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ABSTRACT

Age-related hearing loss (presbyacusis) has a complex
etiology. Results from animal models detailing the
effects of specific cochlear injuries on audiometric
profiles may be used to understand the mechanisms
underlying hearing loss in older humans and predict
cochlear pathologies associated with certain audio-
metric configurations (“audiometric phenotypes”).
Patterns of hearing loss associated with cochlear
pathology in animal models were used to define
schematic boundaries of human audiograms.
Pathologies included evidence for metabolic, sensory,
and a mixed metabolic + sensory phenotype; an older
normal phenotype without threshold elevation was
also defined. Audiograms from a large sample of
older adults were then searched by a human expert
for “exemplars” (best examples) of these phenotypes,
without knowledge of the human subject demograph-
ic information. Mean thresholds and slopes of higher
frequency thresholds of the audiograms assigned to
the four phenotypes were consistent with the
predefined schematic boundaries and differed signif-
icantly from each other. Significant differences in age,
gender, and noise exposure history provided external
validity for the four phenotypes. Three supervised
machine learning classifiers were then used to assess
reliability of the exemplar training set to estimate the
probability that newly obtained audiograms exhibited
one of the four phenotypes. These procedures
classified the exemplars with a high degree of
accuracy; classifications of the remaining cases were
consistent with the exemplars with respect to average

thresholds and demographic information. These re-
sults suggest that animal models of age-related hear-
ing loss can be used to predict human cochlear
pathology by classifying audiograms into phenotypic
classifications that reflect probable etiologies for
hearing loss in older humans.

Keywords: metabolic presbyacusis, sensory
presbyacusis, endocochlear potential, animal models,
audiogram classification, supervised machine learning
classifiers

INTRODUCTION

Hearing loss is one of the most commonly reported
chronic impairments in older persons, affecting
approximately 30 % of the US population older than
65 years of age (Leske 1981; Lin et al. 2011). As the
average age of the population increases, the number
of people affected by hearing loss also increases. The
complex genetic and environmental factors affecting
hearing over the lifespan contribute to a large
variation in audiometric profiles and other measures
of auditory function. Whereas pathological findings
from humans are limited to postmortem morphologic
data, experimental procedures in animals can be
designed to disrupt specific cochlear systems or
minimize environmental exposures, while measuring
subsequent changes in hearing across frequency.
Thus, the effects on hearing and auditory function
resulting from exposure to excessive noise or ototoxic
drugs, or from aging in the absence of environmental
exposures, can be better understood in terms of
cochlear pathologies and their corresponding audio-
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metric patterns in animal models. Moreover, an
accurate audiogram classification system based on
information from cochlear pathology from well-char-
acterized animal models has the potential to provide a
better understanding of underlying mechanisms of
age-related hearing loss in humans and lead to
improved diagnosis and treatment strategies.

There have been numerous attempts over the past
70 years to relate the underlying causes of age-related
hearing loss to behavioral or electrophysiologic mea-
sures of auditory function, including analyses of
audiograms (e.g., Hinchcliffe 1959; Glorig and
Nixon 1962). Similarly, distortion-product otoacoustic
emission and auditory brainstem response input–
output functions have been used to differentiate noise
induced from age-related hearing loss (Mills 2003,
2006; Mills and Schmiedt 2004). There is a long
history of work that has correlated histopathological
abnormalities of the cochlea observed in human
temporal bones with specific audiometric patterns
(e.g., Crowe et al. 1934; Schuknecht 1964; Suga and
Lindsay 1976; Halpin and Rauch 2009; Nadol 2010).
For several reasons, including long delays between
threshold measures and temporal bone donations,
results in the early work were often inconsistent and
contradictory (Nelson and Hinojosa 2006).
Nevertheless, four categories of presbyacusis were
commonly accepted for many years, based on exten-
sive human data from classic studies of human
temporal bones (Schuknecht 1974): (1) sensory,
characterized by atrophy and degeneration of sensory
hair cells and supporting cells; (2) neural, typified by
loss of spiral ganglion neurons; (3) metabolic, char-
acterized by atrophy and degeneration of the lateral
wall of the cochlea, especially the stria vascularis; and
(4) mechanical, where the inner ear is hypothesized
to change its conductive characteristics. After addi-
tional research on human temporal bones,
Schuknecht and Gacek (1993) made significant re-
visions to their classification scheme, paraphrased as
follows: “(1) sensory cell losses are the least important
type of loss in the aged ear; (2) neuronal losses are
constant and predictable expressions of aging; and (3)
atrophy of the stria vascularis is the predominant
lesion of the aging ear.” Thus, although hair cell loss
is reported in some animal models of presbyacusis
(Dayal and Bhattacharyya 1986; Sha et al. 2008), the
Schuknecht and Gacek (1993) perspective downplays
the significance of age-related loss of sensory cells,
emphasizes the importance of age-related degenera-
tion of the stria vascularis and auditory nerve, and
brings consistency between results from human
temporal bones and from experiments with aging
animals.

Classification of hearing loss types in older persons
based on audiometric configuration alone is challeng-

ing because heredity, age, noise history, injury,
disease, medication, diet, and other factors can work
individually and jointly to alter the audiogram of an
older adult. Studies characterizing audiometric con-
figuration can be divided into two approaches (Ciletti
and Flamme 2008). One approach is to use statistical
methods such as cluster analysis to group individuals
based on the statistical patterns of the individual pure-
tone thresholds (e.g., Yuen and McPherson 2002; Allen
and Eddins 2010). This approach can classify audiomet-
ric profiles into groups, but the groupings are based
entirely on the distribution and statistical properties of
the threshold data and not on pathophysiologic consid-
erations. As a result, this unsupervised approach has
limited power to explain the etiologies or mechanisms
underlying hearing loss. A second approach is to classify
audiograms into a limited number of configurations
based on shape, severity, and etiology, given that certain
audiometric profiles suggest specific underlying cochle-
ar pathologies.

Hearing loss of cochlear origin is a common
etiology in older humans, with aging and excessive
noise exposure being the most notable contributors.
Effects of aging and noise exposure are almost always
confounded and difficult to separate in human
studies. Animal models have been used to character-
ize noise and aging effects on hearing thresholds by
raising animals in quiet or controlled noise environ-
ments (e.g., Mills et al. 1990; Schmiedt et al. 1990,
2002; Tarnowski et al. 1991). In many of these animal
studies, morphological pathologies were matched
directly to hearing thresholds. Thus, the audiograms
of quiet-aged and noise-exposed gerbils, many of
which were tested through their life span of 30–
36 months, provide information with which to classify
audiograms according to well-established effects of
aging and noise or drug exposures.

Consistent with the reclassification of Schuknecht
and Gacek (1993), a striking result of the gerbil
studies in particular is that age-related hearing loss is
typically not a sensory, but a metabolic and neural
disorder. Age-related hearing loss in the absence of
noise exposure is hypothesized to be due, in part, to
the decrease in the endocochlear potential (EP)
present in the scala media fluid (endolymph). The
EP is maintained by cells within the lateral wall and
the stria vascularis, which may be highly susceptible to
aging because of their high metabolic activities
(Gruber et al. 2008). As a result, the normal potential
of ∼90 mV can decrease with increasing age to
∼60 mV or lower throughout the gerbil cochlea
(Schmiedt 1996).

With the EP acting as the power supply to the outer
hair cells (OHCs), which comprise the cochlear
amplifier (Davis 1983; Russell 1983), the potential
directly affects the gain (sensitivity) of the amplifier as
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reflected in the pattern of threshold shifts (Sewell
1984; Ruggero and Rich 1991; Schmiedt et al. 2002;
Schmiedt 2010). In the cochlear base, the relationship
of cochlear sensitivity in the cat and gerbil to EP
change is ∼1 dB per 1 mV decline in EP, whereas in
the apex, the amplifier is less sensitive to changes in
EP (Sewell 1984; Schmiedt 1996, 2010; Schmiedt et al.
2002). Results from animal models (Cooper and
Rhode 1997; Robles and Ruggero 2001) also provide
estimates of the maximum gain of the cochlear
amplifier that are less in the apex (about 20 dB) than
in the base (about 50–70 dB). As a result, a decrease
in the EP of ∼30 mV throughout the cochlea does not
result in a constant threshold shift across frequency,
but rather results in a relatively flat loss at lower
frequencies of ∼20 dB coupled with a gradually
sloping loss at higher frequencies. Thus, the loss of
EP with increasing age defines the audiometric profile
of metabolic presbyacusis, as seen in the animal
model of the quiet-aged gerbil (Mills et al. 1990,
1996, 2006; Hellstrom and Schmiedt 1990, 1991, 1996;
Schmiedt et al. 1990, 2002; Tarnowski et al. 1991;
Schulte and Schmiedt 1992; Schmiedt 1996, 2010;
Gratton et al. 1997), and is hypothesized to affect the
audiogram of older humans in similar fashion.

Of critical importance for characterizing the path-
ophysiology underlying human audiometric configu-
rations, results from other animal models have shown
that injuries due to excessive noise or ototoxic drug
exposure are largely confined to the OHCs, typically
in the cochlear base. Without OHC function (or in
the absence of OHCs), the gain of the cochlear
amplifier is dramatically reduced by 50–70 dB in the
base of the cochlea, resulting in a notch or a fairly
well-defined threshold shift of 50–70 dB at higher
frequencies (Dallos and Harris 1978; Liberman and
Kiang 1978; Ryan et al. 1979; Schmiedt 1984, 2010;
Schmiedt et al. 1990; Cooper and Rhode 1997; Robles
and Ruggero 2001). Studies of the effects of ototoxic
drugs are perhaps the most definitive with regard to
the effects of pure OHC loss on thresholds. Typically,
OHC loss due to ototoxic drug exposure can be very
sharply defined morphologically, yielding steeply
sloping threshold shifts at higher frequencies to a
plateau of ∼50–70 dB (e.g., Dallos and Harris 1978;
Ryan et al. 1979). Thus, audiogram configurations
arising from OHC losses from defined noise and drug
exposures are quite different from those arising from
chronic EP declines associated with metabolic
presbyacusis.

The goal of the current study was to determine if
results from animal models could be used to analyze
audiograms from human subjects and predict proba-
ble etiologies of cochlear pathology in older adults
that segregate with demographic and hearing history
variables. We examined the extent to which unique

and consistent patterns of “audiometric phenotypes”
can be identified from pure-tone audiograms in a
large sample of older adults. To provide support for
this approach, the audiometric classifications were
related to predicted distributions of age, gender, and
noise exposure histories for certain cochlear patholo-
gies. Thus, the aims were to (1) examine the
consistency of proposed audiometric phenotypes, (2)
correlate these classifications with subjects’ demo-
graphic information, and (3) develop automated
classifiers that could be applied to a new and larger
sample of older adults that reflected the varied
distribution of audiograms in this population.

METHODS

Subjects and measurement procedures

The Medical University of South Carolina (MUSC)
database consists of measures of auditory function and
medical/biological data from human subjects en-
rolled in an ongoing longitudinal study of age-related
hearing loss, which began in 1987. Subjects in this
study are in good general health and have no
evidence of conductive hearing loss, active otologic
disease, or significant cognitive declines (as screened
by the Mini-Mental State Exam; Folstein et al. 1975).
Audiometric measures consist of hearing for pure
tones (at 0.25, 0.5, 1.0, 2.0, 3.0, 4.0, 6.0, and 8.0 kHz),
thresholds at extended high frequencies (Matthews et
al. 1997), ability to understand speech in quiet and in
noise (Dubno et al. 1995, 1997), otoacoustic emis-
sions, upward and downward spread of masking,
middle ear function, and auditory brainstem re-
sponses. Subjects provide written and oral responses
to questionnaires related to medical history, use of
prescription and over-the-counter drugs (Lee et al.
1998), occupational and non-occupational noise his-
tory, hearing aid history, self-assessed hearing handicap,
tinnitus, smoking, and handedness. All subjects receive
an otologic examination. For a large proportion of
subjects, DNA is extracted from blood to identify and
characterize genes that are under- or over-expressed
with age. For these subjects, a genetics counselor obtains
a family pedigree for hearing loss. Following enroll-
ment, subjects are scheduled approximately once per
month for a total of three to six laboratory visits to
complete the test battery; an audiogram is obtained at
nearly every visit. After completion, subjects are sched-
uled annually to obtain an audiogram and speech
recognition measures, and to update medical history
and contact information, and then every 2–3 years to
repeat the entire test battery. To date, more than 1,300
subjects have participated in this ongoing study; of
these, longitudinal data covering at least a 3-year period
are available from nearly 500 subjects.
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The current analysis included 1,728 audiograms
from the MUSC database (865 subjects, thresholds
from two ears were missing), collected from subjects
ranging in age from 50.4 to 97.5 years, with a mean
age of 69.9 years; the vast majority of subjects (94.4 %)
were 60 years and older. Consistent with the distribu-
tion of gender in most studies of aging, 44.4 % of
cases were male and 55.6 % were female. To improve
the accuracy of the audiograms and reduce small
irregularities due to the 5-dB step size used in the
measurement of pure-tone thresholds, an average
audiogram for each ear of each subject was computed
from all available audiograms obtained during the
subject’s first year of participation (number of labora-
tory visits=1–8, mean=2.9).

Pure-tone thresholds were measured with either a
Madsen OB822 or OB922 clinical audiometer cali-
brated to appropriate American National Standards
Institute (ANSI) standards (American National
Standards Institute 1969, 1989, 1996, 2004, 2010)
and equipped with TDH-39 headphones mounted in
MX-41/AR cushions, using standard measurement
procedures recommended by the American Speech-
Language-Hearing Association (2005). If no response
was obtained at the audiometers’ maximum outputs,
the following values were assigned: 115 dB HL for
0.25–6.0 kHz and 105 dB HL for 8.0 kHz. Additional
details of subject selection and outcome measures are
available in publications reporting results from the
MUSC longitudinal study of age-related hearing loss
(e.g., Dubno et al. 1995, 1997, 2008; Lee et al. 2005).

To assess noise exposure history, a seven-item noise
history questionnaire on occupational and non-occu-
pational noise exposure was used as an index of noise
exposure. Subjects answered yes or no to questions
related to noisy work environments (including the
military) and exposure to noise from guns, music,
power tools, and farm machinery. Of the 865 subjects,
731 had noise history information with 49.4 % of
these subjects reporting a positive noise history,
related primarily to occupational noise exposure.
There were substantial differences according to
gender; that is 82.4 % of males but only 22.2 % of
females reported a positive noise history. These
results, along with demographic (age and gender)
information, provided the means to validate the
classifications, as discussed later.

Defining the exemplars

To determine if consistent patterns of “audiometric
phenotypes” could be identified from pure-tone
audiograms of older adults, schematic boundaries of
audiograms were first defined based on five hypoth-
esized conditions of cochlear pathology obtained
from animal results. Boundaries were defined based

on knowledge of previously published audiograms
from a variety of animal models used to study effects
of exposures to excessive noise or ototoxic drugs, or
from animals raised in quiet, as described earlier,
which were hypothesized to affect audiometric shapes.
Mapping age-related changes in audiometric configu-
rations of the gerbil to human audiograms was
accomplished by a simple shift in the frequency axis.
The transition between the constant loss at lower
frequencies and the gradually sloping loss at higher
frequencies is a predominant feature of metabolic
presbyacusis and chronic EP loss, which also differen-
tiates metabolic from sensory loss. This breakpoint
frequency is ∼4.2 kHz in gerbil and ∼1.3 kHz in older
humans with no significant noise history. This map-
ping is more fully described and schematized in
Schmiedt et al. (2002; see Fig. 7, bottom panel).

As illustrated in Figure 1 and specified in the first
four columns of Table 1, the five audiometric
phenotypes were: older-normal, pre-metabolic, meta-
bolic, sensory, and a mixed metabolic + sensory
phenotype. Audiograms classified as “older-normal”
have thresholds of ≤10 dB HL from 0.25 to 1.0 kHz
and 0 to 20 dB HL at higher frequencies. Audiograms
classified as “pre-metabolic” have thresholds of
≤10 dB HL from 0.25 to 1.0 kHz and 10–25 dB HL
at higher frequencies. Audiograms classified as “met-
abolic” (mild to severe) have relatively flat hearing loss
in the lower frequencies ranging from 10 to 40 dB HL
and gradually sloping hearing loss from 30 to 60 dB
HL in the higher frequencies, with slopes ranging
from 10 to 20 dB/oct. Audiograms classified as
“sensory” have normal thresholds in the lower fre-
quencies (≤10 dB HL) with a steeply sloping increase
in thresholds in the higher frequencies to a notch or
plateau between 40 and 70 dB HL, with slopes
920 dB/oct. Audiograms classified as “metabolic +
sensory” have characteristics of metabolic presbyacusis
in the lower frequencies (relatively flat loss ranging
from 10 to 40 dB HL) and characteristics of sensory
loss in the higher frequencies (steeply sloping loss
with slopes 920 dB/oct).

Next, 1,728 audiograms from older human subjects
stored in the MUSC database were searched for
“exemplars” (best examples) of these five phenotypes,
without knowledge of demographic information. The
selection of the exemplars was performed by a single
human expert (RAS) with 935 years of experience
with animal models of age-related hearing loss,
including models of metabolic presbyacusis and
noise-induced and ototoxic-drug-induced hearing loss
(Schmiedt and Zwislocki 1980; Schmiedt et al. 1980,
2002; Schmiedt 1984, 2010). RAS initially identified
374 audiograms as exemplars. Intra-rater reliability
was performed to determine the extent to which these
exemplars were consistently selected for each pheno-
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type (alpha=0.995). Because inter-rater reliability with
a second human expert (JRD) was lower (alpha=
0.701), RAS and JRD discussed inconsistencies to
arrive at a final group of exemplars. Following these
reviews, 25 cases (6.7 % of the original set of
exemplars, 1.4 % of all searched audiograms) were
excluded after raters agreed they were not exemplars.

Statistical reliability and classification
of exemplars

One challenge in defining and classifying audiograms
fromhuman subjects is thenonlinearity of the audiometric
configuration. Supervised learning methods that take
advantage of nonlinearities for feature identification were
used to establish reliability and generalizability of findings
for the audiometric phenotypes. Three supervised
nonlinear classification methods for classifying audiomet-
ric phenotype were used to determine the extent to which:
(1) classifier models can be trained to identify empirically
based exemplar cases with a high degree of accuracy
(980 % consistency with the human expert) and (2)
classification estimates for each phenotype correspond to
predicted demographics (age, gender, noise exposure
history) in non-exemplar cases (i.e., those for which
classification by the human expert was difficult, by
definition). Importantly, we determined the extent to
which the exemplar groups exhibited the same patterns of
demographic and noise exposure histories as the non-
exemplar cases that were defined using the machine
learning methods, thereby providing validation.
Phenotypes of the exemplar audiograms were predicted
using Quadratic Discriminant Analysis, Support Vector
Machines, and Random Forests, to provide evidence for
the consistency of classification across different classifier
algorithms. For each method, a tenfold cross-validation
was performed to establish the reliability of a classifier on
the trained exemplar dataset (Kohavi 1995). That is, 90 %
of the exemplar cases were selected to train each classifier,
whichwas then tested on the remaining 10%of cases. This
procedure was repeated 10 times, each time with a new set
of audiograms as trainers. The classification probabilities
were then combined from the 10 classification runs and
the highest probability was used to classify cases.

Quadratic Discriminant Analysis (QDA)

QDA was used to predict phenotype classification of
the exemplars using pure-tone thresholds (0.25–
8.0 kHz). The simplest case of a discriminant analysis
is the determination of a dichotomous group mem-
bership (normal hearing vs. hearing impaired), based
on a single variable, such as pure-tone average. In this
case, the discriminant function is a simple linear
regression. When several measured variables and
subjects are classified into one of several groups, a

FIG. 1. Schematic boundaries of audiograms corresponding to five
phenotypes of age-related hearing loss, based on five hypothesized
conditions of cochlear pathology (adapted from Schmiedt 2010).
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set of linear discriminant functions is constructed
based on a multivariate normal distribution. In this
study, a nonlinear QDA was used because the co-
variances across frequencies are not equivalent and
the exemplar phenotypes (thresholds as a function of
frequency) are nonlinear. Thus, QDA was selected to
capture nonlinearities in the audiogram and relations
among thresholds that differentiated the phenotypes.

The exemplars provided the training set for the
construction of discriminant functions and contained
a sufficient sample size to obtain estimates for the 176
parameters (8 frequency means and 36 variance–
covariance parameters across the five phenotypes).
After the tenfold cross-validation reliability of QDA
was confirmed, the non-exemplar cases were classified
based on the quadratic discriminant functions
constructed from the exemplars. Using the QDA
classifier on the non-exemplar cases provided a means
for estimating the likelihood that these difficult-to-
classify cases have a particular etiology. Subsequent
comparisons of thresholds between the exemplar and
non-exemplar cases, and demographic (age, gender,
and noise history) distributions across the phenotypes,
were used to determine the validity of the non-
exemplar classifications.

Support Vector Machines (SVM)

Multiclass SVM was used to identify patterns or
structure in the audiometric thresholds that reflect
the exemplar classification. SVM identifies and max-
imizes support vectors or points that define the width
between sets of cases with different distributions of
data between variables. These vectors define a
nonlinear hyperplane that separates cases into differ-
ent groups. Weka (2.6.1; Hall et al. 2009) and the
libSVM wrapper (Chang and Lin 2001) were used to
perform SVM on Z score-transformed audiometric
data from the exemplars. Support vector classifica-
tion and a radial basis function kernel were used
in the tenfold cross-validation analysis. SVM has
been widely used for predicting neurological disor-
ders, as an example see reviews in Haller et al.
2011; Orrù et al. 2012.

Random Forests (RF)

Multiclass RF was used to build an exemplar classifier
using Weke (2.6.1; Hall et al. 2009) by growing
decision trees from groups of ears. The RF algorithm
subsamples data and classifies cases based on variables
that best separate the groups and builds a model for
classification across many decision trees. Classification
accuracy is then estimated for each unsampled case
for a decision tree and averaged across trees. More
specifically, for each treey, a random number (m) of
ears was selected as a bootstrap sample to train treey.
The random sample of ears for treey typically contains
about two thirds of all the ears because one third of
ears are selected twice. The one third of ears that
were not randomly selected to grow treey were
included in treey’s out of box (ooby) ears that were
used to test the classification error rate for treey. The
classification error rate for each tree was then
determined using the ooby remaining ears and
expressed as the percentage of correct classification
across 100 trees in each forest. Consistent with
previous RF observations, the classification accuracy/
generalization error (root mean square classification
error) reached asymptote (0.2) with increasing num-
bers of trees beyond 100 (Breiman 2001). Tenfold
cross validation was performed 10 times with different
starting values to obtain average and stable estimates
of classification accuracy. RF also is a widely used
classifier because of its strength in classifying cases
without overfitting the data, thereby making the
classifier likely to generalize to new datasets (see
Touw et al. 2012 for additional information).

RESULTS

Audiograms from 349 of the 1,728 ears (20.2 %) were
identified as exemplars of one of the five phenotypes in
that they exhibited characteristics seen in the audio-
grams of animal models of metabolic and/or sensory
pathology, as reviewed earlier. The remaining audio-
grams (N=1,379) did not fit precisely into any of the five
phenotypes and were referred to as non-exemplars.

TABLE 1
Characteristics of five audiometric phenotypes of age-related hearing loss

Phenotype

Low frequency (0.25–1.0 kHz) High frequency (2.0–8.0 kHz)

Age Gender Noise HistoryRange (dB HL) Slope (dB/oct) Range (dB HL) Slope (dB/oct)

Older-normal ≤10 −5 to 5 0 to 20 −5 to 5 Younger Female>Male No>Yes
Pre-metabolic ≤10 −5 to 5 ≤25 0 to 10 Younger Female>Male No>Yes
Metabolic 10 to 40 −5 to 5 30 to 60 10 to 20 Older Female>Male No>Yes
Sensory ≤10 95 940 ≥20 Younger Male>Female Yes>No
Metabolic + Sensory 10 to 40 −5 to 5 940 ≥20 Older Male>Female Yes>No
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Only 11 of the 1,728 audiograms were identified as
exemplars of the “pre-metabolic” phenotype (3 % of
exemplars). The small sample size was, therefore, not
amenable to the supervised learning aim of this study.
The 11 audiograms originally classified as pre-metabolic
were added to the non-exemplars and only four
phenotypes were used in the exemplar modeling
process (N=338). After the classification rules were
established, 5 of the 11 audiograms originally identified
as pre-metabolic were classified by QDA as older-normal
and six were classified as metabolic. Additional infor-
mation about the pre-metabolic phenotype is included
in the “Discussion” section.

Of the 338 exemplar audiograms, 11 % were
classified as older-normal, 25 % were classified as
metabolic, 23 % were classified as sensory, and 41 %
were classified as a mixed metabolic + sensory
phenotype. The highest percentage for the mixed
phenotype is consistent with the notion that age-
related hearing loss in older humans reflects the
accumulated effects of various exposures throughout
the lifespan. The mean audiograms of the exemplars
representing the four phenotypes are shown in
Figure 2. With relatively large sample sizes, the
standard errors are small, which obscures substantial
overlap of thresholds of individual audiograms be-
tween phenotypes. For example, thresholds at higher
frequencies (3.0–8.0 kHz) are generally similar for the
metabolic and sensory phenotypes. These phenotypes
are differentiated primarily by thresholds in the lower
frequencies (better thresholds for sensory than meta-
bolic) and by the slope of the hearing loss between 1.0
and 4.0 kHz (steeper slope for sensory than metabol-
ic). Lower frequency thresholds are similar for the

phenotypes with metabolic characteristics (metabolic
and metabolic + sensory), but slopes for higher
frequency thresholds are steeper for the mixed
phenotype due to the sensory component. The
sensory and mixed metabolic + sensory phenotypes
have similar higher frequency slopes, but lower frequen-
cy thresholds are poorer for the mixed phenotype (due
to the metabolic component). These results are consis-
tent with the predefined schematic boundaries, as
shown in Figure 1 and Table 1.

Classification rates of the exemplars

Table 2 and Figure 3 summarize the classification
accuracies/errors for each supervised learning meth-
od across each of the four phenotypes. The three
classification methods were consistent with respect to
overall classification accuracy, primarily due to high
rates of correct classification for exemplar audiograms
in the older-normal and sensory phenotypes. For
example, there was a 2.7 % difference in accuracy
between QDA and SVM or RF for the older-normal
phenotype. Classification errors for each method
were also similar, although the QDA classifier
exhibited greater accuracy for metabolic cases than
SVM or RF (∼10 % difference in accuracy). Each
method was more likely to misclassify metabolic and
metabolic + sensory exemplars given the lower
classification rates for these phenotypes as com-
pared to older-normal and sensory phenotypes.
Because QDA is a widely understood method
compared to SVM and RF, and because it provided
results comparable to or better than the other methods,
subsequent classification results are described for the
QDA classifier.

Demographics of the exemplars

Because the expert identification and automated
classification were performed using audiometric data
only, subjects’ demographic information can be used
to indirectly verify the consistency of the identifica-
tions and classifications. Figures 4 and 5 show the
mean age and percentage of male subjects, respec-
tively, of exemplars in the four audiometric pheno-
types (left, darker bars). As predicted (see right-hand
columns of Table 1), subjects classified in the older-
normal and sensory phenotypes were younger than
those in the metabolic phenotypes (F(1,334)=52.75,
pG0.0001). Also as predicted, subjects classified in the
sensory phenotype were predominately male (Chi-
square (df=1)=13.13, pG0.0001). Figure 6 shows the
distribution of exemplar audiograms with respect to
noise exposure history (left, darker bars). These
results show that subjects classified in the sensory
phenotype were more likely to have positive noise

FIG. 2. Mean thresholds (±1 standard error) of 338 exemplars in
four audiometric phenotypes.
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histories (exposure to gun noise: Chi-square (df=1)=
14.63, pG0.0001; power tool use: Chi-square (df=1)=
24.37, pG0.00001; incidence of sudden loud noise
exposure: Chi-square (df=1)=5.29, p=0.0215) than
those classified in the metabolic phenotype.

To explore further the apparent differences in
lower frequency thresholds for the metabolic and
sensory phenotypes, differences in age and thresh-
olds at higher frequencies for subjects in these two
phenotypes were controlled in a repeated measures
ANOVA. The results confirmed that thresholds
at 0.25–2.0 kHz averaged 16.5 dB better for sensory
than metabolic phenotypes (F(1,203) = 276.0,
pG0.001). One hypothesis for this difference is
that, for sensory losses, transduction currents are
reduced by OHC loss (Salt and Konishi 1979),

which has the effect of reducing the load on the
EP generator, yielding a higher EP throughout the
cochlea. Moreover, there is evidence that EP is
most effectively generated in the cochlear base
(Wu and Hoshino 1999), which coincides with the
location of the OHC lesions in the sensory
phenotype. This hypothesis further suggests that
sensory loss may mask a metabolic loss until strial
degeneration overwhelms this unloading effect.
Given that subjects classified in the sensory pheno-
type were primarily male, these results are not
consistent with previous reports of better lower
frequency thresholds for females than males (e.g.,
Gates et al. 1993; Jerger et al. 1993)

TABLE 2
Error matrix for the classification of the 338 exemplars of four audiometric phenotypes determined by a human expert (rows) and

by Quadratic Discriminant Analysis (QDA), Support Vector Machines (SVM), and Random Forests (RF) (columns). Overall
accuracy of the three methods was 93.2, 89.9, and 89.3 %, respectively

Older-normal Metabolic Sensory Metabolic + Sensory Percent correct

QDA
Older-normal 36 0 1 0 97.3
Metabolic 0 79 0 6 92.9
Sensory 0 1 74 3 94.9
Metabolic + Sensory 0 9 3 126 91.3

SVM
Older-normal 37 0 0 0 100.0
Metabolic 0 70 1 14 82.4
Sensory 0 2 76 0 97.4
Metabolic + Sensory 0 15 2 121 87.7

RF
Older-normal 37 0 0 0 100.0
Metabolic 0 71 2 12 83.5
Sensory 1 1 73 3 93.6
Metabolic + Sensory 0 14 1 123 89.1

FIG. 3. Classification rates for exemplars for four audiometric
phenotypes and the overall classification rate.

FIG. 4. Mean (±1 standard error) ages of exemplars (left, darker
bars) and non-exemplars (right, lighter bars) for four audiometric
phenotypes.
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Classification of non-exemplars

We examined the extent to which demographic
patterns observed for the exemplar phenotypes were
present when phenotype classification of the non-
exemplar cases was defined by QDA. Using the
classification parameters obtained from the exem-
plars, non-exemplar cases were classified into one of
the four phenotypes based on the highest probability
estimate. Figures 4, 5, and 6 show comparisons of
ages, gender, and noise histories of the exemplars and
non-exemplars (darker vs. lighter bars in each figure).
Note that the significant gender (Chi-square (df=1)=
67.38, pG0.0001), age (F(1,334)=41.89, pG0.0001),
and noise history associations (gun noise: Chi-square
(df=1)=39.91, pG0.0001; power tools: Chi-square (df=
1)=80.60, pG0.0001; sudden noise: Chi-square (df=1)=
8.32, p=0.00393) with phenotypes in the exemplar
cases were also present in the non-exemplar cases that
were defined with QDA. The average audiograms of
the four phenotypes for the non-exemplar cases are
shown in Figure 7. The older-normal phenotype for
the non-exemplar cases exhibited slightly elevated
(worse) thresholds than those of the exemplars,
whereas mean high-frequency thresholds of the
metabolic, sensory, and metabolic+sensory pheno-
types for the non-exemplars were ∼10 dB lower
(better) than those of the exemplars (4.0 kHz:
F(1,1720)=16.96, pG0.0001; 6.0 kHz: F(1,1720)=
22.48, pG0.0001; 8.0 kHz: F(1,1720)=21.73, pG
0.0001). It is likely that these threshold differences
relate to the fact that all audiograms were classified
into one of the four phenotypes based on the highest
probability estimate, and that a small percentage of
audiograms would have been more appropriately
classified into an “unknown etiology” category.

DISCUSSION

The results of this study suggest that phenotypes of age-
related hearing loss can be classified from human
audiograms when using results from animal models of
age-related hearing loss. Nevertheless, the audiometric
phenotypes characterized in this study are highly
consistent with expected demographic and noise history
patterns that segregate with patterns of hearing loss.
Moreover, these associations were confirmed in a
second sample of cases that were phenotyped using an
automated classification of non-exemplar audiograms.
The development and testing of an automated classifier
makes it possible to apply the methods used in this study
to new samples to further replicate and validate our
results, with the long-term goal of evaluating genetic
and biological mechanisms of age-related hearing loss
in humans. Until that occurs, the phenotypic classifica-
tions, and their etiologic foundations based on animal
studies of metabolic and sensory loss, should be
considered putative in nature.

The challenge in developing classifications for the
pathophysiology of age-related hearing loss is that
qualitatively distinct but overlapping nonlinear pat-
terns of hearing loss are observed in older adults. This
multidimensional problem was addressed in the
current study with empirically defined rules based
on the contribution of the EP to specific patterns of
neural threshold shifts in animal models, coupled
with nonlinear supervised classifiers. Findings from
quiet-aged and furosemide-exposed gerbils demon-
strating specific contributions of EP loss to neural
thresholds across frequency (Schmiedt et al. 2002) was
a key feature for classifying audiograms and charac-
terizing evidence for metabolic presbyacusis. The
relatively limited influence of noise exposure history
on lower frequency thresholds provides one pheno-
typic difference that was leveraged in the current
study. While the classification of metabolic
presbyacusis in contrast to metabolic+sensory loss
becomes problematic when the magnitude of hearing
loss increases across frequency, overall magnitude of
hearing loss across frequency was important for
differentiating older-normal or metabolic+sensory
cases from metabolic or sensory cases.

Noise and ototoxic drug exposures in animal studies
typically produce OHC loss in the cochlear base and
relatively steep slopes of higher frequency thresholds. In
humans, it is generally accepted that sensory loss is more
common in older males than females, primarily due to
differences in occupational and non-occupational noise
exposures. The gender ratios and noise exposure
histories in Figures 5 and 6 show that subjects classified
in the older-normal and metabolic phenotypes were
primarily females with negative noise histories, and that
subjects classified in the sensory and metabolic+sensory

FIG. 5. Percentage of male subjects for exemplars (left, darker bars)
and non-exemplars (right, lighter bars) for four audiometric phenotypes.
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phenotypes were primarily males with positive noise
histories. These consistencies between animal models
and human data are encouraging signs that the four
phenotypes reflect probable etiologies for hearing loss
in older human subjects.

The initial framework of this study was that a pre-
metabolic phenotype would be prominent in our sample.

A pre-metabolic phenotype was initially included to
represent audiograms that exhibited early stages of
metabolic (EP) loss and a transition between the older-
normal andmetabolic phenotypes. However, only a small
percentage of exemplars were classified into this pheno-
type, which may be indicative of pre-metabolic decline
that begins in middle age. Although subject ages in the

FIG. 6. Percentage of subjects reporting positive noise histories for exemplars (left, darker bars) and non-exemplars (right, lighter bars) for four
audiometric phenotypes. Each panel reports noise histories for different types of noise exposures.

696 DUBNO ET AL.: Human Audiometric Phenotypes



current analysis ranged from ∼50 to 98 years, the vast
majority of subjects (94.4 %) were ≥60 years. In support
of this premise, the average age of the 11 pre-metabolic
exemplars was 65.1 years. In addition, a transition from
older-normal to metabolic phenotypes that occurs fairly
rapidly (a few months to a few years) would yield a
relatively small number of pre-metabolic exemplars.
Longitudinal studies of additional subjects in their 40s,
50s, and 60s will be necessary to establish the stability of
the pre-metabolic phenotype.

The expert human classifier identified 144 of the 865
subjects as having audiograms from the left and right
ears that were the same phenotype. Similarly, QDA
classified 132 of these 144 subjects (91.6 %) with left and
right ears as having the same phenotype. Conversely, 624
of the 865 subjects had left and right ears identified as

non-exemplars, but only 60.6 % had their left and right
ears classified in the same phenotype. Thus, subjects with
similar patterns of hearing loss in left and right ears were
more likely to have their audiograms chosen as exem-
plars by the human expert. This was expected, given that
the presumedmechanisms underlying strial and sensory
pathology are systemic and would likely affect both ears
in similar ways (with the exception of primarily unilateral
noise exposures; Wilson 2011). In this study, audiogram
classification by QDA for one ear was not informed by
data from the other ear. In future studies, probability
estimates from both ears may be combined to increase
the consistency of classification between ears.

The use of left and right ear data as unique data
points enhanced the power of the current study, but
should be considered in the context of exemplar

FIG. 7. Mean audiograms and standard errors of exemplars (filled symbols) and non-exemplars (open symbols) in four audiometric phenotypes.
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classification reliability and validity. Subjects with both
ears classified as exemplars were more likely to have
consistent audiometric phenotypes matching their
age and noise history. This is an important consider-
ation because discriminant functions from QDA, for
example, are essentially nonlinear regression func-
tions, which may require independent samples. Thus,
including thresholds from left and right ears in the
classification process may violate the assumption of
independent samples. To address this concern, sepa-
rate analyses were performed that included only one
audiogram per subject and revealed similar classifica-
tion rates to the original dataset (not shown). From a
statistical standpoint, including thresholds from both
ears may benefit the modeling process if, in a
weighted regression, data with smaller variances are
weighted more heavily than data with larger variances
because data with smaller variances are more reliable.

The supervised classifiers were used to obtain automat-
ed classifications of phenotypes of age-related hearing loss
that exhibited a high degree of classification accuracy with
the human classifications. While all three classifiers
performed similarly, QDA was particularly successful at

classifying cases and was selected for the non-exemplar
analyses because it is conceptually the most basic classifier
of the three and because QDA coefficients can be made
available to be used by other groups to classify audiograms
of older adults. Importantly, the QDA classifier appeared
to transfer to classification of the non-exemplar cases
based on the similar average audiometric profiles
of common phenotypes from exemplar and non-
exemplar cases.

In the current analysis, the classification accuracies
and demographic group comparisons were based on
classification into the highest probability of group
membership. The degree of similarity between a
particular audiogram and a schematic pattern (or the
likelihood that an audiogram belongs to a particular
phenotype) can be expressed with discriminant analysis
as a probability using Mahalanobis distance and
multinormal distributions (Morrison 1976). High prob-
ability classification values indicated that a good match
was found between the audiogram and the phenotype’s
schematic pattern. For example, Figure 8 shows that
exemplar cases received high classification probabilities.
As expected, the classifiers exhibited less confidence in

FIG. 8. Distributions of the maximum probabilities from quadratic discriminant analysis (QDA) for exemplar and non-exemplar audiograms for
four audiometric phenotypes.
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the classification of the non-exemplar cases, and a small
percentage of cases may reflect unknown etiologies.
Probability values may be particularly useful in the
context of characterizing and communicating the
likelihood for a particular phenotype in patients where
the efficacy of interventions is expected to vary
depending of the mechanism of hearing loss. Thus,
probability values may provide a metric for evaluating
interventions with the perspective that one treatment or
intervention plan may not benefit all patients to the
same degree (Halpin and Rauch 2009; Fig. 2).

Schmiedt et al. (2002) demonstrated that metabolic
presbyacusis can be modeled by lateral wall and strial
dysfunction that results in a reduced EP. Results from
this study further demonstrated that age-related hearing
loss can be observed in patterns of audiograms of human
subjects that are similar to those observed in gerbil
animal models. This is consistent with an assumption
that a reduction in the EP may also underlie the
characteristic audiograms of older humans. Metabolic
hearing loss in animals is not a sensory loss, per se, but
results in elevated pure-tone thresholds because cochle-
ar amplifier gain is reduced, especially at higher
frequencies. Although OHCs may remain viable, they
are not functioning as well as with the EP at its normal,
higher state. As a result, the consequences of metabolic
loss on auditory function may be quite different than the
consequences of pure sensory loss. Future studies will
examine predictions from animal models that non-
linearities (such as basilar membrane compression)
and otoacoustic emissions are still present in metabolic
cases, while relatively diminished in sensory cases.

In the longer term, results can be confirmed with
biological markers, such as genetic profiles to provide a
framework for comparative analyses beyond affected
groups (hearing impaired) vs. non-affected groups
(normal hearing). Studies of otopathology from human
temporal bones will also help refine and add to the
classifications presented in the current study. In particu-
lar, an additional phenotype of neural presbyacusis is
expected to be observed, but may not have a significant
impact on the shape of the audiogram until there is a
substantial loss of spiral ganglion architecture (perhaps
consistent with the older-normal phenotype in the
current classification scheme). Indeed, spiral ganglion
cells can incur significant damage without changes in
hearing thresholds (e.g., Kujawa and Liberman 2009).
Thus, neural presbyacusis may segregate with older-
normal, sensory, or mixed metabolic + sensory pheno-
type, or may have an additive and unique behavioral/
biological phenotype, or may reveal itself only through
results of suprathreshold auditory measures. With addi-
tional replication and validation, the long-term potential
for classifiers of phenotypes of age-related hearing loss
are (1) advancing our understanding of hearing loss in
older adults and (2) informing clinical decisions.

CONCLUSIONS

Findings from animal models of age-related hearing loss
were used to classify audiograms from older human
subjects. Large numbers of audiograms from older
human subjects were classified in a two-step process by
a human expert familiar with animal models of meta-
bolic and sensory pathology. Physiological findings in
quiet-aged and furosemide-exposed gerbils provided
the conceptual framework for this study. Exemplar
audiometric phenotypes demonstrated demographic
and noise exposure history patterns that are consistent
with findings from animal studies. Supervised learning
methods were used to develop classifiers for audiograms
that were based on exemplar cases for hearing loss in
older humans as derived from known threshold shifts in
animals after documented metabolic or sensory losses.
The same audiometric phenotypes were also identified
with these classifiers that were applied to non-exemplar
audiograms. Importantly, the phenotypes in the non-
exemplar data exhibited demographic and noise history
patterns that were observed in the exemplar data,
thereby providing cross-validation of the phenotypes.
Thus, human audiometric phenotypes appear consis-
tent with predictions from animal findings associated
with sensory and strial pathology. These results indicate
that empirically derived models of hearing loss, such as
human audiometric phenotypes, can be used to mean-
ingfully classify audiometric data into groups that reflect
probable etiologies of age-related hearing loss, which
can be further validated in future studies of auditory
function and biological markers.
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