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The evolution of genetic architectures
underlying quantitative traits

Etienne Rajon and Joshua B. Plotkin

Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA

In the classic view introduced by R. A. Fisher, a quantitative trait is encoded

by many loci with small, additive effects. Recent advances in quantitative

trait loci mapping have begun to elucidate the genetic architectures underlying

vast numbers of phenotypes across diverse taxa, producing observations

that sometimes contrast with Fisher’s blueprint. Despite these considerable

empirical efforts to map the genetic determinants of traits, it remains poorly

understood how the genetic architecture of a trait should evolve, or how it

depends on the selection pressures on the trait. Here, we develop a simple,

population-genetic model for the evolution of genetic architectures. Our

model predicts that traits under moderate selection should be encoded by

many loci with highly variable effects, whereas traits under either weak or

strong selection should be encoded by relatively few loci. We compare these

theoretical predictions with qualitative trends in the genetics of human

traits, and with systematic data on the genetics of gene expression levels in

yeast. Our analysis provides an evolutionary explanation for broad empirical

patterns in the genetic basis for traits, and it introduces a single framework that

unifies the diversity of observed genetic architectures, ranging from Mendelian

to Fisherian.
1. Introduction
A quantitative trait is encoded by a set of genetic loci whose alleles contribute

directly the trait value, interact epistatically to modulate each other’s

contributions, and possibly contribute to other traits. The resulting genetic

architecture of a trait [1] influences its variational properties [2–5], and there-

fore affects a population’s capacity to adapt to new environmental conditions

[1,6,7]. Over longer time scales, genetic architectures of traits have important

consequences for the evolution of recombination [8] and of sex [9], and even

reproductive isolation and speciation [10].

Although scientists have studied the genetic basis for phenotypic variation

for more than a century, recent technologies, as well as the promise of agricul-

tural and medical applications, have stimulated tremendous efforts to map

quantitative trait loci (QTL) in diverse taxa [11–19]. These studies have revealed

many traits that seem to rely on Fisherian architectures, with contributions from

many loci [20], whose additive effects are often so small that QTL studies lack

power to detect them individually [16,21,22]. Other traits, however, are

encoded by a relatively small number of loci—including the large number of

human phenotypes with known Mendelian inheritance.

The subtle statistical issues of designing and interpreting QTL studies in

order to accurately infer the molecular determinants of a trait are already

actively studied [16,21,22]. Nevertheless, distinct from these statistical issues

of inferences from empirical data, we lack a theoretical framework for forming

a priori expectations about the genetic architecture underlying a trait [1,4]. For

instance, what types of traits should we expect to be monogenic, and what

traits should be highly polygenic? More generally, how does the genetic architec-

ture underlying a trait evolve, and what features of a trait shape the evolution of

its architecture? To address these questions, we developed a mathematical model

for the evolution of genetic architectures, and we compared its predictions with a

large body of empirical data on quantitative traits.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2013.1552&domain=pdf&date_stamp=2013-08-28
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Figure 1. The genetic architecture underlying a trait depends on the strength
of selection on the trait, in a population-genetic model. Traits subject to
intermediate selection (intermediate values of sf ) evolve genetic architec-
tures with the greatest number of controlling loci. Dots denote the mean
number of loci in the architecture underlying a trait, among 500 replicate
Wright – Fisher simulations, for each value of the selection pressure sf.
The rectangular areas represent the distribution of the number of loci in
the architecture. The neutral expectations for the equilibrium number of
loci (see Methods) are represented as grey lines, when recruitment events
are neutral (top line) or not (bottom line). Parameters are set to their default
values (see electronic supplementary material, table S2).
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2. Results and discussion
(a) Genetic architectures predicted by a

population-genetic model
Our approach to understanding the evolution of genetic

architectures combines standard models from quantitative

genetics [23] with the Wright–Fisher model from popula-

tion genetics [24]. In its simplest version, our model

considers a continuous trait whose value, x, is influenced by

L loci. Each locus i contributes additively an amount ai, so

that the trait value is defined as the mean of the ai values

across contributing loci. This trait definition means that a

gene’s contribution to a trait is diluted when L is large,

which prevents direct selection on gene copy numbers when

genes have similar contributions [25,26]. We discuss this defi-

nition below, along with alternatives such as the sum. The

fitness of an individual with trait value x is assumed to be

Gaussian with mean zero and standard deviation sf, so that

smaller values of sf correspond to stronger stabilizing selection

on the trait [23]. Individuals in a population of size N replicate

according to their relative fitnesses. Upon replication, an off-

spring may acquire a point mutation that alters the direct

effect of one locus, i, perturbing the value of ai for the off-

spring by a normal deviate; or the offspring may experience

a duplication or a deletion in a contributing locus, which

changes the number of loci L that control the trait value in

that individual (see Methods). Point mutations, duplications

and deletions occur at rates m, rdup, rdel, which have compar-

able magnitudes in nature (see electronic supplementary

material, table S1) [27–30]. We assume that deletions are

more frequent than duplications, for two reasons. First, in

our model, deletions represent both actual deletions and loss-

of-function mutations. Second, even ignoring loss-of-function

mutations, the frequency of deletions is known to exceed that

of duplications [31]. Finally, an offspring may also increase

the number of loci that contribute to its trait value by recruit-

ment; that is, by acquiring a recruitment mutation, with

probability m � rrec, in some gene that did not previously

contribute to the trait value (see Methods).

Over successive generations in our model, the genetic

architecture underlying the trait (i.e. how many loci contrib-

ute to the trait’s value and the extent of their contributions)

varies among the individuals in the population, and evolves.

The genetic architectures that evolve in our model represent

the complete genetic determinants of a trait, which may

include—but do not correspond precisely to—the genetic loci

that would be detected based on polymorphisms segregating

in a sample of individuals in a QTL study. We discuss this

important distinction below, when we compare the predictions

of our model with empirical QTL data.

We studied the evolution of genetic architectures in sets of

500 replicate populations, simulated by Monte Carlo, with

different amounts of selection on the trait. We ran each of

these simulations for 50 million generations, in order to

model the extensive evolutionary divergence over which gen-

etic architectures are assembled in nature. The form of the

genetic architecture that evolves in our model depends criti-

cally on the strength of selection on the trait. In particular,

we found a striking non-monotonic pattern: the equilibrium

number of loci that influence a trait is greatest when the

strength of selection on the trait is intermediate (figure 1).

The distribution of allelic effects also evolves in our model
(see electronic supplementary material, figure S1). The var-

iance of allelic effects across loci exhibits a similar pattern

as the one observed for the number of contributing loci: it is

maximized for traits under intermediate selection. In other

words, our model predicts that traits under moderate selection

will be encoded by many loci with highly divergent effects,

whereas traits under strong or weak selection will be encoded

by relatively few loci. Moreover, the distribution of allelic

effects determines the typical phenotypic effects of gene del-

etions and duplications, which are also greatest for traits

under intermediate selection (see electronic supplementary

material, figure S2).

We also studied how epistatic interactions among loci

influence the evolution of genetic architecture. To incorporate

the influence of locus j on the contribution of locus i, we

introduced epistasis parameters bji, so that the trait value is

now given by

x ¼ 1

L

XL

i¼1

ai � fb
XL

j¼1

b ji

0
@

1
A

0
@

1
A; ð2:1Þ

where fb is a standard sigmoidal filter function (see Methods;

see also electronic supplementary material, figure S4a) [8]. As

with the direct effects of loci, the epistatic effects were allo-

wed to mutate and vary within the population, and evolve.

Although significant epistatic interactions emerge in the

evolved populations, and modulate the direct contributions

of individual alleles (see electronic supplementary material,

figure S3b,c), the presence of epistasis does not strongly affect

the average number of loci that control a trait (see electronic

supplementary material, figures S3a and S4). Epistasis is not
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Figure 2. The consequences of gene duplications, recruitments and deletions in a population-genetic model. Populations were initially evolved with a fixed number of
controlling loci L (a), and we then measured the effects of recruitments, deletions and duplications on the trait value (b) and on fitness (c). From the latter, we calculated the
rate at which deletions, recruitment and duplications enter and fix in the population (d), and the resulting rate of change in the number of loci contributing to the trait (e).
(a) For L . 1, the variation in direct effects (ai) and indirect effects among controlling loci ðSjðb jiÞÞ increases as selection on the trait is relaxed. (b) As a consequence of
this variation among loci, the average change in the trait value following a duplication or a deletion also increases as selection on the trait is relaxed. (c) Changes in the trait
value are not directly proportional to fitness costs, because the same change in x has milder fitness consequences when selection is weaker (larger sf ). As a result, the
average fitness detriment of duplications and deletions is highest for traits under intermediate selection. (d) Consequently, the fixation rates of duplications and deletions are
smallest under intermediate selection. (e) The equilibrium number of loci controlling a trait under a given strength of selection is determined by that value of L for which
duplications and recruitments on one side, and deletions on the other, enter and fix in the population at the same rate. For example, when sf ¼ 10 – 1.5, these rates are
equal when L is close to 12 (black arrow), so that the equilibrium genetic architecture contains�12 loci on average (compare electronic supplementary material, figure S3,
black arrow). (Online version in colour.)
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required for the evolution of large L, nor does it change the

shape of its dependence on the strength of selection.
(b) Intuition for the results
There is an intuitive explanation for the non-monotonic

relationship between the selection pressure on a trait and

the number of loci that control it. For a trait under weak selec-

tion (high sf ), changes in the trait value have little effect on

fitness. Thus, even if deletions, recruitments and duplications

change the trait value, these changes are nearly neutral

(figure 2). As a result, the number of loci controlling the

trait evolves to its neutral equilibrium, which is small because

deletions are more frequent than duplications and recruit-

ments (see Methods; figure 1; electronic supplementary

material S3). On the other hand, when selection on a trait is

very strong (low sf ), few point mutations, and only those

with small effects on the trait, will fix in the population. As

a result, all loci have similar contributions to the trait value
(figure 2a), and so duplications or deletions again have

little effect on the trait or on fitness (figure 2b,c). In

this case, the equilibrium number of loci is given by the

value expected when deletions and duplications, but not

recruitments, are neutral (figure 1; electronic supplementary

material S3).

Only when selection on a trait is moderate can variation

in the contributions across loci accrue and impact the fix-

ation of deletions and duplications (figure 2d), by a

process called compensation: a slightly deleterious point

mutation at one locus, which perturbs the trait value, segre-

gates long enough to be compensated by point mutations at

other loci [32–35]. Compensation increases the variance in

the contributions across loci (figure 2a), as has been

observed for many phenotypes in plants and animals [36].

Owing to this variation, both duplications and deletions

move the trait value away from the optimum (figure 2b),

and so they are mildly deleterious on average (figure 2c).

Nevertheless, there is a bias favouring duplications over
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deletions among the few such events that fix. This bias

arises because duplications increase the number of loci in

the architecture, which attenuates the effect of each locus

on the trait (figure 2b). Thus, when selection is moderate,

duplications and recruitments fix more often than deletions,

driving the number of contributing loci above its neutral

expectation (figure 2d,e). As the number of loci increases

the bias is reduced (figure 2d,e), and so L equilibrates at a

predictable value (figure 1; electronic supplementary

material S3).

Duplications and recruitments might also be slightly

favoured over deletions under intermediate selection, because

architectures with more loci also exhibit, in our model, attenu-

ated mutational effects. This effect, which could positively

select for an increase in gene copy number [37], is likely

weak in our model, because duplications and recruitments

are both deleterious on average under intermediate selection,

only less so than deletions (figure 2d,e).
 1552
(c) Robustness of results to model assumptions
The predictions of our model—notably, that the number of loci

in a genetic architecture and the variance of their allelic contri-

butions are greatest for traits under intermediate selection—

are robust to choices of population-genetic parameters. The

non-monotonic relation between selection pressure on a trait

and the size of its genetic architecture, L, holds regardless of

population size, but the location of maximum L is shifted

towards weaker selection in larger populations (see electronic

supplementary material, figure S5). This result is compatible

with our explanation involving compensatory evolution:

selection is more efficient in large populations, and so com-

pensatory evolution occurs at smaller selection coefficients.

Likewise, when the mutation rate is smaller the resulting equi-

librium number of controlling loci is reduced (see electronic

supplementary material, figure S6). This result is again compa-

tible with the explanation of compensatory evolution, which

requires frequent mutations. Increasing the rate of deletions

relative to duplications also reduces the equilibrium number

of loci in the genetic architecture, but our qualitative results

are not affected even when rdel is twice as large as rdup (see elec-

tronic supplementary material, figure S7). Finally, increasing

the rate of recruitment rrec (or the genome size) increases the

number of loci contributing to all traits except those under

very strong selection, as expected from figure 2. Our prediction

that traits under intermediate selection are encoded by the rich-

est genetic architectures is insensitive to changes in this

parameter, and it holds even in the absence of recruitment

(see electronic supplementary material, figure S8).

Our analysis has relied on several quantitative-genetic

assumptions, which can be relaxed. First, we assumed that

all effects of locus i (i.e. ai and all bij andbji) are simultaneously

perturbed by a point mutation. Relaxing this assumption so

that a subset of the effects are perturbed does not change our

results qualitatively (see electronic supplementary material,

figure S9). Second, we assumed that point mutations have

unbounded effects so that variation across loci can increase

indefinitely. To relax this assumption, we made mutations

less perturbative to loci with large effects (see Methods).

Even a strong mutation bias of this type led to very small

changes in the equilibrium behaviour (see electronic sup-

plementary material, figure S10). Third, we assumed no

metabolic cost of additional loci, even though additional
genes in Saccharomyces cerevisiae are known to decrease fitness

slightly [38,39]. Nonetheless, including a metabolic cost pro-

portional to L does not alter our qualitative predictions (see

electronic supplementary material, figure S11).

We defined the trait value as the average of the contri-

butions ai across loci (equation (2.1)), as opposed to their

sum. This definition reflects the intuitive notion that a gene

product’s contribution to a trait will generally depend on

its abundance relative to all other contributing gene products.

If a gene is duplicated or deleted, then the concentration of its

products will change relative to other genes contributing to

the trait. If the number of contributing genes is already

large, this change will have generally have a smaller impact

on the phenotype. This attenuating effect of additional contri-

buting loci is also supported by direct empirical data:

changing a gene’s copy number is known to have milder

phenotypic effects when the gene has many duplicates

[40,41]. Of course, many alternative definitions of the trait

value can include such an attenuating effect, to a greater or

lesser extent. We have explored alternative definitions of

the trait value, spanning from the average to the sum of con-

tributions across loci, and we find that they generically

exhibit the same qualitative results as those obtained under

the ‘average’ definition in equation (2.1) (see electronic

supplementary material S1 and figure S12).

Finally, although robust to model formulation and par-

ameter values, our results do depend in part on initial

conditions. When selection is strong, the initial genetic archi-

tecture can affect the evolutionary dynamics of the number

of loci (see electronic supplementary material, figure S14).

This occurs because the initial architecture may set dependen-

cies among loci that prevent a reduction of their number. This

result indicates that only those architectures of traits under

very strong selection should depend on historical contingen-

cies. We have also studied a multi-trait version of our model,

where genes participating in other traits can be recruited

or lost through mutation. Even though this model features

pleiotropy, and the effects of recruitment mutations evolve

neutrally instead of being sampled from an arbitrary dis-

tribution, our qualitative results remained unaffected (see

electronic supplementary material S3 and figure S15).
(d) The dynamics of copy number
Previous models related to genetic architecture have been

used to study the evolutionary fate of gene duplicates. These

models typically assume that a gene has several subfunctions,

which can be gained (neo-functionalization [42]) or lost

(subfunctionalization [43,44]) in one of two copies of a gene.

Such ‘fate-determining mutations’ [45] stabilize the two

copies, as they make subsequent deletions deleterious. Such

models complement our approach, by providing insights

into the evolution of discrete, as opposed to continuous or quan-

titative, phenotypes. Yet there are several qualitative differences

between our analysis and previous studies of gene duplication.

Most important of these is that our model considers the

dynamics of both duplications and deletions, in the presence

of point mutations that perturb the contributions of loci to a

trait. This coincidence of time scales is important in the light

of empirical data [27–30] showing that changes in copy num-

bers occur at similar rates to point mutations (see electronic

supplementary material, table S1). Under these circumstances,

a gene may be deleted or acquire a loss-of-function mutation
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before a new function is gained or lost. Our model includes

these realistic rates, and accordingly we find that duplicates

are very rarely stabilized by subsequent point mutations.

Instead, the number of loci in a genetic architecture may

increase in our model, because compensatory point mutations

introduce a bias towards the fixation of duplications as opposed

to deletions.
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(e) Comparison with empirical data
Like most evolutionary models, our analysis greatly simpli-

fies the mechanistic details of how specific traits influence

fitness in specific organisms. As a result, our analysis explains

only the broadest, qualitative features of how genetic archi-

tectures vary among phenotypic traits, leaving a large

amount of variation unexplained. This remaining variation

may be partly random (as predicted by the distributions of

the number of evolving loci; figure 1), and partly due to

ecological and developmental details that our model neglects.

A quantitative comparison between our model and

empirical data requires information about the genetic archi-

tectures for hundreds of traits (see below for our analysis of

expression QTLs). Nevertheless, the qualitative, non-mono-

tonic predictions of our model (figure 1) may help to

explain some well-known trends in the genetics of human

traits. For instance, in accordance with our predictions,

human traits under presumably moderate selection, such as

stature (Mendelian inheritance in man, MIM no. 606255

[13,46]), or susceptibility to mid-life diseases such as diabetes

(e.g. MIM no. 125853), cancer (e.g. MIM nos. 114480, 176807)

and heart disease, are typically complex and highly poly-

genic, whereas traits under very strong selection, such as

those (e.g. mucus composition or blood clotting) affected by

childhood-lethal diseases such as cystic fibrosis (MIM no.

219700) or haemophilias (e.g. MIM nos. 306900, 306900)

often rely on simple architectures with one or a few loci;

and so too traits under very weak selection, such as handed-

ness [47], cerumen moisture (MIM no. 117800 [48]) or bitter

taste [49], typically rely on simple architectures. Our analysis

provides an evolutionary explanation for these differences,

and it delineates the selective conditions under which we

expect a Mendelian, as opposed to Fisherian, architecture.

It is important to recognize that our analysis describes the

emergence of genetic architectures over evolutionary time

scales, which pertain to divergences among species. This per-

spective complements theories over short time scales, which

pertain to segregating variation within a single population,

such as the common disease/common variants hypothesis,

which explains allelic diversity at a human locus in terms

of recent population expansion [50,51].

We tested our model for the evolution of genetic architec-

tures by comparison with empirical data on a large number

of traits. Such a comparison must, of course, account for the

fact that our model describes the true genetic architecture

underlying a trait, whereas any QTL study has limited power

and describes only the associations detected from poly-

morphisms segregating in a particular sample of individuals.

Accounting for this discrepancy (see below), we compared

our model with data from the study of Brem et al. [15], who

measured mRNA expression levels and genetic markers in

112 recombinant strains produced from two divergent lines

of S. cerevisiae. For each yeast transcript, we computed the

number of non-contiguous markers associated with transcript
level, at a given false discovery rate (FDR; see Methods).

We also calculated the codon adaptation index (CAI) of each

transcript, an index that correlates positively with a gene’s

expression level [52] and that reflects the environmental con-

ditions encountered during the organism’s evolutionary

history [53]. CAI correlates with gene dispensability [54,55],

and thus it is a decent proxy for the strength of selection on a

gene’s expression level. We found a striking, non-monotonic

relationship between the CAI of a gene and the number of

loci linked to variation in its expression (figure 3a). Therefore,

our analysis of Brem et al.’s [15] data indicates that transcript

levels under intermediate selection are regulated by more loci

than transcripts levels under weak or strong selection.

In order to compare the predictions of our evolutionary

model with the empirical data on yeast eQTLs (figure 3a),

we required to mimic the experimental design of the yeast

study. To do so, we first evolved genetic architectures for

traits under various amounts of selection (see electronic

supplementary material, figure S3), and for each architec-

ture we then simulated a QTL study of the exact same type

and power as the yeast eQTL study; that is, we generated

112 crosses from two divergent lines using the empirical

yeast genetic map (see electronic supplementary material,

figure S2). As expected, the simulated QTL studies based

on these 112 segregants detected many fewer loci linked to

each trait than in fact contribute to the trait in the true, under-

lying genetic architecture (figure 3b versus figure 1). This

result is consistent with previous interpretations of empirical

eQTL studies [16].

We can compare the yeast eQTL data only with the qualitat-

ive trends in our model, because we lack absolute estimates of

selection pressures on yeast transcript abundances. It is likely

that the range of simulated selection strengths in figure 3b is

larger than the range of selection pressures in yeast. For

instance, point mutations in genes contributing to traits simu-

lated with log10(sf ) � –2.5 have mean selection coefficients

Ns � –140 (see electronic supplementary material, figure S2),

which makes them very unlikely to fix (mean fixation

probability � 3.5 � 10– 5), whereas for simulated traits with

log10(sf ) � 0, point mutations have a mean selection coefficient

Ns � –4.5 � 10– 3 and nearly neutral mean fixation probability

�0.001. This wide range is guaranteed to include biologically

relevant selection pressures, but may be broader than the

range of selection pressures on yeast transcript levels.

The simulated QTL studies (figure 3b) also revealed an

important bias: the probability to detect a locus contributing

to the architecture of a trait depends on the allelic diversity at

that locus, such that the architecture of a trait under weak selec-

tion is more likely to be correctly identified in a QTL study than

the architecture of a trait under strong selection (see electronic

supplementary material, figure S16). Furthermore, our simu-

lations demonstrate that the number of associations detected

in such a QTL study also depends on the divergence time

between the parental strains used to generate recombinant

lines (see electronic supplementary material, figure S17).

Genes with low CAI are typically expressed at low levels

and may therefore be prone to more measurement noise. To

study this effect, we also simulated measurement noise corre-

lated with selection pressure (see electronic supplementary

material, figure S18). Despite these detection biases, the

relationship between the selection pressure on a trait and

the number of detected QTLs in our model (figure 3b;

electronic supplementary material, figures S18 and S19)
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agrees with the relationship observed in the yeast eQTL data

(figure 3a). Importantly, both of these relationships exhibit

the same qualitative trend: traits under intermediate selection

are encoded by the richest genetic architectures.

In principle, a non-monotonic pattern similar to the one

shown in figure 3a could also emerge as a result of the two

detection biases that we have described. First, the lack of

variation at contributing loci could prevent their detection

for traits under very strong selection, whereas elevated

measurement noise in weakly expressed genes might also

impede the detection of any genetic association. We have

quantified these biases in genetic architectures with a fixed

number of contributing loci across traits (see electronic

supplementary material, figure S20). Our analysis indicates

that the non-monotonic pattern observed in the empirical

data (figure 3a) is unlikely to result from these biases alone.

Therefore, detection biases can only accentuate an already

non-monotonic pattern in the true architecture.
3. Conclusion
Many interesting developments lie ahead. Here, we have con-

sidered only traits under stabilizing selection, whereas some

traits might experience fluctuating target phenotypes over the

time scales considered, so that periods of stabilizing selection

alternate with periods of adaptation. A proper study of the

evolution of genetic architectures in fluctuating environments

should disentangle these complex dynamics, which is clearly

beyond the reach of this paper. Our model is also far too
simple to account for tissue- and time-specific gene

expression, context-dependent effects, and so on [5,56]. More-

over, we considered the evolution of only haploid genetic

architectures. It will be interesting to investigate how archi-

tectures evolve when including, for instance, patterns of

recombination or dominance and sex-specific effects.

Nonetheless, our work provides intuition that can guide

the interpretation and design of empirical studies. Our

main finding is that the evolution of genetic architectures is

governed by an interaction between the divergence of allelic

effects and the number of loci, and this conclusion should

hold even in the presence of frequent recombination. More

generally, our analysis shows that it is possible to study the

evolution of genetic architectures from first principles, to

form a priori expectations for the architectures underlying

different traits, and to reconcile these theories with the

expanding body of QTL studies on molecular, cellular and

organismal phenotypes.
4. Methods
(a) Model
We described the evolution of genetic architectures using the

Wright–Fisher model of a replicating population of size N, in

which haploid individuals are chosen to reproduce each gener-

ation according to their relative fitnesses. The fitness of an

individual with L loci encoding trait value x is vk ¼ G(x, 0, sf ) �
(1 – L � c), where G denotes the density at x of a Gaussian distri-

bution with mean zero and standard deviation sf, and the
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second term denotes the metabolic cost of harbouring L loci, which

depends on a parameter c. The trait value of such an individual,

given the direct contributionsai and epistatic termsbji, is described

by equation (2.1), where fbðyÞ ¼ 2ð1þ e�sbyÞ is a sigmoidal curve,

so that the epistatic interactions either diminish or augment

the direct contribution of locus i depending on whether
P

j b ji

is positive or negative (see electronic supplementary material,

figure S4). In general, loci do not influence themselves (bii ; 0)

and, in the model without epistasis, all bji ; 0 and fb ; 1. If an

individual chosen to reproduce experiences a duplication at

locus i then the new duplicate, labelled k, inherits its direct effect

(ak ¼ ai) and all interaction terms (bkj ¼ bij and bjk ¼ bji for all

j = i,k), with the interaction terms bik and bki initially set to zero.

Recruitment occurs with probability rrec per mutation of one of

the 6000 genes not contributing to the trait. The initial direct

contribution ai of recruited locus i is drawn from a normal distri-

bution with mean zero and standard deviation sm; its interaction

terms with other loci (k), bik and bki, are initially set to zero. Note

that this assumption is relaxed in the multi-locus version of our

model, where the direct and indirect effects of recruitments

evolve neutrally (see electronic supplementary material, text S3

and figure S15).

In general, a point mutation at locus i changes its contri-

bution to the trait, ai, and all its epistatic interactions, bij and

bji, each by an independent amount drawn from a normal distri-

bution with mean zero and standard deviation sm. In this model,

the impact of a mutation on fitness depends on the ratio sf/sm,

such that an increase in the value of sm is strictly equivalent to a

proportional decrease of sf. The normal distribution satisfies the

assumptions that small mutations are more frequent than large

ones [57,58], and that there is no mutation pressure on the

trait [23]. We relaxed the former assumption by drawing muta-

tional effects from a uniform distribution without qualitative

changes to our results (see electronic supplementary material,

figure S13). We also used a log-uniform distribution for the

mutation effects, such that more mutations have very small

effects, again with no qualitative change (see electronic sup-

plementary material, figure S13). In order to relax the latter

assumption, we included a bias towards smaller mutations in

loci with large effects, so that the mean effect of a mutation at

locus i now equals 2ba� ai and 2bb� bij, respectively for ai

and bij [59]. We also considered a model in which a mutation

at locus i affects only a proportion pem of the values ai, bij and bji.

By default, simulations were initialized with L ¼ 1 and a1 ¼ 0;

alternative initial conditions were also studied, as shown in

electronic supplementary material, figure S14. The code for all

simulations and figures presented in the paper was deposited in

the Dryad repository (http://dx.doi.org/10.5061/dryad.1f217).
(b) Markov chain for neutral changes in copy number
When deletions and duplications are neutral, and recruitments

strongly deleterious, the evolution of the number of loci L in

the genetic architecture is described by a Markov chain on the

positive integers. The probability of a transition from L ¼ i to

L ¼ i þ 1 equals rdup � i, and that of a transition from i to i – 1

is rdel� i. We disallow transitions to L ¼ 0, assuming that some

regulation of the trait is required. We obtained the stationary dis-

tribution of L by setting the density of d1 of individuals in stage 1

to 1 and calculating the density di of individuals in the following

stages as

di ¼
rdup � ði� 1Þ

rdel � i
di�1: ð4:1Þ

The equilibrium probability of being in state i was calculated as

pi ¼ di=
P1

i¼1 di; and the expected value of L was calculated asP1
i¼1 pi � i. With rdup ¼ 10– 6 and rdel ¼ 1.25 � 10– 6, we found

an equilibrium expected L of 2.485.
When deletions, duplications and recruitments are all

neutral, equation (4.1) can be replaced by

di ¼
rdup � ði� 1Þ þ 6000� m� rrec

rdel � i
di�1: ð4:2Þ

Equation (4.2) illustrates the fact that the rates of deletions (which

include loss of function mutations) and duplication depend on

the number of loci in the architecture, whereas the rate of recruit-

ments does not. With m ¼ 3 � 10– 6 and rrec ¼ 5 � 10– 5, we found

an equilibrium expected L of 4.705.

(c) Calculation of �s and pfix
We first evolved populations to equilibrium with a fixed number

of controlling loci L, and we then measured the effects of deletions,

duplications or recruitments introduced randomly into the popu-

lation. We simulated the evolution of the genetic architecture with

L fixed in 500 replicate populations, over 8 � 106 generations for

deletions and 10� 106 generations for duplications, reflecting

the unequal waiting time before the two kinds of events. We

used 10 � 106 generations for recruitment as well, although differ-

ent durations did not affect our results. For each genotype k in

each evolved population, we calculated the fitness vk(i) of mutants

with locus i deleted or duplicated. We calculated the correspond-

ing selection coefficients as sk(i) ¼ vk(i)/kvl – 1, where kvl denotes

mean fitness in the population. We calculated �s as the mean across

loci and genotypes of sk(i), weighted by the number of individuals

with each genotype. We calculated the probability of fixation of a

duplication, deletion or recruitment as

pfixðskðiÞÞ ¼
1� e�2skðiÞ

1� e�2NskðiÞ
; ð4:3Þ

and obtained the mean pfix using the same method as for �s.

Rates of deletions and duplications fixing were calculated per

locus (figure 2) as rdel or rdup times pfix. The total probability of a

duplication or a deletion entering the population and fixing is, of

course, also multiplied by L. However, recruitment rates remain

constant as L changes. Therefore, we divided the rate of recruit-

ments by L in figure 2, for comparison with the per locus
duplication and deletion rates.

(d) Number of loci influencing yeast
transcript abundance

We used the R/qtl [60,61] package to calculate logarithm of odds

(LOD) scores for a set of 1226 observed markers and 3223 uni-

formly distributed pseudo-markers separated by 2 cM, by

Haley–Knott regression. We calculated the LOD significance

threshold for a FDR of 0.2 as the corresponding quantile in the

distribution of the maximum LOD after 500 permutations (an

FDR of 0.01 and a fixed LOD threshold of three produced quali-

tatively similar results). The number of detected loci linked to the

expression of a transcript was calculated as the number of non-

consecutive genomic regions with an LOD score above the

threshold. We downloaded S. cerevisiae coding sequences from

the Ensembl database (EF3 release), and calculated CAI values

with the seqinr [62] package, using codon weights from a set of

134 ribosomal genes.
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