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Abstract

The nickel-catalyzed Suzuki–Miyaura coupling of aryl halides and phenol-derived substrates with
aryl boronic acids using green solvents, such as 2-Me-THF and t-amyl alcohol, is reported. This
methodology employs the commercially available and air-stable pre-catalyst NiCl2(PCy3)2 and
gives biaryl products in synthetically useful to excellent yields. Using this protocol,
bis(heterocyclic) frameworks can be assembled efficiently.

Transition metal-catalyzed cross-coupling reactions are widely used in the pharmaceutical
industry in both medicinal chemistry and drug manufacturing.1 Although the use of Pd
catalysis is most common, complementary approaches are highly sought after. Specifically,
cost effective catalyst systems that allow for unconventional couplings to take place
smoothly are of great value. Additionally, the ability to efficiently carry out cross-coupling
reactions in more environmentally friendly solvents2,3 remains an important goal of green
chemistry research.4 It should be noted that organic solvents comprise up to 85% of the
waste produced from a drug synthesis.5

Recently, the field of nickel-catalyzed cross-coupling reactions has gained considerable
attention. The low cost and high reactivity of nickel is attractive, and a range of substrates
has been shown to undergo nickel-catalyzed carbon–carbon and carbon–heteroatom bond
forming reactions, including halides6 and a variety of oxygen-based electrophiles (e.g., aryl-
esters,7 -ethers,8 -carbamates,9 -sulfamates10,11).12 Considering the promise of nickel-
catalyzed couplings and the need to make industrial processes more environmentally
friendly, we explored coupling reactions in green solvents. Herein, we demonstrate that a
range of substrates, including heterocycles, participate in the nickel-catalyzed Suzuki–
Miyaura coupling in solvents that are attractive for industrial applications (Figure 1).

We initiated our efforts by examining the cross-coupling of naphthyl sulfamate 1 and
phenylboronic acid (2) using the commercially available NiCl2(PCy3)2 precatalyst (Table 1).
Although solvents such as 1,4-dioxane and N-methyl-2-pyrrolidone (NMP), which have
been deemed as enviromentally unfriendly solvents,2 are commonly used in nickel-catalyzed
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cross-couplings, we were delighted to find that many other solvents may be employed in the
coupling to give biaryl 3. Of the >30 solvents that were surveyed, more than half gave
quantititative yields of 3, while many others also showed promise.13 A subset of our
findings are summarized in Table 1. The solvent used in our previous studies,7,9 toluene,
gave biaryl 3 in quantitative yield (entry 1). Acetone, ethyl acetate, and isopropyl acetate
(entries 2–4, respectively) also gave product in comparable yields. Alcohol solvents were
also examined. Whereas the use of n-BuOH proved ineffective (entry 5), t-amyl alcohol was
found to be an excellent solvent for the cross-coupling (entry 6). Ethereal solvents also
provided biaryl 3 in quantitative yield (entries 7–8). Mixed results were observed for highly
coordinating solvents; for example, the use of DMSO was unsuccessful (entry 9), but the use
of acetonitrile led to the desired coupling. Although many solvents could be employed, we
opted to pursue t-amyl alcohol and 2-Me-THF (entries 6 and 8, respectively) for further
studies.2,14

With promising results in hand, we tested the analogous cross-coupling of several other
electrophilic partners (Table 2). In addition to the naphthyl sulfamate (entry 1), the
corresponding carbamate15 and pivalate ester were deemed competent substrates (entries 2–
3). Furthermore, sulfonate derivatives of 1-naphthol also gave high yields of coupled
product (entries 4–6). Moreover, the use of 1-naphthyl chloride, bromide, and iodide each
delivered the desired product under our optimized conditions (entries 7–9, respectively).

An array of heterocyclic aryl halide substrates underwent the desired cross-coupling with
aryl boronic acids in t-amyl alcohol and 2-Me-THF (Figure 2). Nitrogen-containing
heterocycles such as indole and pyridine were tolerated to give products 4–6, respectively.
3-Bromofuran also underwent the desired coupling to give cross-coupled product 7. In
addition, the methodology was found to be tolerant of substrates that contain multiple
heteroatoms, as demonstrated by the formation of products 8–10.

As shown in Figure 3, heterocyclic phenol-derived electrophiles participate in the Suzuki–
Miyaura coupling in green solvents.16 Both the carbamate and ester derivatives of 2-
hydroxy-N-Me-carbazole coupled smoothly with phenyl boronic acid to give 11 in good
yields. Quinoline, isoquinoline, and pyridine derivatives were also tolerated, as
demonstrated by the formation of 12, 13, and 6, respectively. Dihydrobenzofuran- and
pyrazole-based sulfamate substrates gave excellent yields of products 14 and 15,
respectively.

We also tested our cross-coupling procedure for the assembly of bis(heterocyclic) scaffolds
(Figure 4), which are prevalent in numerous drugs and natural products, but are sometimes
difficult to access using Pd-catalyzed methods.17 3-Cl-Pyridine readily underwent coupling
with pyridyl-,18 furyl-, and thiophenyl-boronic acid derivatives to provide bis(heterocyclic)
compounds 16–18. Likewise, 5-Br-pyrimidine was coupled to deliver compounds 19–21.19

The mesylate derived from 5-hydroxyisoquinoline also underwent facile coupling, thus
affording 22–24 in excellent yields. Additionally, the coupling of a benzofuranyl sulfamate
was explored to give bis(heterocycles) 25 and 26.20 We also tested the coupling of a
pyrazole derived sulfamate with 3-furanyl boronic acid, which afforded 27 in moderate
yield. Our methodology complements the recently disclosed Nicatalyzed cross-couplings to
form bis(heterocycles) reported by Hartwig.6e

The nickel-catalyzed Suzuki–Miyaura coupling shows promise for the assembly of
bis(heterocyclic) frameworks on preparative scale (Figure 5).21 Using 1 mol% Ni catalyst,
isoquinoline 28 was coupled with pyridylboronic acid 29 to provide adduct 22 in quantitive
yield on gram scale. Additionally, bromopyrimidine 30 underwent Nicatalyzed cross-
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coupling with furanylboronic acid 31 using 0.5 mol% catalyst. This transformation, which
was performed on 5 g scale, delivered 20 in 97% yield.

In summary, we have demonstrated the efficient Nicatalyzed Suzuki–Miyaura cross-
coupling of aryl halides and phenolic derivatives in green solvents. The scope of these
reactions is broad with respect to both coupling partners and heterocycles are well-tolerated.
Additionally, the potential for these couplings to be performed on preparative scale has been
demonstrated by the gram scale assembly of bis(heterocycles) using low catalyst loadings
(i.e., 0.5–1 mol% Ni). Given the appeal of Ni catalysis and the favorable green solvents that
may be employed, we expect the methodology presented will find utility in academic and
industrial applications.
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Figure 1.
Suzuki–Miyaura cross-coupling of aryl halides and phenol derivatives in green solvents.
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Figure 2.
Coupling of heterocyclic halides with aryl boronic acids.a,b
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Figure 3.
Coupling of heterocyclic phenolic derivatives with aryl boronic acids.a,b
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Figure 4.
Coupling of heterocyclic substrates with heterocyclic aryl boronic acids.a,b
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Figure 5.
Gram scale couplings.a,b
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Table 1

Survey of solvents in the Suzuki–Miyaura coupling.
a

entry solvent, temp yield
b entry solvent, temp yield

b

1 toluene, 110 °C 100% 6 t-amyl alcohol, 100 °C 100%

2 acetone, 75 °C 96% 7 MTBE, 80 °C 100%

3 EtOAc, 100 °C 100% 8 2-Me-THF, 80 °C 100%

4 i-PrOAc, 110 °C 100% 9 DMSO, 110 °C 0%

5 n-BuOH, 110 °C 0% 10 acetonitrile, 100 °C 99%

a
Conditions: NiCl2(PCy3)2 complex (5 mol %), sulfamate substrate 1 (1.00 equiv), 2 (2.50 equiv), K3PO4 (4.50 equiv), hexamethylbenzene (0.10

equiv), 12 h.

b
Yield of 3 determined by 1H NMR analysis of crude reaction mixtures using hexamethylbenzene as an internal standard.
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Table 2

Survey of cross-coupling partners.
a

entry X yield (t-amyl alcohol)
b

yield (2-Me-THF)
b,c

1 OSO2NMe2 100 100

2 OCONEt2 57 50

3 OPiv 94 100

4 OMs 97 95

5 OTs 100 98

6 OTf 100 100

7 Cl 100 94

8 Br 97 92

9 I 100 97

a
Conditions: NiCl2(PCy3)2 complex (5 mol %), substrate (1.00 equiv), 2 (2.50 equiv), K3PO4 (4.50 equiv), hexamethylbenzene (0.10 equiv), 100

°C, 12 h.

b
Yield of 3 determined by 1H NMR analysis of the crude reaction mixtures using hexamethylbenzene as an internal standard.

c
66 °C
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