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Abstract

We address the problem of tracking in vivo muscle fascicle shape and length changes using
ultrasound video sequences. Quantifying fascicle behaviour is required to improve understanding
of the functional significance of a muscle’s geometric properties. Ultrasound imaging provides a
non-invasive means of capturing information on fascicle behaviour during dynamic movements, to
date however computational approaches to assess such images are limited. Our approach to the
problem is novel because we permit fascicles to take up non-linear shape configurations. We
achieve this using a Bayesian tracking framework that is: i) robust, conditioning shape estimates
on the entire history of image observations; and ii) flexible, enforcing only a very weak Gaussian
Process shape prior that requires fascicles to be locally smooth. The method allows us to track and
quantify fascicle behaviour in vivo during a range of movements, providing insight into dynamic
changes in muscle geometric properties which may be linked to patterns of activation and
intramuscular forces and pressures.
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[. Introduction

Skeletal muscles are highly organised structures composed of passive, elastic tissues (e.g.
tendon) and of tissues which, in response to signals from the central nervous system,
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actively contract and produce force. The active tissues are termed muscle fibres and within
the muscle they are grouped into small bundles, termed fascicles. When a muscle is
activated the length and orientation of the fibres, and hence fascicles, transiently changes.
Measuring these changes is of great interest to many in the biological fields of muscle
mechanics and motor control and informs current understanding of the mechanical
properties of skeletal muscle.

Muscle fascicles are visible within B-mode ultrasound images and this imaging modality has
been used to non-invasively quantify changes in fascicle geometry during completion of
different motor tasks. To date, many studies have involved manually labelling fascicle
shapes in collected images [1], [2], however, the process is slow and open to human bias and
error. For these reasons automated, computational approaches that make use of image
processing techniques have been sought. Many of these approaches, however, make strong
assumptions about the shape of the observed fascicles, in particular that they are straight [3],
[4], [5], [6]. Some mathematical models [7] and experimental studies [1], [2], [8], [9] have
indicated that fascicles may in fact curve. This has important implications for the accurate
calculation of the mechanical behaviour of the muscle (often investigated using measures of
fascicle strain and strain rate) and for understanding factors determining the mechanical
stability of a muscle [7]. It is therefore desirable to develop an automated approach without
strong shape constraints to permit accurate characterisation of dynamic changes in a
muscle’s geometric properties. To our knowledge, there are just a handful of automated
approaches that are (theoretically, if not always practically) able to detect and quantify non-
linear fascicle characteristics from ultrasound video sequences.

One approach, proposed by Cronin et al. [6], treats the fascicle region as a single (manually
defined) patch, allowed to undergo affine warps (i.e. deformations). In the first frame of a
sequence a fascicle is defined with a set of connected vertices lying within the patch. By
exposing these component vertices to the recovered warps between consecutive frames,
subsequent fascicle shapes are estimated. The reported work only considers length and
orientation of a straight fascicle, V=2 vertices. The authors note, however, that it may be
possible to account for curvature if fascicles are defined using NV > 2 vertices, leaving an
outstanding question of whether the class of affine transformations is sufficiently rich to
capture the movements of the fascicle region.

In contrast to modelling the fascicle region as a single deformable patch, other work has
broken the problem into one of small [10], distinctive [11] image patches that, during
tracking, are permitted to move with some level of [10] or complete [11] independence.
Again, such approaches could in theory be used to track curved fascicle configurations by
defining an initial fascicle with A/> 2 points and either assigning templates to vertices [10]
or interpolating the effect of template movement on vertices [11], however these procedures
are untested.

Namburete et al. [12] estimate instantaneous fascicle curvature measures from single
images. They first estimate local orientation across a (manually defined) fascicle region with
a wavelet analysis approach [4], before averaging orientations over larger image blocks, and
generating fascicle trajectories from a number of random seed points with Fibre Assignment
by Continuous Tracking [13], [14]. The authors do not show any individual fascicle
trajectories from real ultrasound data, but by calculating curvature measures from the
collection of resulting trajectories, they were able to map the local curvature in the fascicle
region and demonstrate its inhomogeneous nature. If applied to a video sequence the fascicle
configuration is estimated fully independently at every image, i.e. it is not a “tracker”,
meaning it will not accumulate tracking error, as [6], [10] and [11] may be prone to.
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However this also means it is not guaranteed to produce a smooth, anatomically plausible
evolution in fascicle shape.

In an effort to address the limitations of the currently available approaches, we propose a
fully automated approach that: i) provides an automatic segmentation of the fascicle region;
ii) describes the average shape configuration across the imaged region of fascicles, but does
not impose a global transformation constraint; iii) considers the movements of small feature
templates within the image, but avoids interpolating fascicle movements from them directly;
iv) explains fascicle structures within a particle-based Bayesian estimation framework,
making inferences based on the complete history of observations, rather than the current
observation in isolation. To achieve this we make the following specific contributions:

e Alow-dimensional curvy-fascicle shape space (/N dimensions for N/ vertices)
constructed from an active shape model (ASM) segmentation of the fascicle region
(Section 11-A), and suitable for exploration with low numbers of particles (Section
11-B).

« Asimple but effective observation likelihood for assigning particle weightings,
based on the agreement between each fascicle shape hypothesis and the current
vessel-enhanced ultrasound image (Section I1-C).

« A method for estimating suitable dynamical models for particle propagation from
the local movements of small image patches in training videos (Section 11-D).

» A weak Gaussian Process (GP) prior to constrain particle locations in the state
space, ensuring a wide range of plausible fascicle shapes, all of which are locally
smooth (Section II-E).

« A fully automatic initialisation procedure, capable of identifying fascicle shapes in
real images (Section I1-F).

« Evaluation on a range of synthetic and real B-mode ultrasound data with validation
against motion capture data and comparisons with currently available approaches
(Section 11-G).

[l. Methods

In this section we propose a generic method for fascicle tracking in skeletal muscle, defined
using ultrasound images of the medial gastrocnemius (MG), a commonly studied muscle at
the back of the lower leg which has a pennate fascicle architecture (obliquely orientated
fascicles), see Fig. 1. The method should also be applicable to other muscles, with similar
fascicle orientations.

A. Defining Fascicle Shape

To define fascicle characteristics within an ultrasound image, we construct a number of
longitudinal dividing lines, or dividers, stretching across the muscle region of interest. A
fascicle is then defined by a collection of offsets along each of these dividers, joined by
straight line segments. The more dividers that are used, the more accurate this piece-wise
linear approximation to a curved fascicle becomes. Automating this representation requires
the automatic identification of the fascicle region in each image, typically around 30% of a
542 x 409 image, see Fig. 1.

At each frame of an ultrasound sequence, we identify the fascicle region by segmenting the
deep and superficial aponeuroses using the active shape model (ASM) formulation, ASM*,
proposed in [11]. This produces a set of 76 segmentation points for every image with 38

defining each aponeurosis, see yellow lines in Fig. 2a. Straight dividing lines at the top and
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bottom of the muscle’s fascicle region are then calculated by least-squares fitting to the deep
side of the superficial aponeurosis and superficial side of the deep aponeuroses, respectively,
see green and red lines in Fig. 2a. A series of 2 further longitudinal dividing lines (white
lines in Fig. 2a), where nis odd, are then found by interpolating a vertical line of nequally
spaced points between the extreme distal and proximal points on each original divider, see
white circles in Fig. 2a.

Fig. 2b shows a fascicle shape at a time #defined by a collection of offsets from the centre of

the image, x1=(xt1, e xy)T along each of the /= r+2 dividers (magenta lines) and
connected by piece-wise linear segments (cyan lines). The displacement along the central
divider (see red square in Fig. 2a) is always fixed at 0, so that the fascicle remains stationary
relative to the centre of the fascicle region. We do not attempt to track the absolute
movements of individual fascicles as they translate across the fascicle region during a
movement, but instead try to track changes in the average shape of all fascicles that are
visible across the fascicle region. The reader may find it helpful to view the tracking results
in the supplementary videos for examples of how segmentations, dividers and fascicle
configurations change over time. For all experiments reported here A/=7 dividers.

B. Multiple Hypothesis Fascicle Tracking

We adopt a Bayesian multiple hypothesis approach to recover the changing fascicle shape,
X (see Section 11-A), during an ultrasound video sequence. A particle filter [16] is used to
propagate a discrete approximation to the posterior distribution over time t=0,1, ..., T
given the sequence of ultrasound image observations z, z, ..., Z7;

1
p (xelzo, z1, -+ ’Z'):E X p (zdlx1) kalp(xtlxz—l) wop(x-lzo 2,z dx—r. (1)

This approximation is maintained using a discrete set of Q= 100 weighted particles,

S={(E" ), (@)

where the gth particle (x(q) qu)) consists of a unique estimate of the fascicle configuration

' s
xﬁ") and an associated weight wj") approximating the likelihood of the image observation
given the fascicle shape, p(z4x)), see also Section 11-C. The particle set must be initialised
from an accurate shape configuration xg at time £ (see also Section II-F) and particles are
then propagated between images using a dynamical model p(xjx;;) that describes our prior
belief about how fascicle configurations change over time, see also Section 11-D. At any
subsequent instant in time we can evaluate the expected fascicle configuration from the
particle set using,

Q
E[x] :Zwil) X xgl). (3)
i=1

C. Observation Likelihood

For the observation likelihood p(z4x) in (1), we consider the relationship of the
hypothesised fascicle to a vessel enhanced image, V/, calculated from the ultrasound image
using the approach of Frangi et al. [15]. The result is an image where the value of each pixel
represents the maximum vesselness response across a number of different width scales, here
1,2, ..., 5 pixels. A typical result is shown in Fig. 2c.
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A fascicle hypothesis xﬁ‘f) is used to generate a dense fascicle grid that stretches right across
the visible fascicle region. This is done by repeatedly shifting the value of every divider
offset by a small, constant value, dp= 10 pixels, to generate a dense grid of neighbouring
fascicles. A final grid configuration is shown in Fig. 2d. If the resulting fascicle trajectories
coincide with those in the vessel image V'then, for the ith fascicle in the grid, we can expect
the vesselness responses along that fascicle to be constant. This zero-gradient assumption
holds whether the fascicle coincides with an actual fascicle vessel response (bright strand),
or with a gap between fascicles (dark strand). The only requirement is that all fascicles in the
grid must run parallel with real vessel structures in the image.

At any point in time the gth particle location x\?’ gives rise to a grid with a total of £’ fully,
or partially visible fascicles. From this grid we extract a dense set of sample points from
every fascicle in the grid for comparison with the vesselness map. This is done by
interpolating 10 equally spaced co-ordinates along each of the six linear connectors running

between dividers, resulting in a set of PEZ) < 60 sample points for the th fascicle. The red

dots in Fig. 2d show an example set for one fully visible fascicle (P53)=60). Finally, we
calculate the particle’s weighting using a sum of squared differences comparison with the
vessel image,

(@) ()
FI F[

wif=exp |3 A1 (P -1)| @
i=1 =1

where,

P(q.)

ﬁi?i(V(éff? P)-V(2p-1) ©

p=2

and { ,(? (P)} denotes the set of pixel coordinates for the collection of consecutive sample

points on the ith fascicle (indexed by p € [1, e ,Pffﬁ)]). Having calculated all Q particle

. . . @
weights, we normalise to give Eilwtq =1

D. Dynamical Model

The dynamical model p(x4x;—7) in (1), is used to move particles through the state space
between video frames. It must spread particles widely enough that even the fastest changes
in fascicle shape are accounted for. For this purpose we use the addition of Gaussian noise to
each particle’s location,

X~N (x-1, ). (6)

The challenge is to estimate suitable values for the variance in each dimension of the state
space, which make up the diagonal entries of the matrix . Furthermore, it must be possible
to straightforwardly generate this matrix for different values of A, the number of dividers
(and the state space dimensionality).

To identify suitable values for the matrix X for any given ultrasound sequence, we make
estimates of the largest shape changes that occur between consecutive images. To do this,
we use a KLT tracker to identify [17] and follow [18], [19] distinctively textured image
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patches in the ultrasound video using the parameters described by [11]. In every image we
segment all persisting KLT templates between a set of polygons constructed from the
dividers, see coloured segments in Fig. 2e, by associating each square KL T template with
the polygon that envelopes its centre-point. We then use the last recovered movement of
every template on each polygon to compute a mean drift component along each divider.
Having processed all available data we then select each diagonal element of > as the
maximum relative drift observed in the corresponding dimension of the data set.

E. Shape Constraints

During Bayesian filtering, particles are often exposed to some set of constraints after their
propagation, forcing them to lie in a particular subspace of the full state space, e.g. by
placing upper and lower limits on each degree of freedom of x;(e.g. [20]) or by learning a
latent space with dimensionality reduction (e.g. [21]). These constraints are useful because
they stop the inference process generating implausible hypotheses, but they are also
inflexible, having been learned from training data in an offline step, and usually only
applicable to one particular testing scenario. Here we take a different approach to
constraining the state space, basing displacement limits for each divider on the amount of
corresponding visual evidence available in the current observation. Large deformations are
only permitted where there is sufficient visual evidence to effectively evaluate them via the
observation likelihood (Section I1-C). This approach, inspired by importance sampling [22],
is valuable because in contrast to normal particle filtering [16], it gives consideration to the
most recent observation (z) during particle propagation. After a particle’s configuration has
been perturbed using the dynamical model in (6), the resulting collection of divider offsets
are revised based on the predictions of a Gaussian Process (GP) shape prior. This revision
takes place in order of increasing local image texture; that is — starting with the least
textured divider.

GPs are a valuable tool for non-linear regression that can be usefully thought of as providing
a probability distribution over functions. Given training data )4, ..., J, for a range of input
values X, ..., X, the aim is to fit a function to that data and to use it to make predictions
about the values of outputs given new inputs. A suitable function can be thought of as a very
long (but finite-dimensional) vector where each element contains the value f{x) for a
particular value of x[23]. Regression using GPs assumes a Gaussian distribution over all
“functions” that explain the training data; that is, the set of outputs relate to the elements of a
single vector sampled from an r-dimensional Gaussian. The nature of these functions is
determined by a covariance function from which we compute the values of the predictive
Gaussian’s covariance matrix. The form of the covariance function may be tailored to
provide results that satisfy prior beliefs about the function.

We use the number of KLT templates associated with each divider as an approximation to
the level of visual texture present across that segment of the fascicle region. KLT templates
provide a suitable approximation because they capture distinctively textured image patches
that are suitable for tracking [17]. In order of increasing texture, each divider offset is shifted
(if necessary) to lie within 3 standard deviations of the mean prediction of a GP conditioned
on the set of image coordinates, .4, of the remaining offsets. We use a GP consisting of a
linear mean function, the parameters of which are estimated from the set.#", and a radial
basis function (RBF) [23] as its covariance function?, enforcing a simple and very general
prior: that fascicles are locally smooth.

1The RBF kernel has two hyperparameters: a signal length scale y = 82 pixels and signal magnitude a = 28 pixels. We learn both
these parameters from training data, manually clicking clearly visible points along a single good example of a fascicle to give a set of
training data {/{x)} and then minimising the negative log marginal likelihood with respect to y and a.
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In real ultrasound images we have found that some dividers may, at times, have little or no
associated texture, resulting in few (or zero) KLT templates. An analysis across all our video
data reveals a lower quartile value of 5 templates per divider. During tracking we exclude
any dividers that score below this value on the current image from contributing to the
revision of other offsets. This is done by omitting these fextureless divider offsets from the
set of points upon which the GP’s predictions are conditioned, .4/, giving |-#1< N -1 and
then revising their locations conditioned on the newly revised locations of the textured
dividers. The effect is to ensure consistent fascicle shape across textureless portions of the
image by the interpolation and/or extrapolation of nearby textured divider offsets. The full
revision process is illustrated in Fig. 3. Figs. 3b-3f show a series of increasingly minor
revisions to offsets along increasingly textured dividers. Finally, Fig. 3g shows the revision
of a divider which is, at the depicted instant, classified as textureless (see black crosses in
Fig. 3a). Fig. 2f shows a full particle set that has been propagated using (6), constrained
using the GP described above, and weighted using (4).

F. Automatic Initialisation

Particle filters require initialisation with an accurate system state at the first frame, xp. To
find this first fascicle shape we use the proposed approach to repeatedly process the first
image in a sequence, z. We initialise with a vertical fascicle: all offsets equal to zero (x =
0), and apply 80 tracking iterations to the same image. With a sufficiently large noise
matrix, X, our tracker is able to get from this poor initialisation to a shape solution that
agrees well with the image, and that our synthetic experiments suggest has an error of just a
few pixels per divider (Section I11-A). The noise matrix entries were set to half the
maximum delta values found across our entire ultrasound dataset (Section 111-B). To allow
convergence on a single, accurate solution, we gradually reduce the magnitude of particle
propagations over time by halving the entries of = every 20 frames, in an annealing-inspired
strategy [24].

G. Alternative Techniques and Parameters

We compare the performance of the proposed algorithm with two other approaches that are
capable of tracking fascicle characteristics. The first is that of Cronin et al. [6] where we
make the extensions suggested in their final discussion by defining fascicles using a
collection of /=7 vertices running across the fascicle region (rather than A= 2 vertices for
straight line fascicles originally used). We also automate the provision of the fascicle region
segmentation, using the ASM* result (rather than a manual first frame procedure as in the
original work) enabling us to update the precise region where the approach attempts to
estimate the affine warp at every frame. The second is that of Darby et al. [11] where we use
N =T probes to capture fascicle characteristics.

[1l. Data Collection and Evaluation

A. Assessment using Synthetic Ultrasound Images

To allow for quantitative evaluation and cross-comparison between approaches, we
generated a number of synthetic B-mode videos showing challenging known curvature
conditions. B-mode image synthesis [25], [26] works by convolving a noisy model of
acoustic impedance (echogenicity) with the point spread function of a theoretical imaging
system to produce realistic ultrasound images. Just as with the output of real ultrasound
machines, resulting images feature multiplicative noise and — in contrast to previous fascicle
simulations (e.g. [12]) — are log-compressed.

To make use of these techniques we must supply information about the echogenicity of the
structures within the image, and a small number of constant parameters used in the
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calculation of the point spread function2. The simplest approach is to characterise fascicles
with alternating dark (low echogenicity) and bright (high echogenicity) bands before adding
noise, e.g. [4], [12]. Here we attempt to increase the challenge provided by such data by
additionally considering changes in echogenicity along each individual fascicle.

To synthesise echogenicity maps we take a series of 750 consecutive ASM* segmentations
[11] from images of a real subject’s lower leg, and use them to compute the set of dividers
(as described in Section 11-A) at each instant. We then generate a simple “driving”
polynomial function (linear, quadratic and cubic are tested), the coefficients of which
change gradually over time, but that always passes through the centre-point of the central
divider. By calculating the points of intersection between this function and the remaining
dividers, we get a changing ground truth fascicle shape from which we generate dense
fascicle grids as described in Section 11-C with dp= 15 pixels. By drawing out every fascicle
in this grid (with a randomly chosen width of between 1 and 4 pixels) to a single image, we
generate a single echogenicity map.

To generate echogenicity textures for individual fascicles in the grid we sample from two
simple empirical models of fascicle echogenicity. We have observed that the vessel
structures visible in the fascicle regions of real B-mode images can be broadly divided
between two groups: predominantly light-coloured strands, interrupted by dark-coloured
segments; and predominantly dark-coloured strands, interrupted by light-coloured segments.
To represent these two classes in our synthetic echogenicity maps, we draw each fascicle as
a collection of individual segments, the length and impedance of which are sampled from
the range-limited Gaussian distributions given in Table I. A final result for the quadratic
driving function is shown in Fig. 4a. These echogenicity maps are then convolved with the
point spread function to create synthetic ultrasound images (Fig. 4b). In each synthetic
tracking scenario both baselines (Section I1-G) were initialised with the ground truth fascicle
shape at fy, while the proposed scheme was initialised using the automatic procedure
described in Section I1-F. Accuracy scores for this automatic procedure are shown in Table
I1. The noise matrix X (see Section I1-D) was estimated from the synthetic sequence being
tracked.

In contrast to the two baselines the proposed approach is designed to estimate average
fascicle shape changes regardless of global fascicle movements. I.e. it should produce the
same result even if fascicles move at the same time as undergoing shape changes. To test
this claim we apply the proposed approach to a second synthetic condition in each of the
three scenarios (linear, quadratic, cubic) where fascicles additionally undergo longitudinal
translations (at a rate of 25 pix/sec) at the same time as their shape deformations. We
encourage the reader to view this data in the supplementary videos.

B. Assessment using Real Ultrasound Images

Ultrasound image sequences (Aloka ProSound-5000) were collected from MG on the left
leg of 11 participants (10 male, mean+SD: Height 182.4+9.4cm; Weight: 79.5+£13.8kg)
during: i) a series of heel raises, which involved rising onto tip toes and back down; ii)
walking on the spot and iii) cycling on a stationary cycle ergometer (130W power, cadence:
40 rpm). All participants provided written informed consent and all procedures were
approved by the local ethics committee.

The ultrasound probe (linear, 7.5MHz, 50mm field of view) was placed over the mid-belly
region of MG along the medio-lateral mid-line of the muscle, aligned to the fascicle plane. It

2\We use the settings: centre frequency of ultrasound wave ) =7.5 x 106Hz; velocity of sound in tissue ¢= 1540ms™L; pulse width of
wave gy = 0.5m; beam width of wave gy, = 0.5m; speckle variance 2 =0.01.
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was secured with a custom made foam holder with Velcro strapping. Kinematics of the foot,
lower leg and thigh segments were recorded using motion capture (100Hz, 10 camera VI-
CON Motion Capture, Oxford, UK), with markers placed over the toe (2nd metatarsal head);
heel (calcaneous at same height as the toe marker); ankle (lateral malleolus); tibia; knee
(lateral epicondyle); thigh; pelvis (anterior and posterior superior iliac spines) of both legs.
In one participant, activation of MG was recorded using surface electromyography (1000Hz,
Trigno™ Wireless, Delsys, Boston, USA), with the electrode placed adjacent to the centre
of the ultrasound probe. Synchronous data collection was co-ordinated using custom written
MATLAB code, generating a common trigger signal to initiate motion capture and
ultrasound image capture (25Hz, via DT3120 PCI frame grabber, Data Translations,
Germany).

In order to focus on the accuracy of fascicle tracking, we processed these sequences as
known subjects. This meant we included a sequence of specifically recorded images from
the test subject (performing a different action) in the training set for ASM* in order to find
good segmentations, and we also estimated the noise matrix > (see Section 11-D) from the
same sequence being tracked. For those interested in an unknown subject scenario, [11]
gives details on segmentation techniques, and a sufficiently large noise matrix can be found
by processing sequences from other subjects, although it may require more particles if very
large. The proposed approach and both baselines were initialised with the same fascicle
shape, found with the automatic procedure in Section 11-F.

C. Fascicle Shape Evaluation

Tracking using both the proposed approach and the existing alternatives [6], [11] generates a
relatively sparse set of /=7 points; see for example the blue asterisks in Fig. 5a. To
evaluate and compare the different approaches we use these points to calculate a dense
interpolant from which we can compute measures such as local curvature (see below) at
every vertical pixel coordinate on the fascicle region. The interpolant is taken as the mean
prediction of the GP defined in Section II-E, conditioned on the /=7 tracking points (see
green circles and blue asterisks in Fig. 5b). The use of a GP avoids the need to make any
assumptions about the nature of the fascicle trajectory (e.g. that it is a polynomial [9])
beyond that it is locally smooth.

1) Synthetic Data—In the case of the synthetic ultrasound data we also know the ground
truth fascicle shape, see for example the red line in Fig. 5a. This allows us to compute a
number of quantitative error measures between the ground truth and the dense interpolant
(red and green in Fig. 5b, respectively). First, we calculate absolute horizontal offset errors
between the true and tracked fascicle, yellow region in Fig. 5b. These are the absolute
horizontal distances in pixels between the true and tracked fascicle at all vertical pixel
locations. Second, we calculate local curvature errors, yellow region in Fig. 5¢. Following
Stark and Schilling [9] we calculate local fascicle curvature measures using the Frenet-
Serret formula. For a curve defined by a collection of xand y coordinates, {x, X, ..., Xp}
and {J1, ), ..., ¥p, the curvature at the gth point is given by

Xy, — vl

(x/2+ ,2)3/2 (M)

ptVp

Kp

where the primes denote local first and second order derivatives. We also multiply by the
sign of the second derivative to give a signedlocal curvature [12]. Finally, we calculate the
total length error between the true and tracked fascicle, yellow region in Fig. 5c.
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2) Real Data—For real ultrasound data there is no ground truth fascicle with which to
compare. Instead we must extract measures relating to the tracked fascicle shape for
comparison against the synchronised laboratory measurements described in Section 111-B.
Following [6] we calculate the total length of the dense interpolant and following [12] we
calculate the RMS of all local curvatures as a single scalar measure of “curvyness”,

— 4 2 . . .
Kens = \/Z,J: 1Xp. Whereas for synthetic data we report local curvature errors in units of
pixels™, we report RMS curvatures for real data in units of m=1 to allow easy comparison
with previous studies. One pixel in our real ultrasound images is equal to 0.155mm.

IV. Experimental Results

A. Analysis of Synthetic Data

Average errors for synthetic fascicle shape changes are given in Table Ill. The proposed
approach gives consistently low horizontal offset errors for all three shape conditions (linear,
quadratic and cubic), deforming to give an accurate approximation to the ground truth
fascicle at all times. This remains the case when fascicles are allowed to translate in addition
to changing shape (bracketed scores in the “proposed” columns). The approach of Cronin et
al. [6] outperforms the proposed approach for the linear case, producing lower horizontal
offset and length errors, and very low local curvature errors. For the quadratic and cubic
cases, however, the changing fascicle shape is not tracked and the initialising fascicle
remains almost stationary. The approach of Darby et al. [11] gives reasonable
approximations to fascicle shape in the two non-linear cases (e.g. lower local curvature
errors for the cubic case), but individual probes tend to drift over time causing high fascicle
length errors. The supplementary videos show tracking results for all three algorithms on all
conditions.

B. Analysis of Real Data

An example of mean fascicle lengths and RMS curvatures predicted in one participant by
each of the tested approaches is shown in Fig. 6. Fascicle lengths predicted by the proposed
approach oscillate around 60mm as heel height changes. In contrast, length changes
predicted by the other approaches [6], [11] do not vary greatly within each movement cycle,
but do vary between conditions. This is most evident in the results of the Cronin et al. [6]
approach, where lengths during walking-on-the-spot are ~ 40mm, while during cycling they
are nearly three times longer (~ 120mm). Curvatures predicted by the proposed approach
vary within movement cycles. In contrast, curvatures predicted using [11] are not
physiologically realistic, while those predicted using [6] are large during walking-on-the-
spot and minimal during cycling and heel raises.

Mean fascicle lengths and RMS curvatures, calculated using the proposed approach in one
participant are shown in Fig. 7. Again clear, cyclical patterns of length change are apparent.
These data include measures of muscle activation and show that during heel raise and
cycling activity there is a clear relationship between peak activation and curvature and
minimum fascicle length. Walking-on-the-spot had the lowest level of activation and the
smallest curvatures. Mean minimum and maximum length and RMS curvature values
predicted across the sample population are shown in Fig. 8. One-way ANOVA (performed
on log transformed data where conditions of equal variance were not met) revealed both
length and curvature values predicted by the proposed approach differed significantly within
each task (length: p< 0.005; curvature: p< 0.001). Curvature values predicted using [11]
also differed significantly within tasks (p < 0.017) but were unrealistically high. There were
no significant differences in the minimum and maximum curvatures predicted using [6] (p =
0.159) or in the minimum and maximum lengths predicted using [11] (p = 0.092) or [6] (v =
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0.134). Co-efficient of variation values, calculated from data shown in Fig. 8, were lower for
length values predicted by the proposed approach (mean: 21.52% range: 19.59-26.14%)
compared to [11] (mean: 42.46% range: 28.80-57.29%) or [6] (mean: 38.30% range:
30.07-50.30%). Much larger variations occurred in the curvature data, with the proposed
approach producing the lowest values (mean: 61.20% range: 40.80-80.22%) compared to
[11] (mean: 54.89% range: 37.29-92.88%) and [6] (mean: 130.69% range: 89.18-178.52%).
The supplementary videos show example tracking results for each activity.

V. Discussion

A. Performance of the Assessed Approaches

Results on synthetic data show that for straight fascicle shapes the proposed approach
performed well, but that of Cronin et al. [6] was marginally better. However, when fascicle
shape deformations become non-linear the proposed approach is able to maintain good
tracking accuracy where the alternatives cannot, see Table Il and supplementary videos.
The assumption of [6], that all fascicle deformations can be described through a series of
global transformations between consecutive image pairs, places a restriction on the nature of
deformations that can be tracked: it must be possible to reformulate deformations as global
affine warps of the entire fascicle region. Where this assumption holds true, e.g. see the
linear case in Table 111, the restriction usefully constrains changes in fascicle shape and the
approach performs well (any affine warp of a straight line is also a straight line). Where this
assumption doesn’t hold, e.g. quadratic and cubic examples in Table 111, the approach can
not describe the observed shape changes and tracking fails. The contrasting assumption of
[11], that deformations in the fascicle region can be safely approximated through the
collective movements of local feature patches between consecutive images, imposes no
restrictions on possible deformations. However, without any overarching shape constraints
this approach is unable to protect against the disturbance of individual fascicle vertices by
isolated errors in patch movement estimation, leading to kinks in the tracked fascicle and
high length/curvature errors. In future work, the approach may benefit from a post-
processing step to identify “wandering” probes, as in [10].

Even with such a change, small errors in the estimation of frame-to-frame shape changes by
the baseline algorithms [6], [11] remain problematic because they are accumulated, causing
tracking to degrade over time. In contrast, the proposed approach attempts to account for the
visible fascicle structure in every individual image, allowing it to recover from small
tracking errors. This difference is well illustrated by the ability of the proposed approach to
initialise itself from a (very poor) vertical fascicle configuration, given only a single image,
see Table Il and supplementary video. Both [6] and [11] will remain precisely stationary in
the same scenario as they have no mechanism to compare fascicle shape against image
structure and adjust accordingly. Further, the search for suitable fascicle shapes is made
within a Bayesian framework and conditioned on all previous images, not only the latest.
This mitigates the effects of single noisy observations and produces a smooth, plausible
evolution in fascicle shape. An alternative is to process each video image in isolation using a
discriminative approach (such as [12] or that in Section 1I-F), but without any model of
temporal dynamics the results may be noisier.

Analysis of the real ultrasound data further highlighted the influence of the underlying
assumptions in each approach. The proposed method, requiring only that fascicles be locally
smooth, was able to consistently identify clear cyclical length and curvature changes (Figs. 6
and 7) which are in agreement with previously reported values (e.g. [27], [2]). In addition,
consistent and significant differences in minimum and maximum values in each condition
across the group of participants were identified. The same was not apparent for the other
approaches assessed. The unconstrained shape predictions resulting from [11] allowed
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isolated probes to drift, leading to unrealistic predictions of curvature much higher than has
previously been reported (5-16m~2, [12], [2]). Predicted fascicle lengths did not reflect
cyclical changes which would occur in all movements studied (Figs. 6 and 7) and had a
tendency to be longer than previously reported. In contrast, the methods described by Cronin
et al. [6], constrained to describe movements through a single global transformation, tended
to lose track before becoming “stuck” in an incorrect configuration. This is shown in Fig. 6,
where very different fascicle lengths were predicted for each of the conditions studied and
changes across the movement cycle were not captured. It is also reflected in the high co-
efficient of variation values found across the data set (Fig. 8). This failure may, in part, be
due to non-affine shape changes in the real data, e.g. where fascicles repeatedly move
between straight and curved configurations (see supplementary videos). The original
implementation and description of [6] enables manual adjustment of individual tracking
points, allowing the operator to correct any perceived errors. Cronin et al. [6] reported this
occurred in 6% of trials studied and more commonly during higher speed movements.
However, to capture fascicle shape it is necessary to include AV/> 2 vertices, increasing the
potential number of points to be adjusted and significantly increasing demands placed on the
experimenter and the potential for the introduction of bias.

B. Implications for in vivo assessment of fascicle shape

The proposed methodology for fascicle tracking provides the first fully automated approach
which has no strong assumptions on fascicle shape. Implementing automated image
segmentation to identify the fascicle region and automated initialisation of fascicle
characteristics provides a significant opportunity to improve the size and robustness of
studies of in vivo fascicle dynamics by reducing operator time requirements and potential
for the introduction of bias. Combined with the ability to simultaneously track fascicle
length and curvature we believe this method provides a novel means of investigating, in an
unbiased manner, dynamic changes in fascicle geometry which occur to meet different
mechanical demands. Differences between, and if different non-overlapping regions of a
muscle are scanned, within muscles can now be investigated and a greater level of detail
resolved through the facility to quantify local curvature changes along the length of the
tracked fascicle. Such work will have important implications for understanding the
functional significance of muscle structure, intramuscular pressure distribution and force
transmission.

For robust application of the proposed approach it must be noted that the predicted fascicle
characteristics are a representation of the mean values within the fascicle region of interest.
As such, tracking will be less robust in situations where fascicle characteristics are highly
variable within the field of view or where the movement studied will lead to translation of
significantly differently shaped fascicles into the field of view. The characterisation of a
mean fascicle also means that previously established approaches such as [10], [11] are more
suitable for studying individual fascicles or small localised muscle movements. As such it is
still important to select the appropriate method of image analysis to address the experimental
question at hand.

VI. Conclusions

The proposed method aims to overcome the weaknesses of existing fascicle tracking
approaches, reviewed in Section I, whilst retaining their strengths. Our work has resulted in
a flexible fascicle tracker able to describe a very wide range of deformations (e.g. that may
simultaneously include strong negative and positive local curvature, as reported in [12]) that
need not be describable in terms of global transformations [6]. By making the search for
such solutions within a Bayesian framework we also benefit from a smoothly evolving
fascicle shape that is conditioned on the entire history of observations, rather than being
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susceptible to drift from isolated errors in movement estimation [11], or the potential
jerkiness of isolated estimation at each frame. The work therefore provides a novel tool with
which the functional significance of skeletal muscle geometric properties, across a range of
dynamic motor tasks, may be explored in vivo. Processing times are currently between 6-8
seconds per frame (in MATLAB), but the approach is sequential making real time
implementation for biofeedback experiments a future possibility.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Example image from the medial gastrocnemius (MG) muscle at the back of the lower leg.
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Fig. 2.

B-mode ultrasound images of the gastrocnemius muscle (MG) in the lower leg: (a) ASM*
[11] allows for a fully automatic definition of the fascicle region and calculation of V=7
longitudinal dividers; (b) A fascicle configuration defined by 7 divider offsets (magenta),
connected by straight line segments (cyan); (c) Result of applying a vessel enhancement
filter [15] to the B-mode image; (d) A dense fascicle grid derived from the fascicle shape

hypothesis, the set of Pﬁf’i)=60 samples for a single fascicle have been highlighted (red dots);
(e) KLT tracks are associated with different dividers (coloured segments) for dynamical
model and texture estimation (B-mode image removed for clarity); (f) Expected fascicle
shape (cyan) superimposed over a set of Q= 100 hypotheses, coloured proportional to
weighting (yellow - 0, red - 1).
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Example of Gaussian Process (GP) shape constraints being applied to a single particle after
its dispersion by the dynamical model p(x4{x-1): (2) Box and whisker plot showing the
texture statistics for each divider across a 1000-frame cycling sequence with the minimum
texture threshold, dividing fextured and textureless dividers, depicted by a solid red line. The
individual texture scores for the current image z;are highlighted by black crosses. Textured
dividers are shown with numeric labels giving their rank (low-to-high texture) and the order
in which they are revised; (b-f) Original offsets (red crosses) are constrained (cyan crosses)
to lie within three standard deviations of the mean prediction of a GP conditioned on the
remaining textured divider offsets (gray shading); (g) Finally, textureless dividers are
revised conditioned on the newly revised textured divider offsets; (h) Original (red) and
revised fascicle (cyan).
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Fig. 4.

Synthetic B-mode ultrasound data for quadratic fascicle shape deformations: (a)
Echogenicity map used to generate a single image; (b) Resulting synthetic B-mode image;
(c) Resulting vessel enhancement image [15]. The synthetic image generates a similar
number of “good” tracking features to the numbers reported by [11] for real images of the
MG and produces more realistic “broken” vessel responses (see also Fig. 2¢ for comparison
with real data).
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Synthetic data evaluation: (a) a poor tracking result (selected for clarity of comparison) with
ground truth fascicle shape (red) and tracked fascicle (blue); errors between the true and
tracked fascicle for (b) horizontal offset; (c) signed curvature; (d) segment length.
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Fig. 6.

Example fascicle length (top panel) and RMS curvature (bottom panel) results for each
movement task within one representative participant, predicted by: Proposed approach (left
column); Darby et al. [11] (central column); Cronin et al. [6] (right column). In each graph
movements are distinguished by different hue/shape combinations: Heel raise (dark,
diamonds); walking on the spot (mid-colour, squares); cycling (light, stars).
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Fig. 7.

Results from assessment of: heel raises (left column), walking-on-the-spot (middle column)
and cycling (right column) in one participant. Top panel: Mean+SEM fascicle lengths and
RMS curvatures predicted from the proposed approach; Bottom Panel: Mean+SEM
activation and marker height measures. Mean and SEM values were calculated from data
partitioned into individual movement cycles, based on heel marker position, and normalised
to 100 percent cycle duration. Solid(broken) lines represent mean(SEM) values. Activation
values are the average rectified value of the raw signal, calculated using a 0.25ms time
window. The cycling sequence is available in the supplementary videos.
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Fig. 8.

Box and whisker plots of minimum and maximum (top) length and (bottom) RMS curvature
values for the three motor tasks, predicted by: Proposed approach (left column); Darby et al.
[11] (middle column); Cronin et al. [6] (right column). Values were calculated from length
and curvature measures partitioned into individual movement cycles on the basis of heel
marker movement. In all plots the bold central bar represents the median value, bottom and
top of the box represent 25th and 75th percentiles respectively and whiskers represent the
minimum and maximum values (less outliers, shown as individual points). * indicates
significant differences (o < 0.05) between minimum and maximum values, determined using
One-way ANOVA, N=11.
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TABLE |

Fascicle appearance: Gaussian distribution parameters.

Segment v} ¢ | min | max
Short (% of fascicle) 0 8 0 100
Long (% of fascicle) 20 8 0 100

Low Echogenicity (grayscale) | 20 | 11 | 20 255

High Echogenicity (grayscale) | 255 | 43 20 255
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Darby et al.

Initialisation errors: synthetic data (pixels/divider).

Linear

Quadratic

Cubic

3.50

2.52

5.25
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TABLE Il

Synthetic data performance: three significant figures, best scores in bold.

Horizontal Offset Errors (pix)

Length Errors (pix)

Local Curvature Errors (pix 1)

Proposed [11] [6] Proposed [11] | [6] Proposed [11] [6]
Linear 1.60 (1.74) 9.31 1.27 2.41(2.82) | 185 | 1.45 | 0.000777 (0.000636) | 0.0116 | 0.000328
Quadratic | 1.33(1.24) 5.28 6.77 1.85(1.79) | 5.89 | 10.1 | 0.00153 (0.00140) 0.0108 | 0.00742
Cubic 1.97 (2.13) 9.02 8.52 5.94 (6.55) | 25.2 | 16.9 | 0.00170 (0.00183) 0.0108 | 0.0134
Average 1.63 (1.70) 7.87 5.52 3.40(3.72) | 16.5 | 9.50 | 0.00134 (0.00129) 0.0110 | 0.00703
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