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Abstract

Recent development of high-throughput, multiplexing technology has initiated projects that systematically investigate
interactions between two types of components in biological networks, for instance transcription factors and promoter
sequences, or microRNAs (miRNAs) and mRNAs. In terms of network biology, such screening approaches primarily attempt
to elucidate relations between biological components of two distinct types, which can be represented as edges between
nodes in a bipartite graph. However, it is often desirable not only to determine regulatory relationships between nodes of
different types, but also to understand the connection patterns of nodes of the same type. Especially interesting is the co-
occurrence of two nodes of the same type, i.e., the number of their common neighbours, which current high-throughput
screening analysis fails to address. The co-occurrence gives the number of circumstances under which both of the biological
components are influenced in the same way. Here we present SICORE, a novel network-based method to detect pairs of
nodes with a statistically significant co-occurrence. We first show the stability of the proposed method on artificial data sets:
when randomly adding and deleting observations we obtain reliable results even with noise exceeding the expected level
in large-scale experiments. Subsequently, we illustrate the viability of the method based on the analysis of a proteomic
screening data set to reveal regulatory patterns of human microRNAs targeting proteins in the EGFR-driven cell cycle
signalling system. Since statistically significant co-occurrence may indicate functional synergy and the mechanisms
underlying canalization, and thus hold promise in drug target identification and therapeutic development, we provide a
platform-independent implementation of SICORE with a graphical user interface as a novel tool in the arsenal of high-
throughput screening analysis.
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Introduction

High-throughput screening is a well-established tool for large-

scale experiments since it provides an overview of how different

cellular variables change under various conditions. Such experi-

ments monitor for instance the alteration of protein levels due to

different transcription factors and changed environmental condi-

tions like starvation or enhanced radiation [1]. Biological or

chemical perturbations that specifically influence single gene

expression, including small interference RNAs (siRNAs) or

microRNAs (miRNAs), have been coupled with protein assays to

systematically study the relationship between gene expression and

function [2]. miRNAs are a large class of small non-protein-coding

RNAs that usually (but not exclusively [3]) function as negative

regulators. It is known that they play an essential role in the

development and maintenance of many diseases: for example, they

are tumour suppressors or oncogenes (oncomirs) in various types of

cancer [4–10]. There are slightly more than 2000 mature human

miRNAs registered in the miRBase release 19 [11,12] and these

may target over 60% of the mammalian genes [13] whose

corresponding proteins can display diverse functions.

Until recently, large-scale experiments designed to investigate

regulatory relationships between miRNAs and protein-coding

genes have either studied one or few miRNAs against a large

number of genes (on the transcriptomic [14] or the proteomic

[15,16] level), or tested a library of miRNA mimics or inhibitors

against one or few genes [17]. In either approach, univariate

analysis prevalent in high-throughput analysis [18] has been

frequently applied to rank targets or perturbations, e.g., by z-score

or p-value, in order to interpret the results. It is known that large-

scale experiments often come with the trade-off that not all of the

results are very reliable [19]: the preparation of the cells and

tissues, variances in the chip, detection mediated by antibodies,

and sensors that quantify signals are all independent sources of

noise. To avoid false-positive results, a strict threshold on these
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values assures that only those effects are reported that have a low

probability to be caused by random or non-functional fluctuation

around the resting level, e.g., due to handling or measuring errors.

It has however been confirmed that many of the protein regulating

effects of the whole human genome miRNA (miRome) are mild

[15,16,20]. These mild effects can only be detected if observations

with a low significance are also included in the analysis, which in

turn increases false-positive results. This problem of detecting mild

regulation effects was the motivation behind a novel computa-

tional approach: as we show in this article, it is computationally

feasible to determine whether the number of shared co-regulation

conditions of two proteins or protein-regulating conditions is

statistically significant or not. The proposed method helps to find

groups of proteins that are significantly co-regulated by the same

set of miRNAs (or groups of miRNAs that co-regulate the same set

of proteins). The implication is then that if two proteins are co-

regulated by a significant number of regulating conditions, these

regulation effects have a higher chance to be true-positive

regulating effects than their respective z-scores suggest. Further-
more, by identifying pairs of proteins that are significantly co-

regulated, experimentalists can make hypotheses of functional

relationships following the guilt-by-association principle [21,22].

In this article, we present the SIgnificant CO-REgulation filter

algorithm (SICORE) and give details needed for transferring it to

other applications. For instance, we discuss when to use the

method (noisy data containing mild effects) and which decisions

need to be made when applying it (especially concerning the

choice of meaningful significance thresholds). The algorithm was

motivated by the specific biological question raised by the high-

throughput study described in Uhlman et al. [20]: How to map

regulatory network structures in the EGFR-driven signalling

system modulated by human miRNAs? In that paper, we briefly

presented SICORE, showed the protein co-regulation network

identified by it and provided experimental validation for several of

the obtained predictions. Besides determining co-regulation

patterns, the framework is generally applicable to any biological

data set containing two types of entities that interact with each

other. In network terms, the data set must have a bipartite

structure. In the following, the co-occurrence of two nodes of the

same type will be defined as the number of common neighbours

they share in this network. With this, the method proceeds in three

steps:

1. Given a pair of nodes, the number of their co-occurrences is

counted.

2. Then, the probability that at least this number of co-

occurrences appears in an appropriate null model is computed.

3. A proper significance level is chosen. Based on it, the null

hypothesis is accepted or rejected.

The main feature of the proposed method is its robustness

against noise, which we demonstrate here on artificial data sets

that emulate a possible biological structure. The advantage of

artificial data sets is that they can be constructed in such a way that

the gold standard (the true positive and negative results to be found

by an optimal algorithm) can easily be determined. We show that

SICORE is robust against random elimination and random

addition of observations, which models two typical sources of noise

in biological data. Furthermore, we analyse a real data set between

all known human miRNAs (miRome) and a subset of proteins in

the EGFR-driven signalling system in an in vitro model of human

breast cancer. While the results for protein co-regulation have

been reported in Uhlman et al. [20], here we provide key features

of co-regulated miRNAs for the first time and discuss the general

applicability of the method. Finally, we provide an open-source

software implementation of SICORE available under a GPL

licence at cna.cs.uni-kl.de/SICOP.

Materials and Methods

Biological Data used in this Paper
Cells from the human breast cancer line MDA-MB-231 are

transfected with a library of 810 miRNA mimics (miRIDIAN,

Dharmacon) listed in Table S1 and the level of 26 different

proteins from the EGFR-signalling pathway (Table S2) is

measured on reverse phase protein arrays (RPPA) with carefully

selected antibodies. Normalized signals are transformed to a z-

score for pairs consisting of one miRNA and one protein [18,20].

Images of RPPA are analysed with the GenePix software. The

light signal is log2 transformed after removing the background

using neighbourhood pixels. Block effects are removed by fitting

transformed values to a one-way ANOVA model incorporating

blocks of protein arrays. Normalization of signals with respect to

input protein concentration is performed with an adapted linear

model from [23] allowing for polynomial fitting. A positive z-score

signifies that the protein’s level was higher than its mean, while a

negative z-score indicates that it was lower. The array of

normalized z-scores then quantifies the change in the gene

expression level with regard to the protein’s resting level, building

the basis for the following analysis.

The data obtained in this way is not without limitations. For

instance, the used experimental methodologies (transfection of

cells with a miRNA library and reverse phase protein arrays) can

only be applied in a population-based manner. Thus, cell-to-cell

variability is disregarded and only mechanisms involving most of

the cells in the population are identified.

Regulation Graphs: Building a Bipartite Graph Model
from Protein Array Data
The processed protein array data consists of a z-score for each

pair of miRNA and protein. We determine a hard threshold tB to

build the basic bipartite graph. Given the data and the threshold

tB, the bipartite graph model contains an edge between any pair of

miRNA and protein if the absolute value of the corresponding

observed z-score is at least as large as tB. Note that these edges are

unweighted, i.e., all of the edges are treated equally after this step,

regardless of the value of the original z-score. However, we

differentiate between those edges with a positive z-score (up-

regulation) and those edges with a negative z-score (down-

regulation). Figure 1(a–c) shows schematically how the protein

array data is transformed into an unweighted bipartite graph.

Alternatively, different thresholds can be used to filter up- and

down-regulations.

The higher the z-score threshold, the smaller the probability

that the change in the protein level is merely a random fluctuation,

and subsequently the fewer edges are present in the bipartite

graph. As stated above, the goal is to understand mild regulation

effects, which can only be analysed if the threshold is moderately

low. In the following, we choose three thresholds: 2:58
(corresponding to an unadjusted, two-sided p-value of 0:01),
1:96 (p-value of 0:05), and 1:64 (p-value of 0:10). The unweighted
bipartite graph that results from thresholding the weighted

bipartite graph at tB is henceforth called the regulation graph G at

tB.

Statistical Significance of Mild Co-Regulations
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Co-regulation Graphs: One-mode Projection of Bipartite
Graphs
In the setting described above, we are interested in the co-

regulating behaviour of either the proteins or the protein-

regulating conditions (miRNAs), i.e., we are interested in the

indirect relation between nodes on the same side of the bipartite

graph model. In essence, this requires creating a graph that

contains only the nodes of M or P. In the new graph, two nodes

are connected if they take part in a significant number of co-

regulation conditions. Such a graph is called a one-mode projection of

the bipartite graph. Obviously, the bipartite graph can be

projected onto either of the two sides.

As the bipartite graph model contains two different types of

edges (up- and down-regulation effects), its one-mode projection

displays the following relations that can be defined for both

proteins and miRNAs, as illustrated by Figure 1D:

1. Co-up-regulation: A and B are both up-regulated by the same

miRNA 1, represented by the two red edges connecting A and

B to 1;

2. Co-down-regulation: A and C are both down-regulated by the

same miRNA 2, represented by the two green edges connecting

A and C to 2;

3. Antagonistic regulation: B is down-regulated by miRNA 3
while C is up-regulated by it. This antagonistic co-regulation is

denoted by a directed edge (represented by an arrow) from B to

C.

Note that in principle, each pair of proteins or miRNAs could

be connected through all four types of co-regulation patterns and

thus be connected by all four possible edges (red, green, and a blue

edge in both directions). In reality, we expect that two proteins or

miRNAs are either 1) in only one relationship, or 2) at the same

time co-up-regulated and co-down-regulated (connected by one

green and one red edge), or 3) reversely co-regulated (blue edges in

both directions).

In classic one-mode projections [24], an edge between two

nodes on the same side of a bipartite graph is created if they share

at least one neighbour on the other side, i.e., in our case one co-

regulation event would be sufficient. In contrast, the newly

proposed SICORE algorithm includes only statistically significant

co-regulations in the one-mode projection. In the next section, we

provide a sketch of the general method by which the statistical

significance of a given network pattern is assessed, followed by the

description of the necessary adaptations to regulation graphs.

Assessing the Statistical Significance of Network Patterns
A firm assumption underlying network analysis is that a

network’s structure follows its function [25]. It is therefore

informative to look for substructures, so-called network motifs

[26,27], which occur more often than expected in a random

network with the same degree sequence (for graph definitions see

Text S1). This more than random idea corrects for those

substructures which occur in a network with the same basic

components but an otherwise random structure. There are

different types of substructures of interest. One of them is, for

example, the feed-forward loop, in which A is influencing B and

C, while C influences B. The method for the computation of the

statistical significance of any kind of substructure in a network was

introduced by Shen-Orr et al. [26,27]. For instance, they showed

that feed-forward loops are much more common in transcriptional

regulation networks than expected. Their method can be

described as follows:

1. Given a graph G and a network pattern s, count the number of

occurrences of this pattern in the whole graph N(s,G);

2. Build a set of graphsH with the same degree sequence as G but

otherwise randomly distributed edges.

3. Compute the number of occurrences of this pattern for all

graphs G’ in H and compute the fraction p of graphs in which

the number of occurrences of this pattern is at least as large as

in the original graph G.

The mathematical intuition behind this algorithm is the

following: Let S(G) be the degree sequence of G and let

G(S(G)) denote the set of all possible graphs with the same degree

sequence as G, then the sample H is a subset of G(S(G)). If H is

large enough, then the fraction of graphs in H with at least as

many occurrences of the pattern s as contained in G approximates

the p-value of N(s,G) in the complete set G(S(G)). The complete

set is generally too large to be enumerated, i.e., even for a small

graph containing 20+20 nodes and 20 edges such that each node

has degree 1, G(S(G)) contains 20!&2:43:1018 graphs. Since an

exhaustive search is computationally not feasible, heuristic

methods are preferred, namely only a sample H from this set is

used to approximate the real p-value. A low value implies that the

observed occurrence of s is less likely to be simply caused by the

structure of the data but might rather hint at a functional

correlation. In the following we present an extension of this

network motif approach in which the patterns of interest are the

different types of co-regulations.

Figure 1. Converting the normalized z-score array into a bipartite graph and illustrating the co-regulation patterns of interest. (A)
Exemplary array depicting the normalized z-scores of the change in expression level for proteins A, B, and C when cells are transfected with miRNAs
1, 2, and 3. The z-scores are specified as white labels. (B) The corresponding bipartite graph where z-scores are represented by weighted edges; the
weights are shown as labels on the edges. (C) After applying a threshold tB to the weights, only some relationships are retained. In this case tB equals
1:96, corresponding to a p-value of 0:05. Edges with a positive weight (up-regulation) are shown in red, edges with a negative weight (down-
regulation) in green. (D) Protein co-regulation graph based on the co-regulation patterns as described in the text. Colours denote the co-regulation
pattern: the red edge denotes co-up-regulation, the green edge denotes co-down-regulation; the blue, directed edge from B to C indicates that B is
down-regulated while C is up-regulated by the same miRNA.
doi:10.1371/journal.pone.0073413.g001

Statistical Significance of Mild Co-Regulations
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SICORE: Finding Significant Co-regulation Patterns in
Regulation Graphs
Given z-scores from a large-scale protein regulation experiment

and a threshold tB on the observations to be included into the

graph model, the number of co-regulation conditions can be

computed for each pair of proteins. Vice versa, the number of co-

regulated proteins can be computed for each pair of regulating

conditions. We want to understand whether the resulting numbers

are actually significant or might 1) be just a random effect caused

by noise, 2) occur simply due to some of the proteins showing

extreme variation in their level, or 3) result from many miRNAs

targeting a central protein by both direct interference and indirect

effects propagated through the gene regulatory network. Accord-

ing to the more than random idea, all of these problems can be

mitigated by assessing the probability that this number of co-

regulating conditions is observed in graphs with the given degree

sequence. Only those numbers which are unlikely to be the result

of this random model will then be accepted as significant. The

main idea behind overcoming the first problem is that filtering

random missing edges or randomly added edges will not induce

significant numbers of co-regulation conditions. The second

problem, namely proteins with an erratically jumping abundance

level, will mainly induce random edges in the network. The

random model can cope with both types of problems since a node

with a higher degree will also have higher numbers of co-

regulating conditions in the model. The third problem is that

miRNAs with many indirect effects induce proteins with high

degree. Their co-regulations are corrected by the same noise-

filtering effect.

Our method consists in adapting the scheme for the detection of

network motifs in general graphs to the case of bipartite regulation

graphs containing two types of edges: those corresponding to up-

regulation and those corresponding to down-regulation

(Figure 2A). The new algorithm is based on earlier work that

aimed at finding significant co-occurrences in general bipartite

graphs [28,29]. Because there are two types of edges in bipartite

regulation graphs, we need to maintain both the degree sequence

of the up-regulations and the degree sequence of the down-

regulations. The edge type specific degree sequence of each

protein and each miRNA in the bipartite graph is then fixed while

the edges of the same type are perturbed (Figure 2C). This is

achieved by the so-called edge swap procedure [30–32]: two edges

of the same type, e.g., (A,1) and (B,2), are picked uniformly at

random. If (A,2) and (B,1) are not yet connected, edges (A,1) and
(B,2) are removed and edges (A,2) and (B,1) added. If at least one
of the edges (A,2) or (B,1) already exists, no such swap is

performed. The edge swaps constitute a random walk (in

mathematical terms a Markov chain) in the space of bipartite

graphs with the same degree sequences for up- and down-

regulations. It is thus assured that, if the number of attempted and

conducted edge swaps is sufficiently large, the resulting graph is a

uniform random sample from the set of all bipartite graphs with

this fixed degree sequence [29], taking into account the two

different types of edges. The first random walk starts at the

observed bipartite graph, while subsequent walks start from the

bipartite graph obtained in the previous step.

In summary, as sketched in Figure 2, the newly proposed

SICORE algorithm performs the following steps to assess the

statistical significance of the observed co-regulation patterns:

1. Given the observed data and a threshold tB, create the

bipartite regulation graph G (Figure 2A).

2. For each pair of nodes on the side of interest in G, compute the

number of all co-regulation conditions, sorted by type

(Figure 2B).

3. Let G0 equal G and let s be the number of graphs in the sample

H .

4. For i~1 to s do:

(a) Starting from Gi{1, build graph Gi by performing edge

swaps as described above (Figure 2C).

(b) For all pairs of nodes on the side of interest in Gi, compute

the number of all co-regulation conditions, sorted by type. If

the number is at least as large as the observed value in G,
increase the empirical p-value of this pair and this type of co-

regulation event by 1=s (Figure 2D).

5. Keep only those edges of the projection with an empirical p-
value below a threshold tP (Figure 2E). We address the

procedure of choosing a proper threshold later on.

Artificial Data for the Robustness Analysis
For the kind of question at hand, namely the co-regulation

behaviour of proteins under various experimental conditions, there

is, to our knowledge, no large data set where the correct result is

known. We thus build artificial data sets for which the gold

standard is defined by construction and test our method against it.

This approach is often used in the clustering of networks, e.g., to

prove the usefulness of the Girvan-Newman clustering algorithm

[33] or to test the performance of clustering algorithms [34,35].

In addition to constructing them in such a way that the optimal

result is known, the artificial data sets should also have a structure

which resembles the data the algorithm is applied to. For the

biological data set at hand, there is a strong imbalance between the

number of proteins (26) and the number of miRNAs (810).
Moreover, their degree sequences (for a definition see Text S1)

show a large variance (see Figure 3). Constructing artificial graphs

that best fulfil these requirements at the same time is difficult and

involves several modelling decisions. For illustration purposes, we

formulate the simplifying assumptions behind the construction of

the artificial graphs in terms of artificial proteins and artificial miRNAs:

a) There are groups of artificial proteins that are either co-up- or

co-down-regulated by a subset of artificial miRNAs. b) Such a

group of up-regulated artificial proteins and a group of down-

regulated artificial proteins are antagonistically regulated by some

subset of artificial miRNAs. c) Each group of artificial miRNAs is

responsible for up-regulating exactly one group of artificial

proteins and down-regulating another group of artificial proteins.

d) Additionally, the regulation effect of the artificial miRNAs is

assumed to be half up- and half down-regulations. Note however,

that real-world data might be biased towards one of the edge types.

For instance, in the biological data set at hand, miRNAs have a

preference for down-regulations (see Figure 4).

To model these assumptions, we build artificial graphs

consisting of five modules with 16 nodes on the left side and 60
nodes on the right side, where the left side represents the artificial

proteins and the right side the artificial miRNAs. In each module,

there are 8 artificial proteins that are up-regulated and 8 that are

down-regulated by the artificial miRNAs in the same module.

Each of these modules represents one group of artificial proteins

that are up-regulated, and another group of artificial proteins that

are down-regulated by the same group of artificial miRNAs.

Figure 5A sketches the structure of a single module. The degree

distributions of the artificial proteins and artificial miRNAs are

chosen to be similar to the ones in our biological data set: The

Statistical Significance of Mild Co-Regulations
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degree distribution of the artificial miRNAs is strongly skewed, i.e.,

four of the nodes have degree 16, 8 nodes have degree 8, 16 nodes

have degree 4, and 32 nodes have degree 2, while artificial

proteins have a Poisson degree distribution.

For these artificial graphs, the gold standard (i.e., the wanted

result of a meaningful computation) when projecting to the

artificial protein side is that within each of the modules all artificial

proteins of the first group are significantly co-up-regulated, while

all artificial proteins of the second group are significantly co-down-

regulated. For any pair consisting of one artificial protein from the

first and one from the second group, we require the algorithm to

detect a significant antagonistic co-regulation directed from the

Figure 2. Steps performed by the SICORE algorithm. (A) Defining the initial bipartite graph, (B) counting the observed number of co-
regulations, (C) simulating the set of random bipartite graphs which define the expected number of co-regulations, (D) building the protein co-
regulation graph where the weight of the edges indicates the p-value assigned to the co-regulation of a given protein pair, (E) considering each co-
regulation with a p-value smaller or equal than a threshold tP (e.g., 0:05) statistically significant.
doi:10.1371/journal.pone.0073413.g002

Figure 3. Degree distributions of the bipartite biological data. Shown are the degree distributions of proteins (top panel) and miRNAs
(bottom panel) at thresholds tB which correspond to p-values of 0:01, 0:05 and 0:10.
doi:10.1371/journal.pone.0073413.g003

Statistical Significance of Mild Co-Regulations
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second group to the first one. Defining a gold standard for the

projection to the artificial miRNA side is not equally straightfor-

ward due to the presence of artificial miRNAs with a high degree,

which will inherently be involved in non-significant co-regulations

as well. However, since the robustness of the projection onto the

artificial miRNA side is also highly relevant, we test the stability of

the obtained artificial miRNA co-regulations with increasing noise.

Thus, to show the stability of our method, the artificial data is

further perturbed to model two types of noise typical for biological

data:

1. false-negative observations, i.e., the miRNA does regulate the

protein’s level but the change is too low due to random

fluctuations, measuring errors, or simple handling errors. In

this case, the regulation is not included in the regulation graph

model and is thus a missing edge.

2. false-positive observations. By lowering the threshold of the

original z-scores we add edges to the bipartite graph which are

unlikely to represent significant regulations.

These two types of noise are modelled by altering the artificial

data in the following way:

1. random elimination of a percentage r of edges (0vrƒ100)
and

2. random addition of a percentage r of edges (0vrƒ100).

The quality of the algorithm is measured by its ability to find the

structure embedded in the original, artificial graph despite the

presence of noise.

Quality Measures for Evaluating the Predictions of
SICORE
The gold standard of the artificial data set defines for each pair

of proteins whether the algorithm should identify their co-

regulation pattern as significant. As shown in Figure 5B, the gold

standard partitions all pairs into co-regulated pairs of proteins E
and not co-regulated pairs of proteins E. When projecting onto the

protein-regulating conditions, the gold standard can be similarly

defined.

Given a bipartite graph, our algorithm assigns a p-value to each

protein pair which can then be sorted non-decreasingly by this

value. For a fixed threshold tP all pairs with a p-value lower than
that threshold are predicted to be actually co-regulated. Com-

Figure 4. Up- and down-regulation effect of miRNAs. The weighted scatterplot shows the number of miRNAs for each combination of down-
and up-regulation degrees.
doi:10.1371/journal.pone.0073413.g004

Figure 5. Structure of the artificial data. (A) Sketch of one module of an artificial graph. The degree of artificial proteins/miRNAs is proportional
to size of circles/squares. (B) Decision tree illustrating the principle behind the construction of the gold standard.
doi:10.1371/journal.pone.0073413.g005

Statistical Significance of Mild Co-Regulations
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pared with the gold standard, these pairs can either belong to E
and thus be true positives (TP), or belong to E and be false positives

(FP). Analogously, pairs of proteins predicted to be not co-

regulated might belong to E and thus be true negatives (TN ) or

belong to E and be false negatives (FN ).

Usually, prediction in bioinformatical problems is difficult

because in most cases the set E is substantially larger than E.
This is valid for our artificial data as well, because there are

approximately 20 times less realized edges than possible ones. This

implicit imbalance has to be taken into account when choosing the

quality measures for evaluation. A trivial algorithm which always

predicts a pair to be non-co-regulated would deceivingly result in a

perfect specificity (correctly identified non-co-regulations). However,

from a biological point of view, our interest focuses on the

prediction of significantly co-regulated pairs, implying that the

sensitivity (correctly predicted co-regulations) is more relevant. We

thus need measures which combine specificity and sensitivity in a

meaningful way.

Therefore, when assessing the performance of an algorithm, we

first look at the F -score which combines sensitivity (also called

recall) and precision (the fraction of predicted edges that are true):

F~2:
sensitivity:precision

sensitivityzprecision
:

The F -score is always in ½0,1�, and the higher the score, the

better the prediction. Having no false positive and no false

negative predictions would result in an F -score of 1.

The F -score depends on the arbitrarily chosen threshold for the

observed p-value, classically one of the following:

f0:01,0:05,0:10g. Another measure, the positive predictive value

among the first k samples, the PPVk, chooses a threshold such

that for each of the co-regulation patterns exactly k : ~DED many

pairs of proteins are predicted to be co-regulated [36]. k is thus

determined by the number of edges in the gold standard. This

measure is particularly helpful because of two important features it

possesses. By definition, the PPVk is equal to sensitivity. The

higher the value, the more edges are among the first k ranked

samples. Second, it can be shown that if FP=FN as in our case

then PPVk is proportional to specificity:

1zr(PPVk{1)~specificity,

where r denotes the ratio between DED and DED. The values of PPVk

lie in the ½0,1� interval and a perfect predictor achieves 1.

Results

We show the robustness of the proposed SICORE algorithm on

artificial data and present its application to a challenging biological

data set.

Experiments on Artificial Data
We construct 100 artificial graphs with predefined modular

structure as described in the Materials and Methods section. In

this section, whenever we refer to artificial proteins or artificial

miRNAs, we use the terms protein and miRNA. Each artificial graph

is projected twice: first to the protein side and then to the miRNA

side. In order to assess the statistical significance of the edges in the

projections, a sample of s~10,000 random graphs is used. Based

on the projection onto the protein side (with an easily definable

gold standard), our aim is to assess how well the SICORE

algorithm recovers the built-in modular structure of the gold

standard projection. Then, based on both projections, we test the

robustness of the algorithm against elimination and addition of

randomly chosen edges. To quantify the precision of the algorithm

for different noise levels, we use the quality measures defined

above. Figure 6 shows the performance of the algorithm when

projecting onto the protein side (upper half) and when projecting

onto the miRNA side (lower half). There are three patterns of

interest for the protein case: when both proteins are up-regulated,

both proteins are down-regulated, or one is up- while the other is

down-regulated. For miRNAs, we only have two patterns: the

antagonistic co-regulation pattern is omitted due to the lack of

miRNA pairs in the original graphs that would antagonistically co-

regulate proteins.

As both measures suggest, in the absence of noise, the algorithm

recovers the protein modules perfectly. As the noise increases, the

performance decays slowly. When projecting onto the protein side,

gradual elimination of all edges in the bipartite graph (r~0% to

100%) covers the whole range of possible prediction qualities.

Accordingly, the F -score drops from 1 to 0 at tP~0:05 (the

threshold used for determining the significance level of the edges

that are included in the projection). The PPVk decreases from 1 to

about 0:04 (for the co-up- and co-down-regulation patterns) and to

0:05 (for the antagonistic co-regulation), where the latter ones are

the baseline values for this measure, i.e., the proportion of true

positives among all samples. Up until the point where 20% of all

edges are eliminated, the PPVk is almost perfect, while the F -score
is above 0:9 for all considered patterns. Thus, the algorithm

compensates well for noise. The prediction accuracies when

projecting onto the miRNA side show similar tendencies: for 22%
noise, the PPVk is about 0:6, while the F -score is 0:67.
The addition of edges exerts a milder effect on the prediction

quality. Thus, for as many as r~100% added edges, there are still

many correct predictions. In this range, when projecting onto the

protein side, the PPVk is above 0:88 and the F -score exceeds 0:85
for all patterns. Projecting onto the miRNA side results in lower,

but still convincing accuracies: the PPVk remains above 0:52,
while the F -score always exceeds 0:45. This is reassuring as it

means that we can still find significant co-regulation patterns even

when including mild effects into the original bipartite regulation

graph.

Although the two chosen quality measures are conceptually

different, the resulting performance plots are relatively similar in

our case. The general trend is that, for low noise values, the PPVk

scores higher than the F -score. This is due to the different

thresholds the two measures use. While PPVk uses a threshold that

is innate to the graph (the number of edge samples k), for the F -
score we fix the threshold according to the rule of thumb

tP~0:05. This emphasises that the proper choice of tP for the

SICORE algorithm is crucial and needs further consideration.

Overall, we conclude that the SICORE algorithm is robust against

both investigated types of noise. Having thus validated it on

artificial data, we proceed to the analysis of a real biological data

set.

Results on the Biological Data
As described above, the chosen biological data set contains the

effect of a genome-wide library of miRNA mimics on the

expression of 26 proteins in the EGFR-driven cell cycle pathway

in a breast cancer cell line. Proteins are typically regulated by

multiple miRNAs and miRNAs generally modulate, directly and/

or indirectly, the expression of many proteins. Given these

complex interactions between proteins and miRNAs, it is

challenging to differentiate mild biological effects from technical

Statistical Significance of Mild Co-Regulations
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fluctuations and to identify regulatory patterns. The SICORE

algorithm is designed to detect on the one hand those pairs of

proteins which are systematically co-targeted by a set of miRNAs,

and on the other hand those pairs of miRNAs which systematically

co-target a set of proteins. In this article, we use SICORE to

search for miRNA pairs which simultaneously and significantly

regulate the same proteins, i.e., we project the bipartite graph onto

the miRNA side. For this, we use a sample of s~10,000 random

graphs. Out of the obtained three projections, one for each co-

regulation type, we focus on the biologically most relevant miRNA

co-regulation pattern, namely co-down-regulation. A similar

analysis can be performed on the other two projections consisting

of co-up-regulations and antagonistic regulations.

The robustness analysis discussed above suggests that the choice

of tP is one of the subtleties of the method that may influence the

performance of SICORE considerably. Thus, we first discuss this

final step of the algorithm (see Figure 2(e)). When interpreting the

result of a statistical analysis, it is common practice to choose the

threshold for the significance level by some rule of thumb. For

instance, it is widely accepted to define the significance level as

0:05 or 0:01. In contrast to this arbitrary choice of threshold, a

trial and error approach is possible: one can set different

thresholds and choose the best parameter by validating the results

against prior knowledge or experiments, i.e., by using an external

reference approach. Since external references might be difficult to

obtain, we suggest the use of intrinsic properties like the network

topology to automatically determine threshold candidates. The

idea behind this internal reference approach is motivated by the core

assumption in the analysis of biological networks namely that a

network’s function is reflected by its structure [25,37]. To find the

significance threshold, one can thus use a general criterion that

relies on network analytic reasoning and results in a network-

specific threshold that is chosen based on the structure of the

network rather than just on the underlying problem (similar ideas

have been suggested in sociology [38], chemistry [39] and physics

[40]). In an ideal setting, the two methods (the external and

internal reference approaches) can be combined in order to

maximize the efficiency of the predictions.

To choose a proper threshold for miRNA co-regulations, we

propose the internal reference approach and base the decision on

intrinsic information deduced from the underlying graph. Thus,

we search for an appropriate threshold by inspecting the topology

of the sub-graphs built with different possible thresholds.

Topological features of interest are: 1) the number of edges

normalized by the maximum number of edges, 2) the number of

components (i.e., sub-graphs in which any two nodes are

connected to each other by paths), 3) the component density of

the sub-graphs normalized by the maximum number of compo-

nents, where the density of a component is defined as the total

number of its edges divided by the number of possible edges, 4)

and the clustering coefficient that quantifies the probability that

any two of a node’s neighbours are connected themselves [41].

The clustering coefficient of a graph is the average clustering

coefficient of its nodes. In our case, it measures the probability that

two miRNAs, which each co-regulate proteins with a given third

miRNA, also co-regulate the same protein(s). Monitoring these

features at varying thresholds, we observe nontrivial changes in the

structure of the sub-graphs indicating the more informative

threshold candidates (see Figure 7). The thresholds are considered

optimal when there is a strong increase or local maximum in the

clustering coefficient and in the global component density, while

the number of components is still considerable. With respect to

miRNA co-regulation, these criteria assure increased transitivity

and best reveal the local connection patterns of the individual

miRNAs. Accordingly, for our data we choose the tP thresholds

shown in Table 1. Interestingly, for this data set, the thresholds for

the statistical significance of the co-regulations do not differ

considerably for altered significance levels tB of the edges in the

bipartite graph.

Figure 6. F-score and PPVk evaluating the performance of the SICORE algorithm on artificial data sets for increasing noise levels r.
Results are shown for eliminated and added edges when projecting onto the artificial protein and the artificial miRNA side. Red data points represent
the performance of predicting co-up-regulation, green data points refer to co-down-regulation, and blue ones to antagonistic co-regulation.
doi:10.1371/journal.pone.0073413.g006
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Analysing the effect of the bipartite graph threshold on the

resulting co-regulation graphs (Table S3), we observe that as tB
gets stricter, these projections contain a decreasing number of

miRNAs that are grouped in several components of size w1 (see

Table 1). We call these groups of miRNAs the SICORE groups.

(Figure S1 shows these SICORE groups for all three thresholds

tB~f0:01,0:05,0:10g.) First, to reinforce the assumption that

SICORE detects miRNA groups which have similar regulation

patterns, we return to the bipartite graph model and analyse it

with respect to the newly acquired grouping of the miRNAs. As

shown in Figure 8, based on the number of proteins that are co-

targeted by the miRNAs contained in the SICORE groups, we

can differentiate between three types of groups:

1. Groups of miRNAs that target one single protein (section I in

Figure 8A). Although they do not provide new biological

insights, these groups are reassuring findings since they

obviously satisfy the criterion of non-random co-regulation;

2. Groups of miRNAs that have 2 to 8 protein targets (section II

in Figure 8A and magnified in Figure 8B). These groups

represent nontrivial co-regulations and should be central to

further experimental investigations aimed at finding candidates

for new tumour suppressors; and

3. One larger group that contains several miRNAs with multiple

targets (section III in Figure 8A). Here the interconnectedness

in the bipartite graph is highly complex and requires further

research. For instance, the group could be split up by lowering

the projection threshold tP or using a subsequent clustering

algorithm which detects subgroups based on the p-values
assigned to each miRNA pair.

Figure 8C shows an exemplary excerpt of the co-regulation

graph (the five miRNAs belonging to one of the SICORE groups

and the co-regulating miRNAs) with typical patterns for the entire

graph. Accordingly, co-up- and co-down-regulations define tightly

connected clusters. Antagonistic co-regulations occur between these

clusters, systematically connecting co-down-regulated clusters with

co-up-regulated clusters, i.e., consistently with their direction.

We expect that the membership of the miRNAs in the SICORE

groups is biologically meaningful. To test this, we analyse the

groups in relation to the assignment of miRNAs into families

according to their seed sequence – a non-disrupted subsequence

between the 2nd and 7th bases of the mature miRNA, which is

believed to be decisive for RNA binding. Specifically, we compare

the seed sequences of miRNAs belonging to the same SICORE

group. To quantify the similarity of two miRNAs, we use the edit

distance of their seed sequences, i.e., the number of alterations

required to change one sequence into the other. The similarity of

the miRNAs which SICORE places in the same group is then

defined as the average pairwise edit distance between the

miRNAs. To test whether the sequence similarity within a given

group is statistically significant, we conduct simulation with

bootstrapping. In some of the cases, the edit distances suggest a

significant similarity between the sequences in the SICORE

groups (see Figure S2). As shown in Table 2, a hypergeometric test

reveals that for tB~0:05 there are 8 over-represented families in

the SICORE groups. Four of these families are reported to be

oncogene or tumour suppressors in breast cancer, while two of

them, miR-99 and miR-506, have a role in prostate/head-and-

neck cancer and melanoma, respectively. Thus, by using the

SICORE algorithm we can extract miRNAs and families which

have already established roles in the pathogenesis of breast cancer.

This implies the ability of our algorithm to identify the potentially

most pathologically-relevant miRNAs.

Discussion

Since the early days of genetics and molecular biology, it has

been noted that proteins can be regulated by more than one

regulator and one regulator may in turn affect several proteins. In

many situations, a regulator or a given experimental condition

exerts only a mild effect on an observed protein, which might be

difficult to differentiate from a random fluctuation. To address this

complication, we propose a network analytic method called

SICORE which is rooted in the observation that if proteins are

collaborating with each other to coerce a common biological

function, then this should be reflected in the way they are co-

regulated. Based on this assumption, we search for pairs of

proteins or protein-regulating agents, which are significantly co-

regulated under many different experimental conditions. In a

biological system with many layers of regulatory networks, co-

regulations may contribute to the robustness of the system, since

the regulation can be resistant to partial losses of functional

members due to gene deletion, mutation, or stochastic expression

regulations. Understanding co-regulation is vital in establishing an

effective and stable modulation of the molecular target and thus it

is important for cellular engineering and drug research.

Given a complex interconnected system of proteins and

regulators, SICORE finds statistically significant co-regulations.

In this article, we have shown on artificial data sets that systematic

co-regulations are detected even in the presence of random noise

in the form of eliminated or added regulations. To test SICORE

on a real biological data set, we applied it to the EGFR-driven cell

cycle system regulated by miRNAs. The biological function of

miRNAs is only partially understood and the regulation of

signalling networks by miRNAs is highly complex. In particular,

little is known about physiological relevance of co-regulated

protein pairs by miRNAs. It is believed that such co-regulations

within a network confer signalling robustness (e.g., dampening and

buffering effect) and can mediate the crosstalk of different

signalling pathways [42]. Two different kinds of co-regulation

patterns can occur: several miRNAs co-regulate a single protein

and a single miRNA might co-regulate several proteins. For

example, one of the first discovered miRNAs lin-4 and let-7 were

identified to cooperatively target the gene lin-28 [43]. Similarly,

miRNAs let-7b, miR-375 and miR-124 were validated to

cooperatively control Mtpn in mammals [44]. In the study of

Wu et al., the CDKI p21Cip1/Waf1 was shown to be directly

targeted by 28 miRNAs in a high-throughput luciferase reporter

screen [45]. Similarly to these examples, we identified novel co-

regulations of proteins which belong to the same functional

modules at genome-wide miRNA level [20]. Interestingly, the

expression of several key proteins controlling the G1/S transition

Table 1. Properties of the co-down-regulation projections
obtained from the bipartite graphs with different tB
thresholds.

tB 0.10 0.05 0.01

tP 0.0440 0.0459 0.0509

number of miRNAs 437 322 151

number of groups 33 42 31

Shown are the significance thresholds tP for the edges in the corresponding co-
down-regulation graphs alongside the number of miRNAs and groups of size
w1 obtained at those thresholds.
doi:10.1371/journal.pone.0073413.t001
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was regulated in a tightly coordinated manner by the studied

miRNAs and we could identify co-regulated protein pairs with a

possible physiological relevance. For example, we found that miR-

520d*/miR-661 co-down-regulate EGFR and KRAS. This co-

down-regulation could be a two-tier regulation at the receptor and

pathway level to ensure robust control of two key oncogenes in

cancer. Taken together, all these findings indicate that miRNAs

should be studied further on a system-wide level to understand

their regulation in the context of biological networks, thereby

going beyond the level of individual interactions between miRNAs

and their corresponding targets. This article represents a further

step in this direction.

Focusing on miRNA co-regulation, we showed with sequence

analysis and miRNA family enrichment analysis that the theory,

according to which miRNA targeting is sequence-dependent,

indeed partially explains the observed co-regulations obtained by

SICORE. However, the results of the SICORE algorithm show

that even miRNAs with distinct seed regions can induce strong co-

regulations, which may be caused by the co-targeting of upstream

transcription factors or separate targeting of canalized pathways.

This indicates the complexity of the miRNA regulatory machin-

Figure 7. Deducing meaningful tP significance thresholds from structural measures. Shown are four graph topological measures against
the tP thresholds for the p-values of the projection. The projections onto the miRNA side are constructed from the bipartite graphs with thresholds tB
corresponding to a p-value of 0:01, 0:05 and 0:10.
doi:10.1371/journal.pone.0073413.g007
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Figure 8. miRNA groups obtained by the SICORE algorithm from the bipartite graph with tB~0:05 and tP~0:0459. Each square
represents a down-regulation in the bipartite graph. (A) Shown are the groups with one exclusive protein target (section I), with 2 to 8 targets
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ery, since miRNAs from different families may target different

genes while yielding the same output. To tackle this complexity,

further experiments are needed, such as profiling gene expression

by over-expressing miRNAs of the same SICORE groups. Our

results do not only yield proteomic evidences that sequence

similarity of miRNAs determine their targets, but also provide

hypotheses of other types of co-targeting that can be tested

experimentally. Thus, potential therapeutic applications have to

consider miRNA sets with similar co-regulation patterns. Based on

our observations, we therefore argue that systematic approaches

examining regulations between two biological components

(miRNA and EGFR pathway proteins in our case) can be essential

to the detection of co-regulation patterns and in the design of

multiplex targeting strategies.

High-throughput studies aiming at exploiting regulatory

networks between two types of biological entities have been made

feasible thanks to technological development and community

efforts. Recently, as the ENCODE project reached its milestone,

several data sets and accompanying papers were published (for a

review see [46]), providing data in various settings that can be

modelled by bipartite graphs, e.g., transcription factors binding to

DNA promoter regions [47], gene-coding RNAs and co-

transcriptional long non-coding RNAs [48], single-nucleotide

polymorphisms (SNPs) and diseases [49]. Despite their distinct

natures, all these data sets can be represented as bipartite graphs

and therefore be analysed by the SICORE algorithm to identify

significant co-regulation patterns. Previous approaches of finding

such patterns include various clustering methods, most promi-

nently hierarchical clustering or k-means clustering. SICORE

differs from these methods in four important aspects:

1. It applies thresholding when building the bipartite graph

model. We reckon that this step can be both advantageous and

risky: by using a hard threshold, on the one hand we filter out

noise, but on the other we may disregard potentially useful

information by eliminating edges. However, benchmarking

with artificial data sets suggests that SICORE is highly robust

against randomly added edges (noise included due to a loose

threshold) or eliminated edges (relevant regulation lost because

of a strict threshold). This gives us flexibility when choosing the

threshold tB, suggesting that small deviations of the threshold

may not have a considerable impact on the algorithm.

2. The co-regulation graph with the threshold tP is selected by

tracing changes in the graph characteristics with respect to the

threshold choice. Instead of relying on rules of thumb, this

allows for a threshold-selection which retains a maximum of

information obtainable from primary data.

3. Classical hierarchical clustering returns a tree in which each

biological entity (e.g., miRNA) is connected to another entity

via an internal node. The k-means clustering results in groups

of nodes without internal edges. In comparison, SICORE

provides an intuitive way of understanding active or passive co-

regulation relations within the groups.

4. For each identified co-regulation, it reports an empirical p-

value which quantifies the likelihood of observing the given co-

regulation patterns in random graphs. This is not the case for

either hierarchical clustering or k-means. Therefore, SICORE

makes it possible to compare the statistical significance of the

co-regulations within one network as well as between different

networks. Comparing significant co-regulation patterns (net-

work motifs), instead of comparing top hits, may help in

revealing the mechanisms underlying observations of interest,

as pathway and network analysis has demonstrated in

microarray analysis [50].

(section II, coloured regulations), and with multiple targets (section III). The names of all shown miRNAs and their protein targets are listed in the
order of their appearance in in the figure in Table S4. (B) Magnification of section II containing nontrivial co-regulations. In accordance with (A),
colours indicate the different SICORE groups. (C) The SICORE group containing hsa-miR-489, hsa-miR-522, hsa-miR-200c, hsa-miR-550, and hsa-miR-
200b together with the co-regulating miRNAs. Co-down-regulation is shown in green, co-up-regulation in red, while antagonistic regulation is
coloured blue (the miRNA at the source of the arrow significantly down-regulates and the miRNA at the head of the arrow significantly up-regulates).
doi:10.1371/journal.pone.0073413.g008

Table 2. miRNA groups identified by the SICORE algorithm in which the precursor families are significantly over-represented.

group enriched miRNA # miRNAs in # miRNAs of this family # miRNAs of miRNAs of the family p.hyper

index precursor family the group having z-scores this family that are in the group as well

tBover the threshold in the group

1 mir-99 12 4 3 hsa-miR-100, hsa-miR-99a, 0.001

hsa-miR-99b

5 let-7 90 7 5 hsa-let-7f, hsa-let-7f-1*, 0.029

hsa-let-7f-2*, hsa-let-7g*,

hsa-let-7i*

17 mir-146 11 3 2 hsa-miR-146a, hsa-miR-146b 0.005

19 mir-221 16 4 2 hsa-miR-221, hsa-miR-222 0.011

19 mir-29 16 2 2 hsa-miR-29a, hsa-miR-29c 0.001

33 mir-506 9 7 2 hsa-miR-509-3-5p, hsa-miR-510 0.018

42 mir-8 5 5 2 hsa-miR-200b, hsa-miR-200c 0.001

45 mir-515 2 61 2 hsa-miR-515-3p, hsa-miR-520f 0.021

For analysis, we consider the seed sequences of the groups obtained at the regulation stringency threshold tB~0:05. The statistical significance of over-representation
was assessed by a hypergeometric test. The complete list of over-represented families for all used stringency thresholds tB~f0:01,0:05,0:10g can be found in Table S5.
doi:10.1371/journal.pone.0073413.t002
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Besides these classical clustering methods, weighted correlation

network analysis (WGCNA) has been proposed [51] and

successfully applied in gene expression microarray analysis [52].

WGCNA assumes a scale-free topology of the underlying network,

while SICORE does not make any assumption regarding the

structure of the data. Thus, we believe that it offers an unbiased

analysis as compared to WGCNA. A thorough comparison

between SICORE and other existing approaches represents the

main direction for future research. An exemplary comparison of

our method with the Pearson correlation of the expression values,

i.e., one of the standard methods for evaluating gene co-expression

[53], showed that SICORE outperforms this on artificial data sets.

Accordingly, when identifying co-regulated proteins from data sets

containing 50% noise in form of added edges, the Pearson

correlation achieves a PPV of 0:85, while our method has a

performance of 0:96.
The biological analysis presented in this article as well as the one

analysing protein co-regulation patterns in the EGFR-driven cell

cycle system [20] have been used to illustrate one context in which

the SICORE algorithm can be used. An entirely different

application of the algorithm on a data set of film ratings can be

found in [54]. We encourage the reader to use it in other settings.

The method can be applied as long as the biological system of

interest can be modelled as a bipartite graph and the research

question can be meaningfully approached in terms of co-

occurrences of nodes of the same type. The statistically significant

co-occurrences identified by the algorithm are expected to unravel

functional groups which could be profitably analysed from this

perspective.

Supporting Information

Figure S1 miRNAs arranged by SICORE groups and
their respective protein targets. Shown are all groups of size

w1 obtained from the bipartite graphs with tB~0:01, tB~0:05,
and tB~0:10, respectively. Each coloured rectangle represents a

down-regulation in the bipartite graph. Colours mark SICORE

groups. The top row indicates the bipartite stringency level at

which a given miRNA was first considered for analysis: black

denotes the bipartite graph with tB~0:01, grey denotes tB~0:05,
and white denotes tB~0:10. With decreasing stringency levels,

miRNAs added to the analysis form new groups in some of the

cases. In general however, they show no preferences when

enriching existing groups.

(EPS)

Figure S2 Statistical significance of the similarity of
miRNA seed sequences within the SICORE groups. For
each significance level tB~f0:01,0:05,0:10g, solid and dashed

lines show the medians and the 95% confidence intervals of the

average edit distances per group when permuting members of

each group for 1,000 times. Dots indicate the actual distance of the

miRNAs in the individual SICORE groups. Groups marked with

red dots have significantly lower edit distances than expected by

chance (pv0:05). There are 3 such groups for tB~0:10, 5 for

tB~0:05, and 3 for tB~0:01.
(EPS)

Table S1 Investigated miRNAs.

(PDF)

Table S2 Investigated proteins.

(PDF)

Table S3 Groups of miRNAs defined by the SICORE
algorithm and their corresponding sequences.

(PDF)

Table S4 List of miRNAs and their protein targets
shown in Figure 8A.

(PDF)

Table S5 SICORE groups in which the precursor
families are significantly over-represented for regula-
tion stringency thresholds tB~f0:01,0:05,0:10g.
(PDF)

Text S1 Graph definitions.
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39. Zahoránszky L, Katona G, Hári P, Málnási-Csizmadia A, Zweig K, et al. (2009)
Breaking the hierarchy – a new cluster selection mechanism for hierarchical

clustering methods. Algorithms for Molecular Biology 4: 12.
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