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Retrieved-context models of human memory propose that as
material is studied, retrieval cues are constructed that allow one to
target particular aspects of past experience. We examined the
neural predictions of these models by using electrocorticographic/
depth recordings and scalp electroencephalography (EEG) to
characterize category-specific oscillatory activity, while participants
studied and recalled items from distinct, neurally discriminable cat-
egories. During study, these category-specific patterns predict
whether a studied item will be recalled. In the scalp EEG exper-
iment, category-specific activity during study also predicts whether
a given item will be recalled adjacent to other same-category
items, consistent with the proposal that a category-specific retrie-
val cue is used to guide memory search. Retrieved-context models
suggest that integrative neural circuitry is involved in the construc-
tion and maintenance of the retrieval cue. Consistent with this
hypothesis, we observe category-specific patterns that rise in
strength as multiple same-category items are studied sequentially,
and find that individual differences in this category-specific neural
integration during study predict the degree to which a participant
will use category information to organize memory search. Finally,
we track the deployment of this retrieval cue during memory
search: Category-specific patterns are stronger when participants
organize their responses according to the category of the studied
material.

Keywords: category clustering, episodic memory, free recall, neural
integration, pattern classification

Introduction

The electric fields of the brain, recorded with electrodes via
scalp electroencephalography (EEG), intracranial electrocorti-
cography (ECoG), and depth recordings, reveal a multitude of
neurally generated signals related to human cognitive proces-
sing (Nunez and Srinivasan, 2006; Jacobs and Kahana, 2010).
Coherent and rhythmic activation of neural populations can
be detected both at the scalp and intracranially; this synchro-
nous oscillatory activity has been related to single-unit
spiking activity (Jacobs et al., 2007), and has been proposed
to facilitate neural communication at both local and global
spatial scales (Fries, 2005; Buzsáki, 2006). The spatiotemporal
pattern of oscillatory activity across electrodes carries detailed
information about stimulus characteristics (Freeman, 1978;
Jacobs and Kahana, 2009) and task characteristics (Canolty
et al., 2006). Furthermore, specific oscillatory components
have been implicated in memory formation and retrieval,
both in the local field around neurons, and at the scalp (Kli-
mesch, 1999; Sederberg et al., 2003; Summerfield and

Mangels, 2005; Düzel et al., 2010; Nyhus and Curran, 2010;
Liebe et al., 2012).

Here, we use a computational model of human memory to
provide a functional interpretation of oscillatory neural
signals recorded as people perform a memory task. A recent
study by Manning et al. (2011) reveals the promise of this ap-
proach. Using multivariate pattern analysis techniques (Duda
et al., 2001), Manning et al. observed reactivation of study-
period oscillatory patterns during memory search, consistent
with a retrieved-context model of memory (Howard and
Kahana, 2002; Polyn and Kahana, 2008; Sederberg et al.,
2008; Polyn et al., 2009), in which a population of neural inte-
grators (Kojima and Goldman-Rakic, 1982; Fuster et al., 1982;
Miller et al., 1996) is used to construct a retrieval cue, while
materials are being studied (Manns et al., 2007; Polyn and
Kahana, 2008). The retrieval cue is then deployed to allow
the person to reactivate the details of recent experience.

We carried out 2 experiments using ECoG/depth record-
ings and scalp EEG, in which category-specific patterns of
oscillations were characterized, while participants studied and
recalled items drawn from distinct taxonomic categories, al-
lowing us to test 3 critical predictions of this neurocognitive
account of memory search. First, retrieved-context models
propose that during study, a participant constructs a category-
specific retrieval cue to allow them to target items from that
category during memory search. Thus, items eliciting strong
category-specific neural activity at study will tend to be re-
membered during memory search, and will furthermore tend
to be remembered in sequence with other same-category
items. Second, the integrative process of retrieval cue creation
suggests that category-specific patterns grow stronger as a
series of same-category items are studied, and that the degree
of neural integration will determine the degree to which
memory search is organized by category. Third, during
memory search, the retrieval cue integrates reactivated
category-specific information, causing category-specific pat-
terns to rise in strength when a participant recalls a series of
items from the same category. In the reported experiments,
we find evidence in support of each of these predictions.

Materials and Methods

Scalp Electroencephalography Experiment

Participants
Forty-one paid volunteers (15 females, age 18–30 years) were re-
cruited; 3 participants were excluded due to technical problems with
the EEG recording apparatus, and 9 participants were excluded due
to excessive eye movements, leaving 29 participants presented here.
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The research protocol was approved by the Institutional Review
Board of the University of Pennsylvania.

Experimental Paradigm
Stimuli consisted of color and grayscale photographs of famous land-
marks, celebrity faces, and common objects, with the name of the
stimulus presented in text above the picture. There were 256 stimuli
for each category. Stimuli were presented using pyEPL (Geller et al.,
2007).

In a preliminary EEG session, participants rated their familiarity
with each stimulus used in the experiment. This was done to assess
participants’ pre-experimental familiarity with each stimulus, to
provide participants at least a minimal familiarity with each stimulus,
and to provide us with category-specific oscillatory responses in the
absence of the cognitive demands of a memory task. Stimuli were pre-
sented pseudorandomly, with the constraints that every group of 3
contained stimuli from each of the 3 categories, and that no 2 adjacent
items were of the same category. Each stimulus was presented for
3500 ms, during which participants rated their familiarity with the
stimulus’ referent on a 4-point scale. Each stimulus was followed by a
blank interstimulus interval (ISI) of 1000 ± 200 ms. Participants were
given a chance to rest after each group of 48 items.

In the subsequent 3 sessions, participants were presented with 48
study-test lists. Each list was composed of 24 stimuli. There were 2
types of lists: “Mixed-category” lists which contained 8 stimuli from
each of the 3 categories, and “pure-category” lists which were com-
posed of stimuli all drawn from the same category. In the mixed-
category lists, items were presented in trains of same-category items,
with each train containing 2–6 items. The order of category trains was
pseudorandom, with the constraints that all categories appeared in
each set of 3 trains, and that adjacent trains did not contain the same
category. Each session contained 10 mixed-category lists and 6 pure-
category lists. The pure-category lists were included to establish a
baseline behavioral measure of temporal clustering, so this effect
could be controlled for when examining category clustering (Polyn
et al., 2009). The order of mixed-category and pure-category lists
within each session was pseudorandom. Stimuli did not appear more
than once within a session, and stimuli were chosen so that items
from the same sub-category (e.g., stadiums, presidents) did not
appear in the same list.

Each stimulus was presented for 3500 ms, during which partici-
pants made a category-specific 4-point semantic judgment (celebri-
ties: “How much do you love or hate this person?”; landmarks:
“How much would you like to visit this place?”; objects: “How often
do you come across this object in your daily life?”). Studied items
where the participant did not respond or responded faster than
300 ms were excluded from all analyses; 0–36 study epochs were ex-
cluded for each participant. Each stimulus was followed by a blank
ISI of 1000 ± 200 ms.

After presentation of the last stimulus, the screen was blank for
1300 ± 100 ms, followed by presentation of a row of asterisks and a
300-ms tone signaling the start of a 90 s immediate free recall (IFR)
period. Participants were instructed to recall items from the list in any
order. Digital recordings of vocal recalls were scored using PyParse
(Solway et al., 2010). Intrusions of items not in the word pool were
scored to determine the category if possible (e.g., “Meryl Streep” was
not in the word pool but is clearly a celebrity, while “rock” may have
referred to an object or a partially recalled landmark and therefore
had ambiguous category). Intrusions of ambiguous category were ex-
cluded from all analyses.

At the end of each session, there was a final free recall (FFR)
period where participants were given 360 s to recall names of stimuli
from any of the lists presented during the session.

Behavioral Analysis
When asked to freely recall categorized materials, participants often
will remember multiple same-category items sequentially, a phenom-
enon known as “category clustering” (Bousfield 1953; also see
Figure 1). We used the list-based semantic clustering index (LBCsem;
Stricker et al. 2002), to assess the degree of category clustering during
IFR. A relabeling procedure was used to establish a baseline level of

clustering expected due to the temporal contiguity of same-category
items during study (Polyn et al., 2009). Each pure-category list was
relabeled with a set of category labels by randomly sampling with re-
placement from the set of mixed-category lists for that subject. Mean
LBCsem was then calculated for the relabeled pure-category lists. The
random relabeling procedure was repeated 10 000 times to establish a
null distribution of mean LBCsem expected in the absence of category
information. Since LBCsem varies with list length, we used a different
measure, the adjusted ratio of clustering (ARC) score, to compare cat-
egory clustering in IFR and FFR (Roenker et al., 1971).

Scalp Electroencephalography Recordings and Data Processing
EEG measurements were recorded using 129-channel HydroCel Geo-
desic Sensor Nets and a Net Amps 200 Amplifier (Electrical Geode-
sics, Inc.). An analog bandpass filter of 0.5–200 Hz was applied to
recorded voltage, which was then digitized at 500 Hz. Recordings
were initially referenced to Cz and were later converted to an average
reference. In order to identify electrodes with poor contact, we first
used multiple regression to remove signal related to vertical electroo-
culogram (VEOG) and horizontal electrooculogram (HEOG)
measured using electrode pairs placed near the eye. We then created
a distribution of the mean voltage for each electrode, and a distri-
bution of the standard deviation of voltage fluctuations for each elec-
trode. We identified an electrode as having poor contact if the
absolute z-score (for either mean or standard deviation, compared
with the corresponding distribution) was >4. We excluded these elec-
trodes when calculating the average reference. Line noise was
removed using a Butterworth filter with zero phase distortion at 60
Hz.

We used a modified version of the eye motion correction pro-
cedure reported by Gratton et al. (1983) to remove blinks and eye
movements. In order to better discriminate between blinks and eye
movements, we identified blinks by applying a threshold to the differ-
ence between a fast and slow running average of the VEOG. Before
each session of the experiment, participants were instructed to make
10 voluntary blinks and 20 eye movements (5 each of up, down, left,
and right saccades), while HEOG and VEOG signals were recorded.
The blink detector was applied to each participant’s voluntary blinks
and eye movements, and the threshold was adjusted to correctly
identify at least 80% of the blinks, while minimizing the number of
eye movements incorrectly identified. The optimized blink detector
was then applied to that participant’s experimental data to identify
time periods containing blinks. A buffer of 150 ms before and 500 ms
after was added to each time sample identified as containing a blink
to capture slower changes missed by the blink detector. Multiple
linear regression was used to predict the signal at each electrode
using 1) VEOG not containing blinks, 2) VEOG containing blinks, 3)
HEOG not containing blinks, 4) HEOG containing blinks, and an in-
tercept as predictors. The residuals from this regression were then
used as corrected EEG. When calculating propagation factors, we did
not subtract the average event-related potential (ERP) from each
epoch as Gratton et al. (1983), because we found in an independent
data set that correction performance was better when propagation
factors were calculated on raw EEG rather than deviation scores (per-
formance improved according to the metrics of variance after correc-
tion, and deviation from an estimate of the “true” ERP obtained from

Figure 1. Illustration of category clustering in a sample mixed-category list. A
cluster is defined as a sequence of 2 or more same-category recalls. Recalled items
are labeled according to their position in a category cluster (Init: initial, Mid: middle,
Term: terminal); items not recalled in a category cluster are labeled Iso (isolated).
Study items are labeled according to their subsequent recall organization. SC:
subsequently clustered (i.e., recalled as an initial, middle, or terminal item in a
category cluster); SI: subsequently isolated.
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averaging events that passed a strict voltage threshold; Gratton et al.,
1983). The EEG of 9 participants was not well-corrected by this pro-
cedure, due to large eye movement artifacts that were difficult to dis-
criminate from blinks; these participants were excluded from the
present analyses.

The EEG analyses presented below examine recordings made
during familiarization, mixed-category study lists, mixed-category
IFR, and FFR. In our analysis of the free recall periods, we examined
both continuous data (treating the entire recall period as a continuous
unbroken recording) and segmented data (short recall epochs locked
to the onset of vocalized recalls).

Oscillatory Analysis
We measured oscillatory power using a Morlet wavelet transform with
a wavenumber of 6. Oscillatory power was calculated at 34 logarithmi-
cally spaced frequencies from 2 to 100 Hz. Power values were
then log-transformed and down-sampled to 25 Hz. Power was
z-transformed relative to the mean and standard deviation of a base-
line period, separately for each frequency, electrode, and session. For
study epochs, the baseline period was 500–400 ms before stimulus
onset. For recall epochs locked to vocalization onset, quiet times
during the recall period (where no vocalizations were being made)
were used as the baseline; for each list, enough 100-ms baseline
epochs were randomly chosen from quiet periods to match the
number of recall events on that list. For analyses examining entire
recall periods, power was normalized relative to all samples in a
given recall period.

Multivariate Pattern Analysis
We used multivariate pattern analysis (Norman et al., 2006) to decode
stimulus category based on patterns of oscillatory power. Classifi-
cation was carried out using penalized logistic regression (penalty
parameter = 10), using L2 regularization (Duda et al., 2001). Classifi-
cation analyses were carried out using the EEG Analysis Toolbox
(available at: http://code.google.com/p/eeg-analysis-toolbox) and the
Princeton MVPA Toolbox (available at: http://www.pni.princeton.
edu/mvpa).

Study-Period Classification
Any pattern classification analysis requires choosing one portion of
the data to train the classifier, and another portion of the data to test
the classifier. In this report, we contrast 2 different sets of training
data, one drawn from the familiarization session (“familiarization-
period training”), and one drawn from the study periods of the free-
recall sessions (“study-period training”). The familiarization-period
training involved training the classifier on all epochs of the familiariz-
ation period, then applying it to all epochs of the study period,
measuring performance as the fraction of items correctly classified.
This allowed us to examine category-specific neural activity that
appears both during a task with no intentional episodic encoding
(the familiarization period) and a task requiring episodic encoding
(the study period). In contrast, the study-period training involved

training and testing on the study period using a cross-validation pro-
cedure, where the classifier was trained on study epochs from all lists
except one, then tested on the study epochs from the remaining list.
Classifier performance was measured as the fraction of test items
whose category was correctly classified. This procedure was repeated
with a different list left out on each iteration, and classifier perform-
ance was averaged over iterations. This allowed us to examine
category-specific neural activity that appears when participants are at-
tempting to memorize the studied material.

Several sets of familiarization-period and study-period patterns
were created for the analyses reported below. First, for each time-bin–
frequency-bin pairing from a set of 100 time-bins and 34 frequency-
bins (Fig. 3B), we generated an across-electrode pattern for each
stimulus presentation, where the value for each feature of the pattern
was the oscillatory power at that electrode–time-bin–frequency-bin
combination. Separate analyses examined performance of cross-
validation classification, and performance of a classifier trained on the
corresponding electrode–time-bin–frequency-bin of the familiariz-
ation epochs. In order to examine the category-specificity of these
patterns at particular oscillatory frequencies, we averaged perform-
ance within 6 frequency bands and over all time-bins during 0–3500
ms after stimulus onset (Fig. 3C). The frequency bands were: delta
(2–4 Hz), theta (4–8 Hz), alpha (10–14 Hz), beta (16–25 Hz), low
gamma (25–55 Hz), and high gamma (65–100 Hz). We used 100 Hz
as the upper bound of high gamma to allow comparison of the ECoG
and scalp EEG signals.

In order to examine the category-specificity of these patterns over
time, we created a pattern for each study epoch and familiarization
epoch containing average oscillatory power in each of 8 500-ms bins
swept over the stimulus presentation period (Fig. 3D). Each pattern
contained a feature for each electrode–frequency-bin pairing. To
obtain a measure of overall classifier performance for a given item
presentation, average oscillatory power was calculated for 2 time-bins:
0–0.5 s post-stimulus onset (“early” time-bin) and 0.5–3.5 s post-
stimulus onset (“late” time-bin). A pattern was created for each fam-
iliarization epoch and study epoch containing a feature for each
time-bin–frequency-bin–electrode pairing.

Classifier Performance and Subsequent Recall
To determine how oscillatory activity during study affected sub-
sequent recall performance, we labeled study events based on how
each study item was later remembered. Items were labeled as “re-
called” (recalled during IFR) or “forgotten” (not recalled during IFR).
Recalled items were labeled based on whether they were “sub-
sequently clustered” (recalled as part of a sequence of 2 or more
items of the same category) or “subsequently isolated” (not recalled
as part of a category cluster). These conditions are illustrated in
Figure 1. Analyses below report how classifier accuracy changes with
subsequent memory and subsequent clustering status of a particular
item.

A number of follow-up analyses were carried out to ensure the val-
idity of analyses contrasting classifier accuracy in different conditions.
The first analysis altered the classifier training sets to ensure that

Figure 2. Right and left sagittal views of electrode coverage in intracranially implanted patients. Temporal, parietal, and occipital regions are denoted by blue, yellow, and green
dots, respectively. Prefrontal electrodes are shown in orange; other frontal electrodes are shown in red. Not shown: 76 medial temporal electrodes.
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analyses involving unbalanced numbers of items with different labels
(e.g., recalled versus forgotten) were unbiased. When creating each
training set for the classifier, we ensured that each combination of cat-
egory and the conditions of interest was equally represented, by
sampling randomly without replacement from the set of training pat-
terns corresponding to each category and condition. We repeated
each classification analysis 10 times to obtain a stable estimate of per-
formance for each classified item. Classification performance was
then calculated for each condition of interest, averaged over all repli-
cations of the random sampling and classification.

Another set of analyses examined whether our classifier estimates
of category strength for a particular studied item were influenced by
the category identity of surrounding events in the study sequence. We
measured oscillatory power using Morlet wavelets, which were con-
volved with the EEG to obtain instantaneous estimates of power.
Although oscillatory power measured using wavelets most strongly
corresponds to oscillatory power at the measured time t, it will also
be influenced by surrounding time points in the interval [t− x,t + x],
where x depends on the frequency and wavenumber of the wavelet
(Herrmann et al., 2005). For all frequencies, we used a wavenumber
of 6, so the measured interval varied with frequency; since the lowest
measured frequency was 2 Hz, the largest window for which power
was affected was t + 1500 ms, raising the possibility that classifier
performance for a given item might be influenced by the category
identity of an adjacent item on the study list. To control for this poten-
tial influence, we divided studied items based on whether the pre-
vious and next items were of the same or a different category. We
divided items into train position bins based on whether they were at
the beginning of a train, in the middle of a train, at the end of a train,
or surrounded on both sides by items from another category (this was
never the case in the scalp EEG experiment, but did occur in the
ECoG experiment described below). We then examined subsequent
memory and subsequent clustering contrasts, while controlling for
train position bin. In no case did the category identity of surrounding
study items influence the conclusions of an analysis.

Integration of Category-Specific Activity
We examined whether the category-specificity of oscillatory patterns
increased as multiple same-category items were studied in sequence
(Fig. 5B). Earlier analyses (see “Classifier Performance and Subsequent
Recall”) examined overall classifier fraction correct, where the classi-
fier’s “guess” of the category of each stimulus was based on which cat-
egory was estimated as being the most probable during each item
presentation. Here, we instead examined a continuous measure of
category-specific activity: For each presented item, we examined the
classifier’s estimate of the probability of the relevant category, given
the pattern of neural activity observed during presentation of the item
(Kuhl et al., 2012). We tested for evidence of neural integration of
category-specific activity by examining whether classifier estimates in-
creased with successive presentations of items in the same category.
To determine whether integrative activity was related to individual
differences in category clustering (Fig. 5C), we used weighted
least-squares regression (weighted by the number of observations at
each train position) to fit the change in classifier estimates over train
positions 1–3 for each participant; we refer to this as “neural inte-
gration rate.” We then examined whether neural integration rate pre-
dicted individual differences in category clustering, by measuring the
correlation between neural integration rate and LBCsem.

A secondary analysis examined whether, within an individual par-
ticipant, differences in the amount of category clustering observed in
individual lists correlated with neural integration rate for the studied
items in that particular list. Each participant performed free recall on
30 mixed-category lists, across 3 experimental sessions. For each trial,
we calculated both the neural integration rate and the degree of cat-
egory clustering. For each participant, we obtained the t-value of the
slope of the regression of category clustering on neural integration
rate. We then used a t-test to assess whether the regression t-value
was significantly positive across subjects. A significantly positive
slope indicates a significant relationship between list-level fluctuations
in neural integration rate and category clustering.

Reactivation During Recall
A series of analyses examined whether patterns of oscillatory power
observed during study were reactivated during recall. Examination of
the stimulus-related oscillatory activity during study revealed a transi-
ent response with a rapid onset as well as a more sustained response
(Fig. 3B). We chose to focus on the later, sustained, category-specific
neural response, under the assumption that it would more likely be
related to higher-order cognitive representations activated in response
to the stimulus presentation. The classifier was trained on average
power from the late time-bin of item presentation (see “Study Period
Classification”), then was applied to the oscillatory power recorded
during recall. We assessed the degree of reactivation of category-
specific oscillatory patterns during the recall period using a
correlation-based reactivation metric (Polyn et al., 2005).

The classifier provides an estimate of the strength Sit of each cat-
egory i at each time-bin t. The record of recalls during each free recall
period was sampled at 25 Hz to match the sampling rate of the oscil-
latory power. Each time-bin was either assigned to no category (if no
recalls were currently being made) or to exactly 1 category. The 1 s
preceding onset of each vocalized recall was labeled with the category
of the recalled item. When there was overlap between recalls, the
earlier item took precedence. This resulted in a set of 3 vectors Rj ,
where each element Rj

t is 1 for times t when category j is active, and 0
when category j is not active. These vectors represent the “recall
record” of each recall period.

We calculated a correlation-based reactivation metric to measure
reactivation of category patterns during recall. We treated all recall
periods as part of one record by concatenating the recall periods to-
gether. We calculated Pearson’s linear correlation between Si and Rj

for i [ f1; 2; 3g and j [ f1; 2; 3g to create a cross-correlation matrix.
The diagonal of the cross-correlation matrix corresponds to corre-
lations between classifier estimates and the correct recall records,
while the off-diagonal entries correspond to correlation with the in-
correct categories. We calculated the mean correlation in the diagonal
entries and subtracted the mean correlation in the off-diagonal entries
to obtain a summary index of the classifier’s ability to track each sub-
ject’s recall behavior, which we refer to as the reactivation metric (this
measure was referred to as the OnOff metric by Polyn et al., 2005).

We used a permutation test to determine whether reactivation was
statistically significant across subjects. For each subject, the columns
of the cross-correlation matrix were scrambled, and the mean reactiva-
tion metric was calculated. This process was repeated 5000 times to
establish a null distribution of reactivation metric scores, and reactiva-
tion was considered significant if the observed score was >95% of the
null distribution. We also examined reactivation at different frequen-
cies by training and testing the classifier at each frequency individu-
ally. In order to control Type I error rate, while accounting for the
correlation structure of the data, we scrambled the columns of the
cross-correlation matrix in the same way for each frequency, then
pooled the null distributions of each frequency together to make a
null distribution accounting for familywise error. This familywise null
distribution was then used to set the significance threshold for all fre-
quencies (Sederberg et al., 2003).

To assess the time-course of reactivation relative to the onset of indi-
vidual recalls, we examined segmented recall epochs, which included
the period from 3 s before to 1 s after onset of vocalization. Recall
epochs were excluded if they overlapped with vocalizations of previous
recalls (IFR: 68.5% [standard error of the mean, SEM 1.3%] of epochs
were excluded, leaving 44–146 epochs for each subject; FFR: 78.0%
[SEM 1.3%] of epochs were excluded, leaving 31–93 epochs for each
subject). For each included recall epoch, we calculated average power
in 500-ms time-bins. We then trained the classifier on the late time-bin
of the study period (see “Study Period Classification”), and applied the
classifier to each segmented recall event at each time-bin. We tested the
significance of reactivation using a permutation test similar to above
(pooling null distributions over all time-bins), except using fraction
correct instead of the reactivation metric to measure classifier accuracy.

Category-Specific Activity During Clustering
In addition to the analyses above, where we trained the classifier on
the study period, then applied it to the recall period (see “Reactivation
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During Recall”), we also examined recall-period-specific category
activity by training and testing the classifier on segmented recall
epochs. This provided us with a measure of the fidelity of category-
specific activity in the period just before vocalization of a recalled
item. The oscillatory patterns created for this analysis used a single
time-bin averaged from 3 to 0.5 s before onset of vocalization (the
0.5 s immediately before each vocalization was excluded in order to
limit the influence of vocal response preparation artifacts), and all
frequency-bins. Performance was assessed using cross-validation,
with 1 list left out on each iteration, and performance was averaged
over iterations.

We compared mean classifier accuracy for clustered and isolated
items, to test the hypothesis that category clustering is associated with
stronger category representations. Clustered items were labeled accord-
ing to the item’s position within the category cluster: “initial” (preceded
by an item from a different category, and followed by an item from the
same category), “middle” (both preceded and followed by items from
the same category), or “terminal” (preceded by an item from the same
category, and followed by an item from a different category), as illus-
trated in Figure 1. Note that these cluster position bins are defined in a
similar manner to the train position bins used for the study period (see
“Classifier Performance and Subsequent Recall”), but apply to the order
in which items are recalled rather than the order in which items are pre-
sented. We used a 2-way within-subjects ANOVAwith previous category
(same or different) and next category (same or different) as factors, to
test for influences of the previous and next recalls. As with our study-
period analyses, we examined both performance of a classifier trained
on all events, and performance of a classifier provided with a balanced
training set. For the balanced analysis, we used random sampling
without replacement to create a training set with equal numbers of
epochs from each combination of cluster position bin and category. We

repeated the random sampling and classification 10 times to obtain a
stable estimate of classifier performance.

As for the study-period analyses, we also carried out follow-up ana-
lyses to rule out the possibility that the wavelet-based power estimates
were influenced by the neural signal related to adjacent events in the
recall sequence. Since our wavelet estimates of instantaneous oscil-
latory power are influenced by oscillations within an extended inter-
val, classification of items recalled as part of a cluster may be
improved by the influence of oscillatory power related to adjacent
recalls of same-category items. If clustered items are better classified
due to influence of nearby recalls on power estimates, this difference
should only appear for time-bins that are <1500 ms from the closest
recall event (see “Classifier Performance and Subsequent Recall”).
Therefore, we focused on the period from 1500 to 500 ms before voca-
lization onset (using 500-ms time-bins), which cannot be influenced
by adjacent recalls (based on our criteria for creating recall epochs; see
“Reactivation During Recall”). We averaged classifier performance over
this interval for items following a recall of the same category (middle/
terminal) and items following a recall of a different category (isolated/
initial) to determine whether the category of the previous recall has an
effect on classifier performance. Similarly, we compared classifier per-
formance during IFR and FFR over the critical period from 1500 to
500 ms before vocalization onset. In no case did analysis of this re-
stricted time period differ from analysis of the entire recall epoch
(3000 to 500 ms before vocalization onset).

Electrocorticography Experiment

Participants
We tested 11 patients (3 females; age 18–44, mean 35.5, standard
deviation [S.D.] 8.2) with medication-resistant epilepsy who were

Figure 3. Category-specific oscillations during study. (A) Oscillations in ECoG and depth electrodes at widespread frequencies show category-specificity during study. The color bar
indicates classifier performance (using a cross-validation procedure) at each oscillatory frequency-bin and time-bin relative to stimulus onset (at time= 0). Dark blue corresponds
to chance performance (0.33̄ ). (B) Scalp EEG oscillatory activity shows a similar time-frequency distribution of category specificity, although category-specific high gamma
oscillatory activity is attenuated. (C) Classifier performance as a function of frequency band, averaged over the stimulus presentation interval. D: delta, 2–4 Hz, T: theta, 4–8 Hz, A:
alpha, 10–14 Hz, B: beta, 16–25 Hz, LG: low gamma, 25–55 Hz, HG: high gamma, 65–100 Hz. The dotted line indicates chance performance (0.33̄ ). Error bars represent standard
error of the mean. (D) Performance of a classifier provided with information from all frequencies, plotted against time after stimulus onset. Category-specific patterns peak at about
500 ms after stimulus onset, and persist throughout stimulus presentation, both for intracranially implanted and scalp EEG-monitored participants. Scalp classifier performance
during the 500 ms before stimulus onset is averaged over items that followed an item of a different category; all other time-bins show performance averaged over all items. Error
bars represent 95% confidence intervals based on within-subject error (Loftus and Masson, 1994). The dotted line indicates chance performance (0.33̄ ).
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undergoing invasive ECoG and depth electrode monitoring to deter-
mine the location of epileptogenic foci for subsequent resection. See
Table 1 for detailed patient information. The patients had a total of
864 surface and depth electrodes (Fig. 2); electrode placement was
determined by the clinical team.

The research protocol was approved by the relevant institutional
review boards, and informed consent was obtained from all partici-
pants. To limit the effects of seizures and medication on task perform-
ance and brain activity, we refrained from testing when patients were
on high doses of pain medications or anti-epileptic drugs, and during
the 6 h period following any clinically significant seizure. For 2 ses-
sions, patient 7 was implanted with one set of electrodes. This patient
underwent another surgery prior to her remaining 8 sessions. During
this surgery, some electrodes were added, and some were removed to
create a second set of electrodes. In the reported classification ana-
lyses, we treated these 2 sets of sessions as coming from distinct par-
ticipants. The number of electrodes that overlapped between the 2
sets of sessions was relatively small (24 electrodes; 26.1% of the first
set of electrodes, and 27.9% of the second set), precluding us from
combining these 2 sets of data for pattern classification analysis.

Materials
The word pool consisted of the 216 items from the scalp EEG exper-
iment that were the most recognizable (as judged by the exper-
imenters). In addition to the original picture used in the scalp EEG
experiment, 4 additional pictures were found for each item.

Procedure
Participants were presented with lists of 9 items, with 3 items from
each category. Category order was pseudorandom within each list.
Before each item, a text cue indicating the category of the upcoming
item was shown for 1000 ms. There was a 200–500 ms ISI before
presentation of the item, which lasted for 3500 ms. While the item
was on the screen, participants made a category-specific judgment, as
in the scalp EEG experiment. The ISI between each item and the next
category cue was 800–1200 ms. After presentation of the last stimulus,
the screen was blank for 1200–1400 ms, followed by presentation of a
row of asterisks and a 300-ms tone signaling the start of a 60 s IFR
period. If 60 s had not passed yet, but the participant indicated that
he or she had finished recall, the experimenter pressed a button to
end the recall period. Each item had 5 distinct pictures, which all ap-
peared during the session (but never in the same list). Participants
were told that the same item might appear multiple times, but to
simply focus on remembering the items from the current list. Partici-
pants were presented with 20 lists in each session. There was a 240 s
FFR test at the end of each session. Each participant completed 1–10

sessions (see Table 1 for the number of sessions completed by each
participant).

Electrocorticography Recordings and Data Processing
ECoG was recorded using a Grass Telefactor or Nicolet digital
video-EEG system. ECoG was sampled at 400 or 512 Hz. A digital But-
terworth notch filter with zero phase distortion at 60 Hz was used to
remove electrical noise. Synchronization pulses controlled by the
computer presenting the stimuli were sent to the EEG monitoring
system, and later used to align electrophysiological data to events in
the experiment (precision < 4 ms).

Oscillatory power was measured at 37 logarithmically spaced fre-
quencies from 2 to 128 Hz. Power was log-transformed and down-
sampled to 16 Hz. Power was normalized using similar techniques as
used in the scalp EEG experiment, except power measured during
study epochs was normalized relative to 500–400 ms before onset of
the category cue (rather than the onset of the stimulus itself). Epochs
examined during the recall period consisted of data from 2000 ms
before to 1000 ms after vocalization onset. Epochs were only included
if they did not contain previous vocalizations (IFR: 70.8% [SEM 4.5%]
of epochs were excluded, leaving 5–744 epochs for each subject; FFR:
67.6% [SEM 3.9%] of epochs were excluded, leaving 3–90 epochs for
each subject). Power was normalized relative to periods with no voca-
lizations; for each recall period, enough 100-ms baseline epochs were
randomly chosen from quiet periods to match the number of recalls
during that recall period. We also examined continuous data includ-
ing entire recall periods; power was z-transformed based on the mean
and standard deviation of power over each recall period, separately
for each electrode and frequency.

The locations of the intracranial electrodes were determined using
an indirect stereotactic technique based on co-registered post-
operative computed tomography and pre- or post-operative magnetic
resonance imaging, and converted into Montreal Neurological Insti-
tute coordinates. The Talairach Atlas was used to determine the ana-
tomical location of each electrode (Talairach and Tournoux, 1988;
Lancaster et al., 2000). Electrodes were divided into 7 regions of inter-
est (ROIs; see Fig. 2): Frontal (220 electrodes), prefrontal (188), tem-
poral (532), medial temporal (76), hippocampus (22), occipital (56),
and parietal (57). The prefrontal ROI is a subset of electrodes in the
frontal ROI; similarly, the hippocampal ROI is a subset of the medial
temporal ROI, which is a subset of the temporal ROI. We used brain
images from the WFU Pick-Atlas for data visualization (Maldjian et al.,
2003).

Multivariate Pattern Analysis
Pattern analysis methods were the same as in the scalp EEG exper-
iment, except that classification analyses were carried out separately
for each ROI. For each classification analysis, we tested whether accu-
racy was above chance using a permutation test. The labels corre-
sponding to each category were permuted 5000 times, and the mean
classifier accuracy (measured by fraction correct for cross-validation
analyses, and by reactivation metric for reactivation analyses) was cal-
culated for each permutation. The same permutations were used
across all dimensions examined in that analysis (which could include
ROIs, time-bins, and frequency-bins). The permuted distribution of
classifier accuracy scores was pooled over all tests (e.g., over ROIs) to
create one null distribution, which was used to establish a signifi-
cance threshold that controls familywise Type I error at a , 0:05 (Se-
derberg et al., 2003).

Results

An Overview of the Modeling Framework
When participants freely recall studied material, the order of
their responses reveals the associative structure of their stored
memories (Puff, 1979; Polyn et al., 2009). Retrieved-context
models of memory (Howard and Kahana, 2002; Sederberg
et al., 2008; Polyn et al., 2009) explain these organizational

Table 1
This table provides the hospital (HOSP) at which each patient’s data were collected, as well as
each patient’s age in years (AGE), sex (SEX), handedness (HAND), number of implanted
electrodes (ELC), and number of testing sessions (SES)

ID HOSP AGE SEX HAND ELC SES

1 UP 18 M A 100 6
2 UP 39 M L 77 1
3 UP 40 M R 38 2
4 TJ 25 M R 35 3
5 TJ 40 F R 82 10
6 TJ 39 M L 52 4
7 TJ 34 F R 92 2
7 TJ 34 F R 86 8
8 TJ 39 F R 85 1
9 TJ 44 M R 124 4
10 TJ 29 M R 36 1
11 TJ 43 M R 57 5

Note: Patient 7 underwent invasive monitoring with 2 partially overlapping sets of electrodes
(see text for details). A, ambidextrous; F, female; L, left; M, male; R, right; TJ, Thomas Jefferson
Hospital (Philadelphia, PA, United States of America); UP, Hospital of the University of
Pennsylvania (Philadelphia, PA, United States of America).

2412 Oscillatory Correlates of Category Clustering • Morton et al.



phenomena (as well as a vast array of other behavioral
phenomena) in terms of the interactions between a represen-
tation of the studied material, and an internal retrieval cue.
The retrieval cue is characterized as a population of integra-
tive elements; the persistent activity of these integrators
causes the retrieval cue to slowly change its state. One charac-
teristic of these models is that the retrieval cue is both always
active, and ever-changing. During study, the system 1) inte-
grates details of the studied items into the retrieval cue itself,
and 2) engages associative processes that directly link the cue
with the neural representation of the studied material. These
characteristics of the system allow it to more accurately target
the studied material during a later search attempt. In these
experiments, participants studied items from categories
associated with distinct neural representations (Polyn et al.,
2005), allowing us to track this category-specific neural
activity as it is integrated into the retrieval cue, and deployed
during memory search. Using these category-specific oscil-
latory patterns, we are able to predict both which studied
items will be remembered (Kuhl et al., 2012) and which re-
membered items will be recalled adjacent to items from the
same category. Furthermore, we are able to track category-
specific activity as memory search unfolds. In the following
sections, we use the retrieved-context framework to interpret
the dynamics of category-specific patterns of oscillatory
neural activity, recorded both at the scalp, and with ECoG/
depth electrodes.

Category-Specific Oscillatory Patterns During Encoding
Central to modern cognitive neuroscientific theory is the
hypothesis that the characteristics of a particular study event
are reflected in a distributed, attribute-based representation
that spans multiple brain areas (Haxby et al., 2001; Polyn
et al., 2005; Martin, 2007). During encoding, both the local
oscillatory signals picked up by the intracranial electrodes,
and the more global signals picked up by the scalp electrodes
reveal distinct patterns of oscillatory activity associated with
the category identity of a studied item. Overall classifier
percent correct (allowing the classifier to use 2 time-bins, 34
frequency-bins, and all electrodes to decode stimulus category
using a cross-validation procedure; see Materials and
Methods) was 58.9% (SEM 1.0%; chance performance is
33:3%) and 82.4% (SEM 2.6%) for the scalp EEG and ECoG
experiments, respectively. In the intracranial experiment,
during the study period, every brain region which had sub-
stantial electrode coverage showed reliable category-specific
differences in oscillatory power (Fig. 4A; P < 0.05, permu-
tation test). As we describe in this section, the category-
specific oscillatory patterns recorded by each of these tech-
niques are quite similar in terms of their time-course and fre-
quency profile, though the ECoG/depth recordings contain
significantly more category-specific high-gamma activity.

Figure 3 depicts a number of analyses characterizing the
time-course and frequency profile of these category-specific
patterns, for each of these datasets. As described in Materials
and Methods (see “Study Period Classification”), we examined
2 methods of training the classifier. Here, we examine the
study-period training results (as this was included in both
experiments), and in later sections we contrast study-period
training with familiarization-period training.

We conducted a series of classification analyses to demon-
strate the category selectivity of oscillatory neural signals for
each time-bin–frequency-bin pairing, relative to item onset,
for both intracranially implanted (Fig. 3A) and scalp EEG–
monitored (Fig. 3B) participants. The time-frequency distri-
bution of category-specific neural signals is remarkably
similar across the 2 groups of participants, suggesting that the
scalp electrodes are sensitive to the same category-specific
patterns characterized by the intracranial electrodes. Category
specificity at widespread frequencies is seen in the first 500
ms after item presentation, and longer-lasting category differ-
ences are observed in the delta (2–4 Hz), theta (4–8 Hz), and
alpha (10–14 Hz) frequency bands. Sustained high gamma
(65–128 Hz) category differences are observed in the record-
ings from intracranial electrodes (Fig. 3A). Gamma-band (30–
100 Hz) activity at the scalp is also somewhat sensitive to
stimulus category (Fig. 3B).

Figure 3C demonstrates the category selectivity of the
neural signal at different frequency bands during the study
period, for each of these datasets. We averaged classifier
cross-validation performance over the entire stimulus presen-
tation period (0–3500 ms post-stimulus onset) for 6 frequency
bands: delta, theta, alpha, beta (16–25 Hz), low gamma (25–
55 Hz), and high gamma (65–100 Hz). Here, we used 100 Hz
as the upper bound of high gamma to allow comparison of
the ECoG/depth and scalp EEG signals. Classifier perform-
ance for the intracranial experiment was greater than scalp
EEG (F1,234 = 188.66, P < 0.0001). There was also a main effect
of frequency (F5,234 = 15.45, P < 0.0001) and a significant
interaction (F5,234 = 3.51, P < 0.005). There was an interaction
between ECoG and scalp EEG in the low- and high-gamma
bands (F1,78 = 10.88, P < 0.002), with the ECoG data showing
a greater advantage for high gamma over low gamma
(Fig. 3C). The lack of an increase in classifier performance for
high gamma (over low gamma) in the scalp EEG experiment
may reflect attenuation of high-frequency oscillations by the
skull (Nunez and Srinivasan, 2006).

Although gamma-band oscillations were attenuated at the
scalp electrodes, classifier performance for frequencies in the
gamma band was still reliably above chance during the study
period. This finding is consistent with research suggesting
that induced gamma activity is involved in perceptual binding
during object perception (Tallon-Baudry et al., 1996, 1997),
but recent work raises the possibility that some high-
frequency EEG activity measured at scalp electrodes is related
to miniature saccades, rather than brain activity (Yuval-
Greenberg et al., 2008). Voltage potentials related to these
miniature saccades do not differ in polarity on different sides
of the eye, so our regression procedure for subtracting the
influence of eye movements (which relied on difference
potentials to measure eye movements) would not be effective
at removing these signals (Yuval-Greenberg et al., 2008). If
participants made distinct miniature-saccadic activity for each
of the 3 categories, these signals could affect our analyses.
Thus, we carried out a second series of analyses on the scalp
EEG signal from the study period, in which oscillations of fre-
quency higher than 30 Hz were excluded, and found that
overall classifier performance was very similar, and the con-
clusions from all reported analyses were unchanged. This
suggests, for scalp EEG at least, either that the information
contained by the high-frequency category-specific activity is
redundant with the low-frequency information, or that the
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most important category-specific activity is carried by lower
frequencies.

Figure 3D shows the time-course of category-specific oscil-
latory patterns relative to item onset. For each time-bin, the
classifier is trained on oscillatory information from all fre-
quencies. Classifier performance peaks at 500–1000 ms for
both datasets, but category-specific information persists for at
least as long as the item remains on-screen. We found some
evidence in the scalp EEG study that category-specific infor-
mation related to the previous study item persists during the
inter-item interval. When the classification analysis for this
baseline period includes all study events, classifier perform-
ance is significantly above chance (mean 35.81%, SEM 0.45%,
t(28) = 5.53, P < 0.0001). In this experiment 69% of items are
preceded by an item of the same category, raising the possi-
bility that persistent category-specific activity could influence
these estimates. To obtain a clean baseline estimate of cat-
egory discriminability, we restricted our analysis (for this bin)
to items presented immediately after a category switch; the
other time-bins show performance averaged over all items.
This change caused baseline classification to drop to chance
levels. In the ECoG/depth electrode experiment, each item
was preceded by a cue indicating the category of the upcom-
ing item. Classifier performance in the 500 ms before stimulus
onset was significantly above chance (mean 37.81%, SEM
1.53%, t(11) = 24.7, P < 0.0001; see Figure 3D); this may be
due to activity related to anticipation of the stimulus category
or preparation for the category-specific judgment to be made
about the item.

Category-Specific Information Predicts Subsequent Memory
We hypothesize that category-specific neural activity during
encoding reflects a neural representation of the semantic
characteristics of the studied item. However, there are poten-
tially many reasons why neural activity might reflect category
identity. Thus, it is important to determine whether these
category-specific activation patterns tell us anything about the
memorability of the stimulus itself. The next set of analyses
show that the strength of the oscillatory patterns elicited for a
particular studied item provide information about whether
that item will be recalled. This is consistent with the hypoth-
esis that a substantial component of these category-specific
patterns relates to the representation of the studied item, the
representation of a category-based retrieval cue, or some com-
bination thereof.

In the scalp EEG dataset, we found that subsequently re-
called items were classified more accurately than sub-
sequently forgotten items. This was the case regardless of the
training set used to train the classifier. With study-period
training, classifier performance was greater for subsequently
recalled items (percent correct: mean 60.4%, SEM 1.2%) than
for subsequently forgotten items (percent correct: mean
57.5%, SEM 0.9%); this difference was significant (t(28) =
3.60, P < 0.0001). Similarly, with familiarization-period train-
ing, classifier performance was greater for subsequently re-
called items (percent correct: mean 54.8%, SEM 1.0%) than
for subsequently forgotten items (percent correct: mean
52.0%, SEM 0.9%); this difference was significant (t(28) =
3.15, P < 0.005).

In the ECoG/depth electrode experiment, temporal and oc-
cipital regions showed the strongest category-specific activity,
but the uneven electrode coverage of different ROIs across

patients makes it difficult to draw strong conclusions about
the relative category-specificity of activity in different areas.
However, we can examine how category-specific activity
within a particular ROI changes under different experimental
conditions. In the ECoG/depth electrode dataset, we found
that there was no difference in classifier performance
between recalled and forgotten items at any ROI (all P > 0.05,
Bonferroni-corrected). Since performance at temporal electro-
des is near ceiling (mean 79.22%, SEM 2.96%), we also
examined whether the raw classifier estimates predicted sub-
sequent memory status. Classifier estimates are free to vary
continuously, so they may be more sensitive in some cases
than fraction correct, which is binary for each classified item
(Kuhl et al., 2012). We found that classifier estimates at tem-
poral electrodes were significantly greater for subsequently
recalled than forgotten items (Fig. 4B; t(11) = 8.50, P < 0.0005,
Bonferroni-corrected). While occipital electrodes also showed
strong category-related oscillatory signal (Fig. 4A), the fidelity
of this signal did not predict whether an item would be re-
membered (t(9) = 2.91, P > 0.05, Bonferroni-corrected).

In each of these datasets, we carried out a follow-up analy-
sis of variance to examine whether classifier performance was
influenced by the sensitivity of the wavelet-based power esti-
mates to the category identity of surrounding studied items.
As described in Materials and Methods, we included a factor
in the analysis of variance relating to the category identity of
the surrounding items (see “Classifier Performance and Sub-
sequent Recall”). In the scalp dataset, this revealed a signifi-
cant main effect of subsequent memory (F1,28 = 9.98, P <
0.005), no effect of surrounding category identity (F2,56 =
1.56, P = 0.22), and no interaction between these factors
(F2,56 < 1). Similarly, in the ECoG/depth electrode dataset, this
revealed a significant main effect of subsequent memory
(F1,11 = 12.55, P < 0.005) at temporal electrodes, no effect of
surrounding category identity (F3,33 < 1), and no interaction
between these factors (F3,33 < 1). We also carried out a follow-
up analysis in which the number of recalled and forgotten
items (as well as the number of items from the different cat-
egories) were balanced within the training set (see “Classifier
Performance and Subsequent Recall”). We found that, even
with a balanced training set, classifier estimates in temporal
electrodes were significantly greater for subsequently recalled
items compared with forgotten items (t(11) = 6.98, P < 0.001).
This suggests that classifier estimates are greater for sub-
sequently recalled items because they are associated with
higher-fidelity category activity, and not merely because there
are more subsequently recalled items in the training set. The
other ROIs showed no significant differences (all P > 0.05,
Bonferroni-corrected).

Category-Specific Activity Predicts Subsequent Recall
Organization
Retrieved-context models suggest that if some component of
the observed category-specific oscillatory activity is related to
the operation of a category-based retrieval cue, then an item
with a strong category response during study should not only
be better recalled, but there should also be an increased like-
lihood of that item being recalled in succession with other
items from the same category (i.e., the item should be clus-
tered with same-category items during recall). It is also poss-
ible that items with prototypical representations for the
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category would elicit strong category-specific neural activity;
these two hypotheses will receive further attention in the
Discussion.

Behavioral analysis of the free-recall periods reveals
reliable category clustering in both experiments. In the scalp
EEG experiment, LBCsem in IFR was 3.66 (SEM 0.25); this ex-
ceeded the amount of category clustering expected given tem-
poral influences on recall, calculated using a relabeling
procedure (mean 0.808, S.D. 0.061; P < 0.0002; Polyn et al.
2009). In the ECoG/depth electrode experiment, because
items from each category were randomly placed in the list,
LBCsem expected by chance is 0. LBCsem in IFR was 1.19 (SEM
0.16), which was significantly greater than chance (t(11) =
7.39, P < 0.0001). While both experiments showed evidence
that participants were organizing their memory search by cat-
egory, only the scalp EEG experiment yielded reliable evi-
dence that the category-specific oscillatory responses were
related to this category organization. This may be due to the
global estimate of category-specific neural response provided
by scalp EEG, or may be due to the larger number of partici-
pants and longer study lists of the scalp EEG experiment,
which leads to a larger set of study and recall events to
examine.

Item-level fluctuations in classifier performance predict
subsequent clustering by category; we refer to this as the
“subsequent clustering effect”. With familiarization-period
training, subsequently clustered items were identified more

reliably than the items that would be forgotten (t(28) = 3.26,
P < 0.005), and more importantly, than the subsequently iso-
lated items (t(28) = 2.39, P < 0.05; Figure 5A). As above, a
follow-up analysis of variance showed that this effect was not
influenced by the category identity of surrounding items (we
found a main effect of subsequent clustering [F1,28 = 5.20,
P < 0.05], no effect of surrounding category identity [F2,56 < 1],
and no interaction [F2,56 = 1.42, P = 0.25]).

Although the classifier with familiarization-period training
was sensitive to subsequent clustering, the classifier with
study-period training was not. Classifier performance was
60.4% (SEM 1.2%) for subsequently clustered items and 59.6%
(SEM 2.0%) for subsequently isolated items; this difference
was not significant (t(28) = 0.43, P = 0.7). We examined this
differential sensitivity with an analysis of variance on the clas-
sifier performance, with training period (familiarization or
study) and subsequent organization (isolated or clustered) as
factors. There was a significant main effect of training period
(F1,28 = 32.42, P < 0.0001; accuracy was better when the classi-
fier was trained on the study period), no main effect of sub-
sequent organization (F1,28 = 2.53, P = 0.13), and no
interaction (F1,28 = 1.75, P = 0.20). Therefore, although there is
a significant difference in classifier performance between
clustered and isolated items when the classifier is trained on
the familiarization period, and no difference when the classi-
fier is trained on the study period, the magnitude of the
difference in classifier performance between subsequently

Figure 4. Category-specific oscillations during study and reactivation during recall. (A) Classifier performance during study is significantly above chance for all regions of interest
(ROIs). (B) The fidelity of category-specific patterns in ECoG recorded from temporal electrodes predicts subsequent memory. The difference in classifier category strength
estimates between recalled and forgotten items is shown for each ROI. For temporal electrodes, classifier estimates were greater for subsequently recalled items, compared
with subsequently forgotten items. Error bars indicate 95% confidence intervals corresponding to a 1-tailed paired t-test; asterisk (*) indicates P< 0.05, Bonferroni-corrected.
(C) Reactivation of category-specific information during immediate free recall is observed in frontal, prefrontal, temporal, medial temporal, hippocampal, and occipital electrodes.
(D) Reactivation during final free recall is observed in frontal, prefrontal, temporal, medial temporal, hippocampal, and parietal electrodes. FR: frontal lobe, PFC: prefrontal cortex,
Temp: temporal lobe, MTL: medial temporal lobe, Hipp: hippocampus, Occ: occipital lobe, Par: parietal lobe. The dotted lines indicate significance thresholds for permutation
tests comparing performance to chance (familywise Type I error rate < 0.05).
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clustered and subsequently isolated items does not signifi-
cantly interact with training period. This raises the possibility
that it is not necessarily a fundamental difference in the fam-
iliarization versus free-recall category patterns that is causing
the difference in sensitivity to subsequent clustering; it may
be a matter of statistical power. Along these same lines, we
also found that the difference in classifier performance
between recalled and forgotten items does not depend on the
training period. Another analysis of variance revealed a sig-
nificant main effect of training period (F1,28 = 53.78, P <
0.0001), a significant main effect of subsequent memory
(F1,28 = 16.87, P < 0.0005), and no interaction (F1,28 < 1).

Integration of Category-Specific Information
According to retrieved-context models of memory, organiz-
ational effects arise through the interaction of a retrieval cue
with the contents of memory. When many items on the study
list have similar characteristics (e.g., they are from the same
category), one can construct a retrieval cue that contains
those common characteristics to effectively retrieve those
items during memory search. According to these models, the
processes that construct the retrieval cue are integrative: They
create a representation that changes its state slowly over time.
This allows the retrieval cue to synthesize the properties of a
particular episode, and serve as an effective cue for the events
occurring over a rather large temporal interval (Howard and
Kahana, 2002). Thus, for a particular neural signal to be a
candidate for being part of the retrieval cue, one would
predict that it would be sensitive to the category identity of
previous stimuli.

As in the above analysis of subsequent clustering, we
found that the more global scalp EEG signal contained evi-
dence for integrative activity, while the EGoG/depth electrode
signal did not. This may be due to the design of the ECoG/
depth electrode experiment, where same-category items did
not often occur in sequence. For a classifier with scalp EEG
study-period training, we found that the fidelity of the
observed category-specific neural activity increased as mul-
tiple items from the same category were presented in succes-
sion (Fig. 5B). The classifier estimate for the category

corresponding to the studied item increased for the first 3
positions of a same-category train of items and leveled off
beyond that. A weighted least-squares regression (weighted
by the number of observations at each train position) was
used to fit the change in classifier estimates over train pos-
itions 1–3 for each participant. The mean slope was 0.0078
(SEM 0.002), which was significantly positive (t(28) = 3.68,
P < 0.001).

We found that individual differences in the slope of classi-
fier estimates over train position significantly correlated with
each participant’s tendency to engage in category clustering
during memory search as measured by LBCsem (Fig. 5C; r =
0.421, P < 0.05; with 2 outliers removed, r = 0.500, P < 0.01).
In contrast, individual differences in overall discriminability of
category patterns at study did not correlate with category clus-
tering during recall (r = 0.268, P = 0.18; with 2 outliers
removed, r = 0.251, P = 0.19).

We also found that fluctuations in the slope of these
category-specific estimates on a trial-by-trial basis were
related to trial-by-trial fluctuations in category clustering be-
havior within a given subject. For each trial, we calculated
both the slope of classifier estimates (the “neural integration
rate”) and the degree of category clustering, and performed a
regression on these two measures. We found that these two
measures were reliably positively related to one another
(t-value of the slope of the regression: mean 0.476, SEM
0.160; t(28) = 2.98, P < 0.01), indicating a significant relation-
ship between list-level fluctuations in neural integration rate
and category clustering.

The training period is important for determining whether
the classifier is sensitive to effects of integration of category
representations over multiple item presentations. When the
classifier was trained on the familiarization period, and tested
on the study periods from the free-recall sessions, there was
no increase in classifier estimate with train position (slope
over train positions 1–3, based on weighted least-squares
regression: mean 0.0010, SEM 0.0021, t(28) = 0.51, P = 0.31,
1-sided test compared with 0). Slope was significantly greater
when the classifier was trained on the study period (t(28) =
3.12, P < 0.005). Furthermore, when the classifier was trained
on the familiarization period, the slope of classifier estimates

Figure 5. Dynamics of category-specific scalp EEG activity during study. (A) The fidelity of category-specific oscillatory patterns predicts subsequent memory and recall
organization. When a classifier was trained on item presentations during a familiarity judgment task and applied to the study period of free recall lists, subsequently clustered
(SC) items were classified more accurately than both subsequently isolated (SI) items and forgotten items. Error bars represent 95% confidence intervals based on
within-subject error (Loftus and Masson, 1994). (B) When the classifier is trained on a left-out portion of the study period, the persistence of category-related neural patterns is
seen in the increased fidelity of category patterns when multiple same-category items are presented in succession. The classifier’s estimate of the strength of the current
category is plotted as a function of position within a train of same-category item presentations. On average, classifier estimates rose with successive same-category stimuli.
Error bars represent 95% confidence intervals based on within-subject error (Loftus and Masson, 1994). (C) The slope of the regression of classifier estimate on train position
was correlated with individual differences in category clustering as measured by LBCsem (r= 0.500, P< 0.01). Two outliers have been removed from the plot; with them
included, the correlation is still significant (r=0.421, P<0.05).
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did not correlate with LBCsem (r = 0.00062, P = 0.997). A de-
pendent correlations test showed that LBCsem correlates sig-
nificantly better with slope for study-session cross-validation
than for familiarization-to-study classification (t(26) = 2.30,
P < 0.05). Similarly, the slope of classifier estimates is more
sensitive to differences in the amount of clustering on individ-
ual lists when the classifier is trained on the study period,
compared with when it is trained on the familiarization
period (t for the slope of the regression of LBCsem on slope of
classifier estimates: mean 0.190, SEM 0.159). This difference
is marginally nonsignificant (t(28) = 1.96, P = 0.061).

These results suggest that the classifier with familiarization-
period training is not sensitive to this integrative category-
specific neural activity. According to the retrieved-context
framework, two kinds of category-specific activity may be
present in the neural signal: The item representations them-
selves (which are not integrative) and the retrieval cue (which
has integrative properties). It may be that the familiarization-
period training selectively identifies item representations,
while the study-period training identifies a blend of item and
context representations, which may explain the differential
sensitivity of the two classification analyses. We return to this
point in the discussion.

Reactivation of Category-Specific Patterns During
Memory Search
According to retrieved-context models (indeed, many models
of memory), when one remembers a past event, the memory
system reactivates the pattern of neural activity that prevailed
when that event occurred. This reactivation process has been
used to describe remembering and reminiscence as a form of
”mental time travel“ (Tulving, 1993; Wheeler et al., 1995;
Polyn et al., 2005; Danker and Anderson, 2010). Both the
scalp EEG and the ECoG/depth electrode studies showed evi-
dence for reactivation of category-specific oscillatory patterns
during memory search, although the patterns recorded with
ECoG/depth electrodes were of substantially higher fidelity.

These ECoG category-specific oscillatory patterns reactivate
during memory search, and this reactivation tracks which cat-
egory is being recalled by the participant on a moment-to-
moment basis. There was reliable reactivation in frontal,
prefrontal, temporal, medial temporal, hippocampal, and
occipital electrodes (Fig. 4C; P < 0.05, permutation test).
Notably, the category-specific occipital patterns observed
while the stimulus was presented visually were only weakly
reactivated during memory search. Classifier accuracy peaks
during the 1 s before onset of vocalization, then drops during
vocalization of the recalled item. In temporal electrodes, oscil-
latory patterns at all frequencies were reactivated; in medial
temporal electrodes, delta, theta, alpha, and beta patterns
were reactivated; and in frontal electrodes, delta, theta, and
alpha patterns were reactivated.

The ECoG/depth electrode experiment also revealed
reliable reactivation of category-specific patterns during the
FFR period at frontal, prefrontal, temporal, medial temporal,
hippocampal, and parietal electrodes (Fig. 4D; P < 0.05, per-
mutation test). Occipital category-specific patterns were sig-
nificantly less reactivated in FFR compared with IFR (t(9) =
3.76, P < 0.05, Bonferroni-corrected). Reactivation follows a
similar time-course as in IFR, with classifier performance
peaking around 1 s before onset of vocalization, then

decreasing after vocalization. Temporal electrodes demon-
strated reactivation in all frequency bands except high
gamma; in frontal electrodes, theta, beta, and high-gamma
power was reactivated; and in medial temporal electrodes,
beta power was reactivated.

The global category-specific patterns observed at the scalp
showed marginally nonsignificant reactivation during IFR (re-
activation metric: mean = 0.0029, SEM = 0.0012; P = 0.057, per-
mutation test). However, there was significant reactivation in
scalp EEG during FFR (reactivation metric: mean = 0.0130,
SEM = 0.0041; P < 0.005, permutation test). There was signifi-
cant reactivation in delta and theta power. We attempted to
characterize the time-course of reactivation (relative to recall
onset) by examining reactivation in the segmented recall data;
however, this less-sensitive analysis revealed no significant
reactivation.

Pattern Fidelity During Retrieval Correlates with
Category Clustering
Retrieved-context models describe how, during memory
search, the retrieval cue is constantly updated by the infor-
mation that is retrieved from memory. These models predict
that when a participant recalls an item from a particular cat-
egory, the category-specific information that is retrieved is in-
tegrated into the retrieval cue, making it a better match for
other memories from the same category. This context retrieval
operation leads to the prediction that category-specific oscil-
latory activity observed during recall should increase in fide-
lity as multiple items are recalled from the same category.

First, we established that reliable category-specific neural
activity was present during memory search. A classifier was
trained to identify the category associated with particular re-
called items, using patterns of oscillatory activity recorded
prior to the vocalization of that item. The classifier was then
tested on the neural patterns preceding a left-out set of re-
called items. Again, the larger scalp EEG dataset affords us a
closer examination of the nuanced dynamics of these
category-related patterns, though at the cost of anatomical
localization of the signal. The scalp EEG–monitored partici-
pants showed reliable category-specific activity during recall:
mean classifier performance was significantly above chance
(33:3%) for recall tests that were administered immediately
after the list (mean 36.6%, SEM 1.3%, t(28) = 2.47, P < 0.01),
as well as during the FFR test administered at the end of the
session (Fig. 6A; mean 42.7%, SEM 2.1%, t(28) = 4.44, P <
0.0001). During FFR, classifier accuracy was significantly
greater than it was during IFR (t(28) = 2.55, P < 0.05).

Since LBCsem varies with list length, we used a different
measure of semantic clustering, the ARC score (Roenker et al.,
1971), to compare category clustering in IFR and FFR. In the
scalp EEG experiment, the ARC score for IFR was 0.60 (SEM
0.02); the ARC score for FFR was 0.88 (SEM 0.02), and was
significantly greater than IFR (t(28) = 14.93; P < 0.0001). A
similar difference was observed in the ECoG experiment (IFR:
mean 0.62, SEM 0.25; FFR: mean 0.85, SEM 0.03; t(11) = 3.65,
P < 0.002). In other words, the later recall period gave rise to
stronger category-related organization of responses during
memory search. Given that category clustering was greater
during FFR than during IFR, this suggests that the strength of
category-specific activity during recall was related to the
degree of category clustering. This proposed effect was
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observed for the scalp EEG experiment (as described above)
but was not statistically reliable in the ECoG/depth electrode
experiment (although there was a trend towards greater clas-
sifier performance during FFR in the parietal ROI).

As with our analyses of the study-period data, we examined
whether the category identity of neighboring items in the
recall sequence could influence classifier performance. In
order to account for this, we examined the period from 1500
to 500 ms before vocalization onset, which cannot be influ-
enced by adjacent recalls given the parameters of the wavelets
we used to measure oscillatory power, and the criteria used to
choose recall epochs. We averaged classifier performance
over this interval. Again, FFR classifier performance was sig-
nificantly greater than IFR classifier performance during this
critical interval (t(28) = 1.98, P < 0.03, 1-sided test). This in-
creased classifier performance for the FFR period was robust
to the training set used to train the classifier: The same effect
was observed when the classifier was trained on category-
specific patterns from the study period, and was then applied
to the IFR and FFR recall periods. Classifier performance was
greater for FFR (reactivation metric: mean 0.0130, SEM
0.0041) than IFR (mean 0.0029, SEM 0.0012); this difference
is significant (t(28) = 2.45, P < 0.05).

In FFR, significantly more same-category items are recalled
successively, and the category-specific patterns (as measured
by scalp EEG) are of higher fidelity than in IFR. This is in line
with the predictions of retrieved-context models, which
suggest that the retrieval cue will reliably be more category-
specific during periods of category clustering. Retrieved-
context models predict that we should also see variability in
the fidelity of category-specific patterns during IFR. We con-
firmed this in a final series of analyses.

During IFR, the strength of the category-specific patterns
measured by scalp EEG rise and fall as a function of whether
a participant is producing a cluster of same-category
responses or is transitioning from category to category
(Fig. 6B). Clustered items were classified with greater accu-
racy than isolated items (t(28) = 2.51, P < 0.05). To further
examine the influence of adjacent recalls on classifier per-
formance, we used a 2-way within-subjects analysis of var-
iance with category of the previous recall (same as the current

category or different) and category of the next recall (same or
different) as factors. The category of the previous recall is
important, as the classifier can better identify the category of
a middle or terminal item in a sequence of same-category
recalls, when compared with an initial or isolated item (F1,28
= 10.89, P < 0.005). To rule out effects of adjacent recalls on
our wavelet-based power measures, we examined the critical
time interval of 1500 to 500 ms before vocalization onset, and
found a significant difference between middle/terminal items
and isolated/initial items (t(28) = 2.82, P < 0.005, 1-sided test).
These results are consistent with retrieved-context models,
which propose that category-specific activity is integrated
over time during recall, and will therefore be stronger when
the previous recall was from the same category as the current
recall. Classifier performance was also greater for recalls in
the initial or middle position of a sequence of same-category
responses, when compared with isolated responses from a
given category, and terminal responses from a sequence of
same-category responses (F1,28 = 4.38, P < 0.05). In other
words, a recall associated with higher-fidelity category-
specific activity will tend to be followed by a recall from the
same category. This is consistent with the proposal that re-
trieved category-specific patterns are used to guide memory
search. The influences of category of the previous recall and
the category of the next recall did not interact (F1,28 < 1).

As with our study-period analyses, we ran a secondary
analysis to control for effects of training set imbalances.
Similar results were obtained when random sampling without
replacement was used to obtain a training set with an equal
number of epochs for each combination of category and
cluster position bin. Classifier performance was greater for
recalls preceded by an item of the same category (i.e., middle
and terminal items), compared with items preceded by a
recall of a different category (i.e., isolated and initial items;
F1,28 = 12.54, P < 0.005). Classifier performance was also sig-
nificantly greater for recalls that were followed by an item of
the same category (i.e., initial and middle items), compared
with items that were followed by an item of a different cat-
egory (i.e., isolated and terminal items; F1,28 = 8.86, P < 0.01).
There was no interaction between previous category and next
category (F1,28 = 2.87, P = 0.1).

Figure 6. Category-specific patterns of neural activity during recall. (A) In the scalp EEG experiment, fidelity of category-specific patterns (measured using cross-validation of
recall events) was greater during the final free recall period (FFR), which exhibited greater category clustering than the immediate free recall period (IFR). Error bars indicate 95%
confidence intervals corresponding to a 1-tailed t-test versus chance (0.33̄ ; indicated by the dotted line). (B) During IFR, classifier performance was significantly higher for
positions in the recall sequence where the previous item was from the same category as the current item (middle, terminal), when compared with positions in the recall
sequence where the previous item was from a different category (isolated, initial). Classifier performance was also greater when the next item was the same category (initial,
middle), compared with when the next item was a different category (isolated, terminal). Error bars indicate 95% confidence intervals corresponding to a one-tailed t-test versus
chance (0.33̄ ; indicated by the dotted line).
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Discussion

Category-specific topographic patterns of oscillatory activity,
recorded both at the scalp and intracranially, allow us to
examine how people create and search through the structures
of memory. Using pattern classification techniques, we
characterized the dynamics of category-specific activity
during both study and memory search, allowing us to relate
neural measures of oscillatory power to the strength of
attribute-based cognitive representations characterized by
retrieved-context models of human memory (Howard and
Kahana, 2002; Howard, 2004; Sederberg et al., 2008; Polyn
et al., 2009). The subsequent memory effect, in which sub-
sequently remembered items elicit a stronger neural response
in certain critical brain regions than subsequently forgotten
items (Paller and Wagner, 2002), is used by researchers to im-
plicate particular brain regions or neural signals in
memory-related processes. A recent neuroimaging study
showed that the strength of category-specific patterns elicited
during study predicted whether an item would be remem-
bered during a later paired-associates memory test, thus ex-
tending the subsequent memory effect to category-specific
patterns of neural activity (Kuhl et al., 2012). The current
results extend the Kuhl et al. finding from the domain of cued
recall to the domain of free recall. The self-directed nature of
this task allows us to examine the structures formed in
memory, by examining the order with which the participant
discovers the studied items during memory search. A recent
study by Long et al. (2010) found a region of ventrolateral
prefrontal cortex whose activity levels were sensitive to
whether an item would be subsequently clustered according
to its semantic category. Here, we examined category-specific
oscillatory responses to study and recall events using both
scalp EEG and ECoG/depth electrode recordings. Analysis of
the ECoG/depth electrode recordings revealed that category-
specific information was carried in many frequency bands,
and in widespread brain regions during both study and free
recall. In temporal lobe, the strength of these patterns during
study predicted whether an item would be subsequently re-
membered. However, it was the global category-specific
activity recorded with scalp EEG that provided evidence for
the critical predictions of retrieved-context models raised in
the introduction, regarding the relations between category-
specific oscillatory activity and category clustering. The large
scalp EEG dataset made it possible to investigate these predic-
tions; future work with intracranially implanted patients (with
more participants and an experimental design closer to the
scalp EEG experiment) will allow us to determine the anatom-
ical specificity of these effects.

Retrieved-context models of memory provide a framework
for interpreting the functional relevance of these category-
specific neural signals. These models describe memory search
in terms of the interactions between an item representation
and a contextual retrieval cue. Both of these representations
may contain category-specific information, but each is charac-
terized by distinct dynamics, raising the possibility of dis-
tinguishing between item-related and cue-related neural
signals. In these models, the item representation is a pattern
of activity that reflects the features or characteristics of the
item that is being studied or being recalled; different items
may be more or less prototypical members of a category de-
pending on whether this representation is dominated by

category-specific features or idiosyncratic item-specific fea-
tures. Items that are more prototypical would be better ident-
ified by the classifier, and would tend to be better targeted by
a category-specific retrieval cue; this account is consistent
with the subsequent clustering effect presented in Figure 5A.
The contextual representation integrates information from
each studied item to create a retrieval cue enabling the partici-
pant to later target the contents of the study list in memory. If
a participant integrated more category-specific information
into the retrieval cue, then this would aid the classifier in
identifying the category of the currently studied item, and
would also support clustering by category during memory
search. This scenario is consistent with the subsequent clus-
tering effect presented in Figure 5B and C. This distinction
between item and context representations may help us make
sense of the different results obtained when a classifier is
trained on a separate familiarization period versus the study
periods themselves.

When the classifier is trained on the familiarization period,
and tested on the study periods of the free-recall sessions, we
observe an item-level subsequent clustering effect, but a null
integration-based subsequent clustering effect; this is consist-
ent with the idea that familiarization-period training identifies
category-specific neural activity related to the item represen-
tation, but is relatively insensitive to cue-related neural
activity. One potential reason the familiarization period
would not provide a good characterization of cue-related cat-
egory information is that participants are told that their
memory for these items will not be tested; thus, if the con-
struction of a retrieval cue is an intentional act that accompa-
nies study, there is no demand for participants to engage this
process.

The item-level subsequent clustering analysis revealed
similar levels of classification performance for subsequently
forgotten items and subsequently isolated items. Low classifi-
cation performance for a particular item could be related to a
number of factors, and it is not clear that the same process is
responsible for the low classification performance on sub-
sequently forgotten and subsequently isolated items. If atten-
tional processes are not effectively engaged, the item will be
poorly encoded, which will lead to poor classification and
likely subsequent forgetting. Second, attention to idiosyncratic
item-specific characteristics of a particular item may cause an
item to be remembered, but without supporting category clus-
tering of that item. These item-specific characteristics would
not help a classifier determine which category the item was
drawn from.

When the classifier is trained on the study periods of the
free-recall sessions, and tested using a cross-validation pro-
cedure, we observe an integration-based subsequent cluster-
ing effect, but a null item-level subsequent clustering effect;
this is consistent with the idea that study-period training
identifies cue-related activity, but is less sensitive to item-level
neural activity. Participants who tended to organize their
memory search according to category showed a large increase
in classifier performance with successively presented same-
category items during study. This is consistent with a model
in which category-specific activity reflects a retrieval cue that
integrates category-related information from each studied
item. These integrative effects revealed themselves at the level
of participants (Fig. 5C) and at the level of individual lists,
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consistent with the idea that a highly category-specific retrie-
val cue will lead to category clustering for the entire list (and
not just for a particular item). Retrieved-context models
suggest that a classifier trained on the study period should be
sensitive to item-related activity in addition to cue-related
activity. However, integrative cue-related activity will be
related to recently presented items in addition to the current
item, and therefore this activity may obscure the item-level
clustering effect.

Although the results reported here are consistent with
retrieved-context models of memory, it is important to consider
whether certain aspects of these results could be related to stra-
tegic behaviors on the part of participants, such as rehearsal.
For example, participants might tend to covertly recall pre-
viously studied items as the list progresses. In this case, when
several same-category items are studied successively, we might
expect to see enhanced category-specific responses for the
later items in the sequence, as participants are more likely to
be covertly remembering the last few same-category items. In
this alternate explanation for the category integration presented
in Figure 5B, it is important to specify the mechanism by
which this rehearsal takes place; as Laming (2008) points out,
the process that generates rehearsals is likely the same process
that generates recalls. Retrieved-context models are powerful
enough to accomodate the possibility of covert retrievals
during study; the same retrieval cue that guides search during
free recall can be engaged during study. Future work combin-
ing computational modeling and pattern classification will be
important to determine the relative plausibility of these alter-
nate explanations of these results.

A second set of analyses revealed category-specific neural
activity during memory search in both the ECoG/depth elec-
trode and scalp EEG data-sets. Only a few studies have exam-
ined neural activity during free recall, using any
neurorecording modality (Polyn et al., 2005; Sederberg et al.,
2007; Gelbard-Sagiv et al., 2008; Long et al., 2010; Manning
et al., 2011; Polyn et al., 2012). Polyn et al. (2005) showed,
using fMRI, that brain-wide patterns of category-specific
activity were reactivated when participants searched memory
for studied material, and that the rise and fall of this category-
specific hemodynamic activity predicted the category identity
of recalled items. In the ECoG/depth electrode experiment,
we found evidence for reactivation of the same category-
specific oscillatory patterns characterized during the study
period. In the scalp EEG experiment, these reactivation
effects were reliable, but very weak. However, we found
strong category-specific patterns in the recall periods of the
scalp EEG experiment that did not match the patterns ob-
served during study. How these recall-period category-
specific patterns relate to those observed in the ECoG/depth
electrode experiment is a question for future work. The recall-
period category-specific patterns characterized with scalp
EEG showed dynamics consistent with retrieved-context
models of human memory. First, we found that these
category-specific patterns were increased in strength during a
final recall period characterized by strong category clustering,
as compared with an immediate recall period characterized
by more modest category clustering. Second, we found that
even during the immediate recall period, these category-
specific patterns increased in strength during periods of cat-
egory clustering, when compared with periods where the par-
ticipant was shifting between categories. These results are

consistent with the idea from retrieved-context models that
when an item is remembered, the retrieval cue integrates the
reactivated information. Thus, each time an item from a par-
ticular category is remembered, retrieved-context models
predict that the retrieval cue will become more category-
specific, in line with both of these observations. Furthermore,
we found that the strength of category-specific activity during
recall of an item predicted the category of the next recalled
item: Recalls associated with strong category-specific patterns
were more likely to be followed by a recall from the same cat-
egory, suggesting that this category-specific activity is used to
guide memory search.

As in the above discussion of rehearsal dynamics, future
work will be important to distinguish between alternate
models of the retrieval process. One particularly interesting
alternate model involves the possibility that the participant
simultaneously remembers multiple items, and then reports
these items as a cluster. This could account for the increase in
classifier performance between the isolated and initial
responses presented in Figure 6B, but would not explain the
further increase in classifier performance for middle cluster
positions. In a sense, the retrieved-context framework already
has the potential to explain such “multiple retrieval” events.
There are two types of retrieval events in this framework:
Item retrieval and context retrieval. In standard implemen-
tations of retrieved-context models, each item retrieval elicits
a context retrieval, which in turn elicits another item retrieval.
However, it is possible that one could use the same state of
context to elicit multiple item retrievals. In order to investigate
this possibility more rigorously, it is important that we
develop a better understanding of the neural correlates of
context and item retrievals.

In this study, we used retrieved-context models of human
memory as a framework to interpret the functional impor-
tance of various category-specific neural signals observed
during study and memory search. However, this work only
begins to tap the potential for computational modeling to
inform neural investigations. In a number of cognitive
domains, computational models are being used to bridge
between the neural signals recorded while a participant per-
forms a task and the behavioral measures characterizing that
performance (Ratcliff et al., 2009; Purcell et al., 2010; Polyn
et al., 2012; Davis et al., 2012). Polyn et al. (2012) used the
context maintenance and retrieval (CMR) model of memory
search (a retrieved-context model; Polyn et al. 2009) to inter-
pret task-specific patterns of hemodynamic activity recorded
as participants performed a free-recall task. They found that
the discriminability of task-specific patterns of neural activity
was related to the magnitude of the recency effect, and
showed that a particular model parameter controlling inte-
gration rate could be used to explain individual differences in
both the neural data (classifier performance in identifying
task identity of a studied item) and the behavioral data (the
tendency of the participant to initiate recall with the final
studied item). Applying the model more closely to the data
from the current study will allow us to better understand the
similarities and differences between task organization and cat-
egory organization. For example, in the current study, we did
not observe a reliable relationship between category discri-
minability and the recency effect. This may be due to differ-
ences in how task and category information are processed by
the neurocognitive system; task information represents a
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rapidly formed association between a study item and the cir-
cumstances in which it is encountered, whereas category
information represents longstanding semantic associations
between all of the members of a category. Computational
models such as CMR provide a common framework for under-
standing both how these different forms of information are
processed by the brain, and how they relate to the neural
measures recorded during study and free recall.
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