence
Paraffin sections were treated with xylene, rehydrated through

decreasing concentrations of ethanol, stained in Weigert’s

Hematoxylin for 5 min, washed in running water for 5 min and

stained with 0.001% Fast Green for 3 min. Samples were then

rinsed in 1% glacial acetic acid and stained in 0.1% Safranin O for

5 min. Samples were dehydrated and cleared by incubation in

95% alcohol, 100% alcohol and then xylene. For immunofluo-

rescent antibody (Ab) staining, de-paraffinized sections were

treated with 1% hyaluronidase (Sigma) for 30 min at 37uC.

Sections were rinsed with 16 PBS and blocked with 10% goat

serum for 1 h at room temperature and then incubated overnight

at 4uC with the following primary antibodies: 1) a rabbit

polyclonal ‘‘anti-IIA’’ antibody (Ab) that recognizes the exon 2-

encoded cysteine-rich domain of the amino propeptide of type II

procollagen (1/400 dilution) [43]; 2) a rat polyclonal Ab against

the triple helical domain of type II collagen (1/100 dilution) [44];
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3) a rabbit polyclonal Ab against type I collagen (1/300 dilution)

(abcamH); and 4) a rabbit polyclonal Ab against the hypertrophic

chondrocyte marker, type X collagen (1/1000 dilution) [45,46].

Each antibody was diluted in 2% goat serum. Following 16PBS

washes, paraffin sections were incubated with species-specific

secondary antibodies (1/250 dilution) that were conjugated to

Alexa fluorescent dyes (Invitrogen: goat anti-rabbit Alexa 488;

goat anti-rat Alexa 594) for 1 h at room temperature. DAPI

mounting medium was applied following three rinses in 16 PBS

and stained sections were cover-slipped. A Nikon Eclipse E800

fluorescence microscope was used to view the fluorescent images.

The FITC and TRITC band pass filter sets were used to view

sections labeled with Alexa 488 and 594 dyes, respectively and the

DAPI filter set was used for viewing cell nuclei.

Laser capture microdissection and RNA isolation
Frozen blocks of human embryonic limb tissue were sectioned

(20 mm) onto RNAse-free polyethylene naphthalate (PEN)-coated

glass slides (Leica Microsystems) that are specifically designed for

laser capture microdissection (LCM). Frozen sections were stored

at minus 80uC for up to 48 h before being processed for LCM.

Upon removal from cold storage, the tissue sections were exposed

to 30 s incubations in cold 75% ethanol followed by 50% ethanol,

20% ethanol, dH2O, 0.02% Toluidine Blue (prepared in RNAse

free H2O), two dH20 washes, 75% ethanol, 95% ethanol and

100% ethanol. Finally, sections were transferred to xylene for

3 min and air-dried. LCM was immediately carried out using the

LMD7000 system (Leica Microsystems). Three cartilage regions of

interest in each tissue section were selected using the system

software resulting in a contact and contamination-free collection of

tissue directly into one of the three sterile 0.5 mL Eppendorf caps

containing 60 ml of lysis buffer from the RNA isolation kit of

choice. This procedure was repeated for all tissue sections derived

from one limb specimen (generally 35–40 sections per limb) and

laser-captured tissue was pooled together into the appropriate

collection vial. In some cases, both limbs were obtained from the

same embryo and tissue collected from sections of each limb was

pooled and counted as one specimen. Subsequently, for each

specimen (whether one or two limbs were received), three separate

Eppendorf tubes containing tissue from the precursor chondrocyte

(PC), differentiated chondrocyte (DC) or hypertrophic chondro-

cyte (HYP) regions were obtained. Note than PC, DC or HYP

tissue was dissected from both the developing femur and tibia and

pooled together. A total of nine independent specimens were

processed for LCM. Total RNA, including small miRNAs, was

isolated from laser capture microdissected tissue using either the

Total RNA Purification Micro Kit (Norgen Biotek Corp.) or the

mirVanaTM miRNA Isolation Kit (AmbionH). Both assay kits were

comparable with respect to the RNA yield (ranging from 15–

100 ng/mL depending on the number of tissue sections pooled) as

measured by spectrophotometry (NanoDropTM; Thermo Scien-

tific).

TaqManH OpenArrayH technology to determine
microRNA expression profiles

The TaqManH OpenArrayH Human MicroRNA Panel enables

simultaneous running of hundreds of TaqManH MicroRNA

Assays in a plate format on the Applied Biosystems OpenArrayH
Real-Time PCR system [47]. To prepare samples for OpenArrayH
analysis, mature miRNAs in the RNA samples obtained by LCM

were reverse transcribed using MegaplexTM RT primers in a set of

two pre-defined pools (Pool A and Pool B), each pool containing

up to 381 stem-looped RT primers. Depending on the concen-

tration of RNA obtained from each specimen, 30 ng of RNA was

used for the RT step (lower than the recommended amount of

100 ng). The recommended RT thermal cycling conditions were

used: 16uC, 2 min; [42uC, 1 min; 50uC, 1 sec for 40 cycles]; 85uC,

5 min; 4uC hold. An aliquot of the RT reaction (5 mL instead of

the recommended 2.5 mL) was used for the non-biased pre-

amplification step to increase the quantity of cDNA prior to PCR

on the TaqManH OpenArrayH MicroRNA Panel. PreAmp

Reaction Mix, containing PreAmp Primer Pool A or Pool B and

TaqManH PreAmp Master Mix (20 mL) was added to RT cDNA

(5 mL) and the final 25 mL reaction mix underwent pre-amplifi-

cation using the following thermal cycling parameters: 95uC
10 min; 55uC, 2 min; 72uC, 2 min; [95uC, 15 sec, 60uC, 4 min for

15 cycles], 99.9uC, 10 min; 4uC hold. The number of cycles in this

pre-amplification step was increased from the recommended 12

cycles to 15 cycles. The pre-amplification products (5 mL) were

diluted in 0.1X TE buffer (95 mL) before adding the samples on

the TaqManH OpenArrayH MicroPanels (a 20 fold dilution

instead of the recommended 40 fold dilution of pre-amplified

cDNA products). Finally, trained staff at Washington University

Genome Technology Access Center loaded the diluted pre-

amplification samples onto the TaqManH OpenArrayH Micro-

RNA Panels using the AccuFillTM System and PCR was carried

out on the OpenArrayH Real-Time PCR System using the

manufacturer’s instructions. Note that the alterations in the

recommended protocol (i.e. reduced levels of RNA for the RT

step, increased pre-amplification cycle numbers and reduced

dilution of the pre-amplified cDNA samples) were made due to the

relatively low concentrations of RNA obtained from laser capture

microdissection. Importantly, technical staff at Life Technologies

(Dr. Yu Liang, personal communication) tested the feasibility of

using the adjusted protocol by analyzing human lung RNA

samples and comparing miRNA expression data generated from

the adjusted protocol and the recommended protocol. miRNA

expression profiles were found to correlate well between the

recommended and adjusted protocols (Figure S1).

Analysis of TaqManH OpenArrayH microRNA expression
data

Expression data were processed using OpenArrayH Real-Time

qPCR Analysis Software (BioTroveTM, version 1.0.4). This

software processed raw fluorescent signal and generated the cycle

threshold (Ct) and cycle threshold confidence value for each assay

within the array. A Ct confidence value threshold of 150 was used

to identify assays with a reliable Ct value. After this filtering, Ct

values were imported into the DataAssistTM software (Applied

Biosystems, version 2.7). The maximum allowable Ct value was set

at 29. This Ct cut-off was chosen since OpenArrayH reactions are

carried out in small volumes (33 nL); a single molecule is more

concentrated in a smaller reaction volume and amplifies sooner

than it would from regular microplate qPCRs. Personal commu-

nication with Life Technologies technicians informed us that single

copy numbers will produce, on average, a Ct value of 29 with

TaqManH assays. The correlation of Ct values between samples

from the same cartilage region was examined to identify any

samples with potential low data quality. For normalization using

an endogenous control, the stability scores chart was used to

identify which one of the three endogenous control RNAs

(RNU44, RNU48 or U6 rRNA) had the most stable expression

in multiple samples. For global normalization, the average of Ct

values for all the assays excluding the three endogenous controls

was calculated and this value was used as the background setting.

The Ct value of the selected background was subtracted from the

Ct value of each assay to calculate the DCt values. To identify

highest-expressed miRNAs, the average normalized expression

MicroRNAs in Human Embryonic Chondrocytes
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level of a miRNA from all samples was calculated (average 22DCt).

The same list of most highly-expressed miRNAs was generated

regardless of whether RNU44 or global mean normalization was

used. Therefore, data on differentially-expressed miRNAs was

calculated using RNU44 normalization. Using the normalized

DCt values, the fold change between two groups of samples

collected from two different cartilage regions was calculated as

mean (2(2DCt
1
))/mean (2(2DCt

2
)). Significance Analysis of Micro-

arrays (SAM) [48–51] was used to calculate the significance of

differential expression. miRNAs with at least a two fold change in

expression between cells of two cartilage regions, at a false

discovery rate less than or equal to 5% (q-value), were identified as

differentially expressed. Raw data has been submitted to the GEO

data depository (online at www.ncbi.nlm.nih.gov/geo/) and

assigned the accession code: GSE49152.

Pathway analysis of potential microRNA target genes
Following identification of miRNAs that are differentially-

expressed between the three cartilage regions (PC, DC and HYP),

potential target genes of miRNAs within each comparison group

were predicted using three algorithms (TargetScan, miRanda,

PicTar) [6,52,53]. For miRanda target prediction, target genes

were selected if they contained at least one binding site with an

mirSVR score#20.1. For TargetScan prediction, target genes

with at least one conserved miRNA binding site were selected.

Overall, for each miRNA in question, genes predicted to be targets

by at least two of the three algorithms were identified. This was

repeated for each miRNA listed in each comparison group: [i)

PC.DC; ii) PC,DC; iii) DC.HYP and iv) DC,HYP] and all

potential target genes were consolidated and entered into

MetaCoreTM (Thomson Reuters Systems Biology Solutions) to

characterize biological pathways involving these potential target

genes. Pathway maps were used in enrichment analysis and

significant pathways were identified using a hypergeometric p-

value cut-off of 0.05. This approach has been used in previous

studies to identify pathways underlying predicted targets of

miRNAs [54,55]. We did not include differentially expressed

miRNAs found in the PC vs HYP comparisons for these analyses

since many of the same miRNAs listed here were also found in the

other comparisons. Also PC and HYP cells are at extreme ends of

the differentiation spectrum. At this stage, we were initially

interested in identifying enriched pathways that may be regulated

by miRNAs through the normal course of differentiation (i.e. PC

PDC P HYP cells).

Results

Tissue selection for laser capture microdissection
Human embryonic limbs at day 54–56 of gestational develop-

ment were chosen for these studies to separate three specific

regions containing chondrocytes at distinct stages of differentia-

tion. Figure 1 shows a proteoglycan-stained (Safranin O) tissue

section of a gestational day 54 human limb focusing in on the

developing proximal tibia. Three regions are denoted that

predominantly contain: 1) precursor chondrocytes (PC) at the

most proximal end and at the perimeter within the surrounding

perichondrium; 2) differentiated chondrocytes (DC) within the

mid-region of the developing limb, some of which show an obvious

flattened phenotype; 3) enlarged hypertrophic chondrocytes (HYP)

that will eventually undergo programmed cell death by apoptosis.

This stage of development is just prior to vascular invasion of the

hypertrophic cartilage and subsequent endochondral ossification.

Collagen immunolocalization confirms the location of the PC

region by positive staining of the ‘‘embryonic’’ IIA procollagen

isoform (Figure 2A) and type I collagen (Figure 2B), two known

markers of chondroprogenitor cells. The ‘‘IIA’’ antibody recog-

nizes the conserved cysteine-rich protein domain encoded by

alternatively-spliced exon 2 of the COL2A1 gene [43]. Exon 2 is

present in mRNA generated by chondroprogenitor cells, whereas

differentiated chondrocytes generate mRNA devoid of exon 2

(encoding type IIB procollagen) [56,57]. Chondrocytes in a more

differentiated state do not express type IIA procollagen or type I

collagen. The presence of some IIA protein staining in the

hypertrophic zone (Figure 2A) has also been reported before in

human limb tissue at a similar time-point of development [58].

Type II collagen (i.e. the triple-helical domain of processed type II

procollagen) is present throughout the entire developing limb, as

expected (Figure 2C). Therefore, the DC region was selected

based on both cell phenotype (as seen by histology; Figure 1) and

by the presence of processed type II collagen and the absence of

type IIA and type I collagens (Figures 2A, B). Type X collagen is

a marker of hypertrophic chondrocytes and is localized to the

HYP region of the developing limb (Figure 2D).

Figure 1. Safranin-O-stained tissue section of a human
embryonic developing proximal tibia (gestational day 54).
Red-orange staining represents proteoglycans in the developing
cartilage extracellular matrix. This stage of development is prior to
endochondral ossification. Chondrocytes at various stages of differen-
tiation are present at this stage: precursor chondrocytes (PC) are found
at the most proximal end of the developing tibia as well as in the
surrounding perichondrium; differentiated chondrocytes (DC) are
located further down the developing limb and are distinguishable by
their cuboidal or flattened phenotype, depending on their location;
hypertrophic chondrocytes (HYP) are terminally-differentiated cells
easily distinguished by their increased size. Also shown in this image are
the developing femoral condyles (fc) of the distal femur. Scale
bar = 250 mm.
doi:10.1371/journal.pone.0075012.g001
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MicroRNA expression analysis
Laser capture microdissection of tissue sections from nine

independent limb specimens was successfully carried out as shown

in Figure 3. Note than an area between the PC and DC region

was not isolated by laser capture microdissection. It is expected

that this ‘‘grey area’’ contains a mixture of progenitor and

differentiated chondrocytes; inclusion of cells from this site would

likely dilute the data resulting in lower numbers of differentially-

expressed miRNAs identified between PC and DC regions. RNA

extracted from PC, DC and HYP areas was processed for analysis

on TaqManH OpenArrayH Human MicroRNA Panels and

expression of over 750 miRNAs was determined. One ‘‘PC’’

sample was discarded from further analysis for its low data

correlation with other PC samples. Table 1 lists the top thirty

most abundantly expressed miRNAs in chondrocytes from PC,

DC and HYP regions. Notably, miR-140-5p, the best-described

Figure 2. Immunofluorescence staining of different collagen types in a human developing embryonic proximal tibia (gestational
day 54). (A) Localization of the embryonic isoform of type II procollagen (type IIA) in the extracellular matrix (ECM). The anti-IIA antibody recognizes
the exon 2-encoded cysteine-rich domain present in the amino propeptide of type IIA procollagen [43]. These IIA isoforms are generated
predominantly by progenitor chondrocytes seen at the periphery and most proximal area of the developing tibia. Some expression of IIA procollagen
has been reported in the pre-hypertrophic and hypertrophic region of developing cartilage [58] and is also shown here. (B) Type I collagen staining is
restricted to the areas of precursor chondrocytes and cells of the perichondrium/periosteum. (C) Type II collagen staining patterns (i.e. the processed
triple helical domain of type II collagen) is present throughout the entire developing limb. (D) Collagen X staining is restricted to the ECM containing
hypertrophic chondrocytes. Cell nuclei are visualized in blue by DAPI staining. Scale bars = 100 mm. Immunofluorescent images are representative of
three independent experiments using gestational day 54 tissue sections from different embryos.
doi:10.1371/journal.pone.0075012.g002
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miRNA in cartilage to date, was found to be one of the most

highly expressed (albeit not differentially-expressed) miRNAs in all

three of the cartilage regions analyzed, thus providing additional

confidence in the array data.

Differentially-expressed microRNAs
From the OpenArrayH expression data, we identified miRNAs

that were differentially expressed by 2 fold or more between: 1) PC

and DC (Table 2); 2) PC and HYP (Table 3) and 3) DC and

HYP regions (Table 4). It is noteworthy that the number of

differentially-expressed miRNAs was greatest when comparing

cells between the PC and HYP regions (Table 3). This is not

surprising given the fact that precursor and hypertrophic

chondrocytes are at extreme ends of the differentiation spectrum.

Also, we did not identify any miRNAs that were exclusively

expressed in one region but absent from another region of human

embryonic developing cartilage. In many cases, the same miRNAs

were found to be differentially-expressed in more than one

comparison. Fewer miRNAs were identified as being significantly

more highly-expressed in DC or HYP chondrocytes when

compared to PC cells. For example, miRs-138, 193b and 365

were the only ones found to be expressed at higher levels in DC

compared to PC cells (Table 2). These miRNAs were also more

highly expressed in HYP cells when compared to PC cells,

suggesting function(s) in regulating gene pathways associated with

later stages of chondrogenesis. Those miRNAs that were

specifically more abundantly-expressed in HYP cells compared

to DC or PC cells suggests functional role(s) in regulating terminal

differentiation of chondrocytes and/or endochondral ossification

processes (Tables 3 and 4). As will be elaborated on in the

Discussion, a number of differentially-expressed miRNAs identi-

fied in this study have been described in other aspects of cartilage

biology and in other systems that may provide clues toward

identifying their function in regulating specific stages of chondro-

cyte differentiation. Importantly, this study has identified a

number of miRNAs that have not yet been reported to be

expressed in cartilage chondrocytes.

Pathway analysis of predicted microRNA target genes
Potential target genes were identified for each miRNA listed in

Tables 2 and 4 using defined criteria for target selection (i.e.

targets predicted by at least two of three chosen algorithms; see

Materials and Methods). All predicted target genes for miRNAs

differentially expressed between cells in the PC and DC region and

those differentially-expressed between cells of the DC and HYP

regions were entered into MetaCoreTM to identify cellular

pathways that are underlying these genes. Many significant

‘‘over-represented’’ pathways were identified for each comparison

[i) PC.DC; ii) PC,DC; iii) DC.HYP; iv) DC,HYP] including

those involved in cytoskeletal remodeling, cell cycle, transcription,

apoptosis etc. At this stage, we have focused only on developmen-

tal pathways that have relevance within the context of chondro-

genesis. Tables 5, 6, 7, 8 list the top 6–7 developmental

pathways that may be regulated by miRNA groups that we have

shown are more highly expressed within a specific region of

developing cartilage tissue. Enriched pathways common between

all comparisons include those related to growth factor signaling/

regulation that are known to be important at various stages of

chondrocyte differentiation (i.e. IGF-1, TGF-b, BMP, FGF

signaling pathways; Tables 5, 6, 7, 8). Interestingly, the majority

of enriched pathways of predicted genes targeted by miRNAs

more highly expressed in DC compared to PC cells were related to

Hedgehog and Wnt signaling pathways (Table 6). VEGF

signaling pathways were implicated to be regulated by miRNAs

Figure 3. Laser capture microdissection of a human embryonic tibia tissue section (gestational day 54). Left panel shows a processed
frozen tissue section and the right panel shows the same tissue section following laser capture microdissection to separate regions containing
precursor chondrocytes (PC), differentiated chondrocytes (DC) or hypertrophic chondrocytes (HYP). Also in view is cartilage tissue of the femoral
condyles (fc); the developing femur was also micro-dissected to separate the three regions of cartilage. Images were taken using the LMD7000 laser
capture microscope set at the 66 objective.
doi:10.1371/journal.pone.0075012.g003
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more highly expressed in PC cells (Table 5) or DC cells (Table 7).

Notably, the developmental pathway involving IL-8 in angiogen-

esis was specific to the group of miRNAs more highly expressed in

HYP cells compared to DC cells (Table 8). For a list of the genes

involved in each significantly-enriched pathway that were found to

be potential targets of miRNAs in each differentially-expressed

group, see Tables S1, S2, S3, S4.

Discussion

This novel study is the first to report on the in vivo expression

patterns of miRNAs in chondrocytes from human embryonic

cartilage tissue in the developing limb. The significance of this

work is further highlighted by the fact that three distinct regions of

the developing limb were separated by laser capture microdissec-

tion to permit analysis of miRNA expression in precursor

chondrocytes (PC), differentiated chondrocytes (DC) or hypertro-

phic chondrocytes (HYP) of the femur and tibia. While other

studies have been carried out to identify mRNA or miRNA

expression in chondrocytes from different sites of mouse or chicken

cartilage tissue, either late-stage embryonic, neonatal or post-natal

tissue was utilized [24,59,60]. The type of study described in this

report to determine miRNA expression in three distinct popula-

tions of chondrocytes at an early stage of human embryonic

development (day 54–56 of gestation; prior to primary endochon-

dral ossification) would be extremely challenging in mouse, rat or

chicken tissue due to size constraints. Given the many advantages

of using human embryonic tissue, it was not possible to confidently

delineate and isolate the small region containing pre-hypertrophic

chondrocytes in our system. We therefore expect that a proportion

of these cells were present in both the DC and HYP samples

following laser capture microdissection. Also, it is unclear at

present if data generated from this study will be useful toward

Table 1. Top 30 most abundantly expressed miRNAs in precursor, differentiated and hypertrophic chondrocytes
from gestational day 54–56 human embryonic cartilage tissue.

Precursor Chondrocytes (PC) Differentiated Chondrocytes (DC) Hypertrophic Chondrocytes (HYP)

miRNA Average(22DCt) miRNA Average(22DCt) miRNA Average(22DCt)

miR-140-5p 10.76 miR-140-5p 10.72 miR-24 6.66

miR-125b 6.84 miR-24 7.73 miR-92a 5.88

miR-19b 5.82 miR-19b 4.04 miR-140-5p 5.82

miR-30c 4.78 miR-376a 3.66 miR-19b 5.07

miR-199a-3p 4.39 miR-125b 3.38 miR-20a 4.08

miR-92a 3.69 miR-92a 3.25 miR-106a 3.40

miR-376a 3.25 miR-127 2.56 miR-127 3.06

miR-214 2.99 miR-409-3p 2.23 miR-193b 2.92

miR-26a 2.61 miR-30c 2.21 miR-212 2.85

miR-99b 2.53 miR-193b 2.09 miR-30c 2.54

miR-30b 2.40 miR-30b 1.94 miR-17 2.52

miR-382 2.37 miR-26a 1.87 miR-376a 2.33

miR-409-3p 2.21 miR-199a-3p 1.87 miR-125b 2.11

miR-106a 2.02 miR-20a 1.85 miR-30b 1.81

miR-130a 2.02 miR-214 1.67 miR-409-3p 1.60

miR-20a 1.75 miR-574-3p 1.66 miR-26a 1.40

miR-484 1.56 miR-106a 1.62 miR-214 1.39

miR-27b 1.46 miR-99b 1.36 miR-199a-3p 1.31

miR-127 1.45 miR-130a 1.29 miR-484 1.28

miR-331 1.39 miR-484 1.25 miR-181a-2 1.26

miR-206 1.36 miR-212 1.23 miR-206 1.15

miR-574-3p 1.33 miR-455-3p 1.19 miR-210 1.11

miR-455-3p 1.19 miR-206 1.05 miR-99b 1.06

miR-26b 1.17 miR-331 1.01 miR-331 1.06

miR-335 1.12 miR-370 1.00 miR-574-3p 1.00

miR-320 1.12 miR-210 0.82 miR-455-3p 0.90

miR-100 1.12 miR-17 0.80 miR-191 0.88

miR-23b 1.10 miR-27b 0.78 miR-133a 0.76

miR-210 0.97 miR-191 0.78 miR-320 0.72

miR-191 0.96 miR-410 0.73 miR-370 0.69

Highly expressed miRNAs were identified according to their average (2-DCt) values. Delta (D) Ct value for each miRNA was calculated by subtracting the Ct value of
endogenous control, RNU44, from the Ct value of the specific miRNA. Expression level average (22DCt) in a region reflects the average of 22DCt values across all samples
in that region.
doi:10.1371/journal.pone.0075012.t001
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understanding miRNA-regulated processes that form chondro-

cytes found in permanent articular cartilage since the exact

location/subset of precursor cells that form this tissue is not

entirely understood [61,62] and the time point of development

chosen for these studies may not be appropriate in this context.

Regardless of these issues, we have generated an important

database to begin to decipher miRNAs that may play a functional

role in regulating not only chondrogenesis, but also specific phases

of chondrocyte differentiation during limb development.

Highly expressed microRNAs
The miRNA expression database was obtained using Human

MicroRNA OpenArrayH Panels on the OpenArrayH Real-Time

PCR system [47]. Since this system determined miRNA expres-

sion based on TaqManH technology, further validation of

expression (as is required for hybridization-based microarrays)

was not necessary. From Table 1 that lists the top thirty most

highly-expressed miRNAs in PC, DC and HYP, miR-140-5p was

found to be one of the most abundant regardless of the status of

chondrocyte differentiation. This finding provides confidence in

the array data since miR-140 is the best-described miRNA in

Table 2. Differentially-expressed miRNAs between
precursor chondrocytes (PC) and differentiated
chondrocytes (DC) from gestational day 54–56 human
embryonic cartilage tissue.

PC compared to DC

PC.DC PC,DC

miRNA f.c. Score q-value miRNA f.c. Score q-value

miR-224 5.09 3.59 0 miR-138 -12.18 -3.29 2.09

miR-1247 4.59 4.21 0 miR-193b -3.63 -4.63 0

miR-335* 4.37 3.16 0 miR-365 -2.45 -3.45 0

miR-532 4.25 3.67 0

miR-146b 3.55 3.97 0

miR-24-2-5p 3.33 2.17 2.09

miR-660 3.32 3.17 0

miR-502-3p 3.23 2.68 0

miR-532-3p 3.16 3.61 0

miR-27a 2.99 2.86 0

miR-10b-3p 2.83 3.84 0

miR-708 2.75 1.87 3.16

miR-100 2.58 2.90 0

miR-29c 2.57 2.87 0

miR-199a-3p 2.35 2.95 0

miR-196b 2.30 3.22 0

miR-30d 2.18 1.90 3.16

miR-30c 2.16 2.24 2.09

miR-454 2.12 3.16 0

miR-151-5p 2.09 1.90 3.16

miR-323-3p 2.09 3.25 0

miR-335 2.09 2.31 0

miR-99b* 2.05 2.65 0

Fold change (f.c.) expression of miRNAs between cells of PC and DC regions are
shown. The score (d) and q-values for each differentially-expressed miRNA are
shown based on SAM analysis (FDR#5%; n = 8–9).
doi:10.1371/journal.pone.0075012.t002

Table 3. Differentially-expressed miRNAs between
precursor chondrocytes (PC) and hypertrophic
chondrocytes (HYP) from gestational day 54–56
human embryonic cartilage tissue.

PC compared to HYP

PC.HYP PC,HYP

miRNA f.c. Score q-value miRNA f.c. Score q-value

miR-335* 40.38 3.85 0 miR-181a-1 -17.36 -3.22 0.54

miR-532-5p 10.85 4.30 0 miR-138 -16.61 -3.50 0

miR-224 10.22 3.46 0 miR-193b -5.06 -6.24 0

miR-660 8.62 4.02 0 miR-150 -4.33 -2.07 4.42

miR-483-3p 8.19 12.88 0 miR-1291 -3.88 -2.41 3.92

miR-335 7.92 4.20 0 miR-193b* -3.75 -2.10 4.42

miR-532-3p 7.17 4.67 0 miR-181a-2 -3.26 -2.36 4.42

miR-146b 6.87 4.88 0 miR-1290 -2.98 -2.27 4.42

miR-502-3p 6.41 2.62 0 miR-202 -2.91 -1.99 4.42

miR-196b 5.30 5.20 0 miR-17 -2.75 -3.99 0

miR-125a-5p 5.24 3.21 0 miR-365 -2.74 -2.30 4.42

miR-93 4.65 1.76 0.94 miR-222 -2.70 -2.77 2.63

miR-301 4.26 3.20 0 miR-139-5p -2.57 -3.16 0.54

miR-323-3p 4.07 5.23 0 miR-20a -2.33 -2.73 2.63

miR-10b-3p 4.03 5.18 0 miR-126 -2.22 -1.96 4.42

miR-100 3.97 4.06 0 miR-127 -2.10 -2.56 3.92

miR-454 3.87 4.82 0

miR-151-5p 3.80 2.54 0

miR-16 3.65 4.00 0

miR-758 3.49 2.18 0.54

miR-93* 3.45 4.32 0

miR-199a-3p 3.36 3.80 0

miR-320b 3.34 3.24 0

miR-130a 3.28 2.78 0

miR-125b 3.24 2.22 0

miR-708 3.20 2.14 0.54

miR-25 3.13 2.82 0

miR-495 3.03 3.46 0

miR-675 2.98 2.95 0

miR-27b 2.96 3.11 0

miR-337-3p 2.86 1.96 0.54

miR-24-2-5p 2.83 1.47 2.63

miR-939 2.81 1.23 3.92

miR-199b 2.80 1.86 0.95

miR-30d 2.72 2.28 0

miR-543 2.68 2.94 0

miR-889 2.67 2.21 0.54

miR-29c 2.60 2.78 0

miR-148a 2.52 2.37 0

miR-26b 2.51 2.34 0

miR-1180 2.42 2.64 0

miR-296 2.41 2.12 0.54

miR-99b 2.38 4.19 0

miR-27a 2.32 2.55 0

miR-625* 2.32 1.56 2.63
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cartilage to date and is known to be highly expressed and almost

specific to cartilaginous tissues. Miyaki et al reported higher levels

of miR-140 expression in proliferating chondrocytes of mature

(post-natal day 10) murine growth plates compared to hypertro-

phic chondrocytes [27]. In our system, we did not detect

significant differences in expression of miR-140 between precur-

sor, differentiated proliferating and hypertrophic chondrocytes.

This discrepancy may be explained by species difference as well as

the stage of growth plate development analyzed (mature murine vs

human embryonic growth plates). These findings may also suggest

that miR-140 expression patterns change as the cartilage growth

plate matures. Also, Miyaki et al detected the larger primary

precursor form of miR-140 (pri-miR-140) in murine growth plate

sections by in situ hybridization that includes both 5p and 3p

strand; different expression patterns may be obtained by

specifically detecting either the mature 5p or 3p strand in vivo.

We also detected expression of miR-140-3p in all three regions of

developing cartilage, albeit at lower levels than miR-140-5p (,18-

22 fold less depending on the cartilage region; results not shown).

However, two studies have reported higher expression of the 3p

strand in mature rat or neonatal murine epiphyseal growth plate

cartilage [24,63]. This suggests that both the 5p and 3p strands of

miR-140 are functional and that their ratio levels could change

depending on developmental time point. It will also be interesting

to determine expression levels of miR-140-3p and -5p in

osteoarthritic cartilage given a recent report describing regulation

of miR-140-3p by the inflammatory cytokine, TNF-a, in airway

smooth muscle cells [64]. Therefore, in addition to a role for miR-

140 in regulating development and homeostasis of cartilage tissue

[27,28] additional functions (potentially distinct functions for the

5p and 3p strands) may exist in an inflammatory environment as

Table 5. Enriched pathways of predicted genes
targeted by differentially expressed miRNAs (PC.DC).

Developmental Pathways p-value

IGF-1 receptor signaling 4.364E-11

TGF-b receptor signaling 4.495E-08

BMP signaling 5.546E-07

FGF receptor signaling 9.964E-07

Role of activin A in cell differentiation and proliferation 8.405E-06

FGF family signaling 5.546E-05

VEGF family signaling 5.844E-05

doi:10.1371/journal.pone.0075012.t005

Table 6. Enriched pathways of predicted genes
targeted by differentially expressed miRNAs (PC,DC).

Developmental Pathways p-value

IGF-1 receptor signaling 1.783E-05

Hedgehog signaling 5.214E-04

WNT5a signaling 5.867E-04

WNT signaling (general) 1.122E-03

Hedgehog and PTH signaling in bone and cartilage development 1.152E-03

Role of activin A in cell differentiation and proliferation 1.192E-02

doi:10.1371/journal.pone.0075012.t006

Table 3. Cont.

PC compared to HYP

PC.HYP PC,HYP

miR-199a 2.28 1.89 0.95

miR-369-3p 2.25 1.20 3.92

miR-380-5p 2.24 1.51 2.63

miR-1244 2.20 1.39 2.63

miR-214 2.15 2.61 0

miR-433 2.14 2.61 0

miR-99b* 2.14 2.69 0

miR-301b 2.11 1.86 0.95

miR-106b 2.09 2.12 0.54

miR-769-5p 2.00 2.72 0

Fold change (f.c.) expression of miRNAs between cells of PC and HYP regions
are shown. The score (d) and q-values for each differentially-expressed miRNA
are shown based on SAM analysis (FDR#5%; n = 8–9).
doi:10.1371/journal.pone.0075012.t003

Table 4. Differentially-expressed miRNAs between
differentiated chondrocytes (DC) and hypertrophic
chondrocytes (HYP) from gestational day 54–56
human embryonic cartilage tissue.

DC compared to HYP

DC.HYP DC,HYP

miRNA f.c. Score q-value miRNA f.c. Score q-value

miR-335* 9.23 7.97 0 miR-181a-1 -6.17 -3.16 0

miR-483-3p 4.53 4.55 0 miR-181a-2 -3.79 -3.27 0

miR-335 3.79 3.96 0 miR-17 -3.16 -4.07 0

miR-301 2.94 2.86 0 miR-1290 -2.72 -2.44 4.39

miR-320b 2.74 1.64 4.39 miR-20a -2.20 -2.47 4.39

miR-758 2.72 3.08 0 miR-1260 -2.01 -2.48 4.39

miR-125a-5p 2.71 3.25 0

miR-16 2.69 2.57 0

miR-380-5p 2.60 3.34 0

miR-660 2.59 2.65 0

miR-532-5p 2.55 1.80 2.41

miR-196b 2.30 2.75 0

miR-532-3p 2.26 3.54 0

miR-130a 2.11 1.89 2.41

miR-184 2.06 2.05 2.41

miR-542-3p 2.06 1.99 2.41

miR-93* 2.05 3.60 0

miR-1244 2.03 2.02 2.41

miR-224 2.00 2.18 2.41

miR-495 2.00 3.31 0

Fold change (f.c.) expression of miRNAs between cells of DC and HYP regions
are shown. The score (d) and q-values for each differentially-expressed miRNA
are shown based on SAM analysis (FDR#5%; n = 8–9).
doi:10.1371/journal.pone.0075012.t004
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found in osteoarthritic cartilage.

Other highly-expressed miRNAs include those of the miR-

17,92 cluster (miR-17, miR-20a, miR-19b, miR-92a) (Table 1).

Interestingly, germline deletion of this cluster has been linked to

human skeletal and growth defects [18]. miRs-18a and 19a from

this cluster were also expressed in human embryonic chondro-

cytes, but not as highly as the other miRNAs in the cluster. Also,

our studies showed that miR-17 and miR-20a were found to be

significantly more highly-expressed in hypertrophic chondrocytes

compared to both precursor and differentiated chondrocytes

(Tables 3 and 4). These expression patterns suggest that

miRNAs in this cluster may be distinctly regulated and that some

of them (i.e. miRs-17 and 20a) may function to regulate terminal

hypertrophic chondrocyte differentiation or endochondral ossifi-

cation. In other systems, the miR-17,92 cluster has been shown

to regulate components of the TGF-b pathway as well as

angiogenesis [65–70]. Future studies will be required to determine

if, in the context of chondrogenesis, miRNAs in this cluster affects

TGF-b signaling and endochondral ossification processes. Inter-

estingly, within the top 30 most abundant miRNAs expressed in all

regions of developing human cartilage was miR-206, which is

known to be a muscle-specific miRNA [71] (Table 1). This

miRNA was also found to be highly expressed in mouse cartilage

[24] and muscle-specific gene expression has been reported

recently in murine articular cartilage within the context of ageing

and OA [72,73]. The potential role of these muscle-related

miRNAs and genes in cartilage development and disease may be

worth pursuing. The miRNA OpenArrayH screen also identified

high expression of miR-376a in chondrocytes throughout the

human developing limb. This miRNA is part of a large cluster, two

of which (miR-654/376b) were found to be expressed strongly in

murine embryonic cartilage [74]. Our studies also showed that

miR-127 and miR-409-3p were strongly expressed at all stages of

human embryonic chondrocyte differentiation. Interestingly, these

two miRNAs (in addition to miR-376b) were also identified as

being more highly expressed in chondrocytes from murine

neonatal hind limb cartilage when compared to osteoblasts [24].

We are currently pursuing studies to determine functional roles of

these abundantly-expressed miRNAs in the context of cartilage

biology.

Differentially expressed microRNAs
A number of miRNAs identified in this study as significantly

differentially expressed between precursor, differentiated and

hypertrophic chondrocytes have also been described in other

reports within the context of skeletal development or cartilage

biology. miR-196b expression patterns indicate a potential role in

regulating specific phases of chondrogenesis given that levels were

found to be higher in precursor or differentiated chondrocytes

(Tables 2, 3, 4). In fact, miR-196 sub-types (including both miR-

196a and miR-196b, which are almost identical in sequence but

located on different chromosomes) have been reported to regulate

skeletal patterning in zebrafish, chicken and salamander [75–77].

This patterning role is partly explained by the fact that miRs-

196a/b are located within HOX gene clusters and can regulate

expression of some of these patterning genes [76,78–80]. miRs-

196a/b have also been shown to regulate ERG transcription

factors [81]. This is interesting since ERG is specifically localized to

developing articular cartilage of the joint and functions in

regulating proper cartilage development [82]. Increased expres-

sion of miR-196a has also been shown to decrease proliferation of

adipose-derived stem cells and enhance their osteogenic potential

without affecting adipogenesis [83]. It will be important to

establish how altered expression of miR-196 affects the chondro-

genic potential of precursor stem cells in vitro.

Another miRNA identified as over 2-fold more highly expressed

in PC compared to HYP is miR-433 (Table 3). This miRNA has

been linked to chondrodysplasia in humans since a mutation in the

39UTR of HDAC6 was identified within a miR-433 binding site

[19]. Other differentially-expressed miRNAs found in this study

(miRs-27a, 675, 483) (Tables 2, 3, 4) have been reported in the

context of cartilage and osteoarthritis (OA). miR-27a was found to

be expressed in human OA chondrocytes and to indirectly affect

expression of IGFBP-5 and MMP-13 [84]. Its differential

expression pattern, as seen in our system, suggests a developmental

role in controlling early stage chondrocyte differentiation

(Tables 2–3). In vitro studies showed that miR-675 indirectly

affected levels of COL2A1 in differentiated human articular

chondrocytes [32]. Recently Steck et al reported that expression

of this miRNA was elevated in human OA as was the long non-

coding RNA, H19, which harbors miR-675 [85]. Interestingly,

H19/miR-675 is located within an imprinted domain on human

chromosome 11. H19 is maternally expressed while IGF2 is

paternally-expressed and harbors miR-483 within intron 2. Steck

et al also reported elevated IGF2 levels in OA cartilage while levels

of miR-483 were not described in this study. However, other

studies have reported increased levels of miR-483-5p in OA

cartilage [34,86]. It will be interesting to further dissect how

regulation of chondrocytes by H19/miR-675 and IGF2/miR-483

affects cartilage matrix production and maintenance. In our

studies, we detected miR-483-5p expression in human embryonic

chondrocytes, but only miR-483-3p was found to be differentially-

expressed in precursor and differentiated chondrocytes when

Table 7. Enriched pathways of predicted genes
targeted by differentially expressed miRNAs
(DC.HYP).

Developmental Pathways p-value

TGF-b receptor signaling 4.671E-10

WNT5a signaling 9.408E-09

FGF receptor signaling 1.008E-07

BMP signaling 1.660E-07

Role of activin A in cell differentiation and proliferation 3.126E-07

IGF-1 receptor signaling 2.002E-06

VEGF signaling and activation 5.438E-06

doi:10.1371/journal.pone.0075012.t007

Table 8. Enriched pathways of predicted genes
targeted by differentially expressed miRNAs
(DC,HYP).

Developmental Pathways p-value

TGF-b receptor signaling 1.252E-07

FGF receptor signaling 3.583E-07

WNT5a signaling 2.962E-06

IGF-1 receptor signaling 9.252E-06

Role of IL-8 in angiogenesis 2.076E-05

Role of activin A in cell differentiation and proliferation 2.452E-05

Hedgehog signaling 8.933E-05

doi:10.1371/journal.pone.0075012.t008
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compared to hypertrophic chondrocytes (Tables 3 and 4). Also,

expression levels of the 5p and 3p strands of miR-483 in PC and

DC regions were similar suggesting that both mature strands are

functional in chondrocytes. Whether these 5p and 3p strands have

distinct functions in chondrocytes remains to be determined.

Expression of miR-146a has also been reported in OA

chondrocytes; mechanistically, miR-146a is apparently responsive

to IL-1b signaling and may be involved in pain-related patho-

physiology of OA [38,87,88]. This miRNA was detected in our

screen, but not differentially-expressed between cartilage regions.

However, its homologue, miR-146b, was expressed at higher levels

than miR-146a and was also found to be more highly-expressed in

precursor chondrocytes when compared to differentiated and

hypertrophic chondrocytes in our studies (Tables 2 and 3).

miRs-146a and b differ by 2 nucleotides and are located on

different chromosomes. Therefore, it is possible that these miRNA

homologues are differentially-regulated during chondrogenesis

and carry out distinct functions to control developmental processes

as well as homeostasis in mature tissue. Studies to address this

hypothesis are underway in our laboratory.

Among those miRNAs more highly expressed in differentiated

or hypertrophic chondrocytes when compared to precursor

chondrocytes, it is interesting that two of these, miRs-365 and

222 (Tables 2 and 3), have been postulated to play a mechano-

regulatory role in cartilage [60,89]. miR-365 is clustered with

miR-193b which shows similar expression patterns to miR-365 in

our system (Tables 2 and 3), thus suggesting that these miRNAs

may be co-regulated. Therefore, in addition to a mechano-

regulatory role in mature cartilage tissues, our studies suggest a

potential developmental role for these miRNAs in regulating later

stages of chondrocyte differentiation. Other miRNAs detected in

our screen that are more abundantly-expressed in HYP cells

compared to cells in the DC and PC regions also suggests

functional role(s) in regulating terminal differentiation of chon-

drocytes and/or endochondral ossification processes (e.g. miRs-

181a-1, 181a-2, 17, 1290, 1291, 20a, 1260, 150, 202, 139-5p, 126,

127) (Tables 3 and 4).

Other microRNAs not yet reported in cartilage
miR-335-5p and the less abundant 3p strand (miR-335*)

showed significantly high fold changes in differential expression

patterns in our studies (Tables 2, 3, 4). Although expression

levels of miR-335* were generally lower than miR-335-5p,

detection of this ‘‘minor’’ strand suggests that it may be functional

in the context of cartilage biology. While miR-335* has not been

reported in cartilage until now, one previous study has shown

down-regulation of the miR-335-5p strand in de-differentiated

chondrocytes [89]. Unpublished observations in our laboratory

have shown a sharp decrease in miR-335-5p expression during

TGF-b3 induced chondrocyte differentiation of human MSCs.

These findings suggest a potential role for the 5p strand of miR-

335 in regulating genes to maintain a more progenitor phenotype.

A recent study by Tome et al [90] supports this view since they

found miR-335-5p down-regulation was required to permit MSC

differentiation toward the osteogenic or adipogenic lineage; over-

expression of this miRNA inhibited MSC differentiation. Howev-

er, another study reported opposite effects of miR-335-5p in

regulating osteogenesis [91], but this may be explained by the fact

that cell lines were used here as opposed to primary MSCs. It will

be interesting to determine how modulation of miR-335/335*

expression affects chondrocyte differentiation.

This study is the first to report miR-138 in cartilage and that

higher expression is associated with differentiated and hypertro-

phic chondrocytes when compared to precursor cells (,12 fold

and 17 fold difference, respectively; Tables 2 and 3). These

expression patterns potentially indicate a role in regulating specific

phases of chondrocyte differentiation. Other studies have shown

that over-expression of miR-138 inhibits osteogenic and adipo-

genic differentiation [92,93]. Interestingly, it has also been

demonstrated that miR-138 can promote induced pluripotent

stem cell (iPS) generation via regulation of p53 [94]. This clearly

indicates that miR-138 can control cellular differentiation and

may function through different mechanisms depending on the

tissue microenvironment. It will be important to understand how

this miRNA regulates chondrogenesis and the mechanisms

involved. In addition to miR-335 and miR-138, there are a

number of other differentially-expressed miRNAs identified in the

present study that will be worth pursuing in the context of cartilage

biology; some of these are generally not well-reported in the

literature and their functional roles in normal tissue development

and homeostasis are unknown so far (e.g. miRs- 301, 502, 532,

660, 1244, 1247, 1290, 1291).

Regulation of cellular pathways by microRNAs in
cartilage

miRNA function in cartilage development and homeostasis is

becoming a rapidly-growing area of research [21–23]. This study

has identified many miRNAs worth pursuing for their potential

function in regulating specific phases of chondrocyte differentia-

tion. However, once functional miRNAs have been identified, the

next challenge is to understand the mechanisms by which specific

miRNAs, or sub-groups of miRNAs, control cellular processes.

While many studies report on a specific miRNA that can interact

with and regulate one target gene, this does not reflect the in vivo

situation since miRNAs can potentially target hundreds of genes

(Krek, 2005). Also, the degree of miRNA repression on an

individual target is usually very mild [95–97] and so to exert

significant biological function, miRNAs may regulate multiple

genes within the same pathway as has been shown for the miR-16

family of miRNAs and for miR-17-5p [98,99]. In addition, the

target genes and the pathways involved will be different for a

specific miRNA or group of miRNAs depending on the tissue type

and time point of development, for example [100]. Based on the

differentially-expressed miRNA data presented in this study, we

wanted to investigate (as a first-step approach) potential cellular

pathways that may be regulated by the groups of miRNAs

expressed more highly in progenitor, differentiated or hypertro-

phic chondrocytes. It must be stressed that the bioinformatics

approach taken here has generated preliminary data that will

require further validation once functional activity for these

miRNAs has been confirmed. One attractive approach to confirm

(or disprove) bioinformatics-based target gene data involves

biochemically identifying target genes located within the RNA-

induced silencing complex (RISC) followed by RNA-Seq analysis

[101]; we are currently establishing this methodology in our

laboratory.

For the purpose of this report, we have presented significantly

enriched pathways related only to developmental processes that

are known from in vivo and in vitro data to be important within the

context of chondrogenesis. Other significantly enriched pathways

were identified from our bioinformatics approach (i.e. related to

cell cycle, transcription, apoptosis, cytoskeletal remodeling etc),

but making any associations with other cellular processes at this

stage would be over-interpreting the data presented in this study.

With respect to those developmental pathways identified

(Tables 5, 6, 7, 8), a number of the same pathways were shown

to be significantly enriched for each comparison analyzed (i.e.

pathways related to TGFb, BMP, FGF and IGF signaling). This is
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not surprising since these growth factors are known to be

important in controlling many aspects of cartilage development

and maintenance. Interestingly, the pathway involving activin A

was also enriched for each comparison analyzed. Less is known

about the function of this secreted factor in cartilage biology

although there are reports that this TGF-b family member plays a

role in developing as well as mature cartilage [102–104].

Tables 6, 7 and 8 shows that Hedgehog and Wnt signaling

pathways [105,106] may be regulated by miRNAs found to be

more highly expressed in differentiated or hypertrophic chondro-

cytes. These pathways are particularly prominent in Table 6
suggesting that miRs-138, 365 and 193b (Table 2) play a role in

regulating these pathways to permit proper cartilage formation.

VEGF-related signaling pathways were identified in the PC.DC

and DC.HYP comparisons (Tables 5 and 7). Since VEGF

plays a role during vascular invasion of hypertrophic chondrocytes

to permit endochondral ossification [107], it is possible that

specific miRNAs may function to inhibit these processes in

cartilage regions that are not destined to be invaded by vessels and

replaced by bone. On the other hand, pathway analysis revealed

that miRNAs more highly expressed in hypertrophic chondrocytes

may target the pathway involving IL-8 and angiogenesis (Table 8).

This suggests that miRNAs in hypertrophic chondrocytes may

regulate specific target genes to promote neovascularization and

endochondral bone formation. Overall, these bioinformatics-based

findings have generated some clues to suggest that certain

developmental pathways may be regulated by specific miRNAs

at a precise point in differentiation to control proper limb

formation.

Conclusions

This study has identified differentially-expressed miRNAs at a

defined time point during human cartilage development of the

embryonic limb. These findings should provide insights into

miRNA-driven processes that are necessary to generate the

formation of chondroprogenitor, differentiated or hypertrophic

chondrocytes. Clinically, this work may be important for the

design of miRNA-based tissue engineering strategies to promote

endochondral bone repair or regeneration by enhancing hyper-

trophic differentiation and endochondral ossification processes, for

example. Alternatively, miRNA based strategies to inhibit

hypertrophic chondrocyte differentiation could be beneficial for

generation of permanent articular cartilage tissue. It will also be

interesting to investigate if dysregulation of miRNAs important in

regulating developmental processes can cause skeletal defects such

as osteoarthritis, chondrodysplasias or delayed endochondral

fracture healing.
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