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Understanding drivers of genetic diversity at the major histocompatibility

complex (MHC) is vitally important for predicting how vertebrate immune

defence might respond to future selection pressures and for preserving immu-

nogenetic diversity in declining populations. Parasite-mediated selection is

believed to be the major selective force generating MHC polymorphism, and

while MHC-based mating preferences also exist for multiple species including

humans, the general importance of mate choice is debated. To investigate the

contributions of parasitism and sexual selection in explaining among-species

variation in MHC diversity, we applied comparative methods and meta-

analysis across 112 mammal species, including carnivores, bats, primates,

rodents and ungulates. We tested whether MHC diversity increased with para-

site richness and relative testes size (as an indicator of the potential for mate

choice), while controlling for phylogenetic autocorrelation, neutral mutation

rate and confounding ecological variables. We found that MHC nucleotide

diversity increased with parasite richness for bats and ungulates but decreased

with parasite richness for carnivores. By contrast, nucleotide diversity increased

with relative testes size for all taxa. This study provides support for both

parasite-mediated and sexual selection in shaping functional MHC poly-

morphism across mammals, and importantly, suggests that sexual selection

could have a more general role than previously thought.
1. Introduction
A significant fraction of the mammal genome is dedicated to immune defence,

and immune genes are well known for their genetic variability [1,2]. Parasites

have long been viewed as a major selective force in shaping host genetic diver-

sity [3,4], and the rate of adaptive evolution for genes that interact most directly

with pathogens can be exceptionally high [5]. Sexual selection can also influ-

ence immunogenetic variation; in particular, the ‘good genes’ hypothesis for

resistance to parasites has been invoked to explain why some animals hold

mating preferences in the absence of direct benefits of being choosy [6]. Thus,

direct effects of parasites on host fitness, combined with sexual selection for

mates that might confer beneficial genes to progeny, are the two most likely

forces shaping immunogenetic diversity in animals.

The major histocompatibility complex (MHC) is an ideal candidate for iden-

tifying factors that determine immune gene diversity, because it plays a crucial

role in immune defence for virtually all vertebrates and can mediate mate

choice in a variety of species, including humans [7,8]. The MHC encodes glyco-

proteins that bind to foreign antigens and present them to T-cells, initiating an

immune response [9]. There are two major groups of MHC genes: class I

responds to intracellular pathogens and class II interacts with extracellular
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pathogens [10]. In particular, the class II DRB locus has been

extensively studied because of its high allelic diversity, and

both diversity and specific alleles at this locus predict parasite

resistance in animals [7]. The DRB exon 2 region encodes the

functionally important antigen-binding sites (ABS) that

recognize pathogen peptides, with evidence of intense posi-

tive selection at codons along the sequence [10]. Because

different ABS bind to different pathogen proteins, multiple

alleles are required to confer resistance to diverse pathogen

strains and species [9].

Past work showed that even endangered species (which

otherwise harbour extremely low diversity based on selectively

neutral loci) can display high MHC genotypic diversity [11–13]

with such observations attributed to strong balancing selection

operating on MHC loci [3,7]. Despite the potential for univer-

sally strong selection on MHC genes across vertebrate taxa,

species do differ in their levels of MHC variability [14]. Some

of this variation can be explained by differential parasite

pressure across species [15], but mechanisms underlying

among-species variation in MHC have rarely been studied in

a comparative sense (but see [15–17]).

Theory suggests that disassortative mating could also pre-

serve allelic diversity across MHC loci [18], and numerous

species, including rodents, fishes, birds and humans can dis-

cern MHC genotypes based on olfactory and other cues [19–

21], and prefer scents of mates with complementary or dis-

similar MHC genotypes [22,23]. A key challenge facing

researchers studying mate choice and MHC is that ecological

and demographic factors influence the opportunity for and

benefits of being choosy [24]. As a result, most studies show-

ing MHC-based mating preferences within species are based

on laboratory or captive experiments, and studies conducted

on wild populations have shown mixed results [25,26].

Here, we use a comparative approach to investigate the

relative influence of the two proposed main selective forces

on MHC polymorphism: parasite-mediated selection and

sexual selection. Our analysis focuses on mammals from

five orders, as mammals have been relatively well studied

for MHC variation, parasites and infectious diseases, and

traits associated with sexual selection and reproductive

skew. Key questions motivating this study were: (i) how

does MHC diversity vary across mammal groups? (ii) are

measures of allelic and nucleotide diversity elevated in

species with higher potential for mate choice? (iii) is MHC

diversity also elevated in species with greater parasite rich-

ness? and (iv) is there an association between parasite

richness and degree of sexual selection, and how might this

interaction shape the relationship with MHC polymorphism?

We estimated the potential for sexual selection using relative

testes size as a proxy for competition among males to produce

offspring, as past work showed this measure is greater in

species with promiscuous or polygynous (as opposed to mon-

ogamous) mating systems [27–29]. To infer selection pressures

exerted by diverse parasite communities, we augmented exist-

ing data on parasites and pathogens (including viruses,

bacteria, protozoa, helminths and arthropods) from free-living

mammal populations [30–32]. We used phylogenetically

informed analyses to test key predictors of immune genes diver-

sity across species, controlling for the potential effects of host

phylogeny, ecological traits and uneven sampling effort. We

also used meta-analyses to compare effect sizes across taxa

and to better support the generality of the findings. To our

knowledge, this work represents the first test of the importance
of sexual selection for explaining immunogenetic variation

across a wide range of mammals.
2. Material and methods
(a) Major histocompatibility complex data
Sequence data for 112 mammal species were compiled from

GenBank using GENEIOUS v. 5.6.3. We first performed a preliminary

search with the key term ‘MHC class II DRB’, recovered all mammal

sequences and retained sequences including exon 2 of the DRB

locus. We also searched on Web of Science and Biosis using each

previously identified species Latin binomial and MHC as key

terms. Sequences from subspecies were combined at the species

level, and we followed the taxonomy of Wilson & Reeder [33]. Pri-

mate taxonomy followed the nomenclature from the Global

Mammal Parasite Database [30] and the dataset from Garamszegi

& Nunn [15] to correspond with parasite data. For each species,

we recorded the number of animals sampled at the DRB locus

because more alleles tend to be discovered as more individuals

are sequenced.

Sequences were grouped according to Order (Carnivora,

Chiroptera, Primate, Rodentia and Artiodactyla), imported into

MEGA v. 5 [34] and aligned by MUSCLE [35]. Because sequences dif-

fered in length, we trimmed all exon 2 sequences to 171 bp to

estimate substitution rates. We removed pseudogenes and alleles

with nucleotide insertions or deletions that might represent non-

functioning alleles. We also removed DRB6 alleles from primates,

as this locus is thought to be non-functional [36]. We checked for

duplicates within species and removed non-unique sequences.

Final numbers of sequences were recorded as numbers of alleles

per species. For analyses of allelic richness, we used residuals

from a regression analysis of log(number of alleles) on log(number

of animals sampled) to control for uneven sampling across species.

Rates of selection for functional variation is a biologically

important measure of diversity, especially for sites that encode

proteins responsible for binding to foreign peptides (ABS [10]).

To estimate substitution rates, we used the most commonly

used method [37] with correction for multiple substitutions at

the same site [38]. MEGA v. 5 was used to compute within-species

averages for amino acid changing non-synonymous substitutions

(dN ) at 15 ABS based on [39]. We repeated this process for

synonymous substitutions (dS) at ABS to provide a baseline for

neutral substitution rates. We avoided using the ratio dN : dS at

ABS as in [15], as correlations with ratios may be more difficult

to interpret, being influenced by both the nominator and denomi-

nator. However, we also ran all analyses using this ratio, and results

were generally consistent (see the electronic supplementary

material, figures S1 and S2, though power to detect significant

associations was reduced owing to some species having no synon-

ymous substitutions at the ABS). We considered using alternative

ABS sites determined using the consensus of codon-based maxi-

mum-likelihood methods [40] applied to each main order

sequence set (e.g. carnivore, bat, primate, rodent and ungulate).

However, these predicted sites were strongly and significantly cor-

related with the 15 peptide-binding region residues determined

based on protein crystallography (Pearson’s correlation ranged

from r(29)¼ 0.49, p , 0.01, primates, to r(12)¼ 0.93, p , 0.001,

rodents). In addition, these 15 sites are known to be involved

with antigen binding and have been shown to be under positive

selection across a diverse set of taxa (carnivores, rodents and pri-

mates [41]; bats [42]). Therefore, we focus analyses on these

documented 15 ABS sites, though analyses with putative taxon-

specific ABS sites show overall consistent results (see the electronic

supplementary material, figure S3). The number of MHC alleles

varies by allelic lineage [43] and by the number of duplicated

DRB loci [44]. Because most species in our dataset are non-model

organisms and because no information is available on the specific



rspb.royalsocietypublishing.org
ProcR

SocB
280:20131605

3
DRB lineage or gene copy number, we could not include these vari-

ables in our analysis. We compiled the number of recorded DRB

loci for each of 61 mammal species for follow-up analyses.

(b) Parasite data
Hosts exposed to a more diverse parasite assemblage could experi-

ence selection for greater genetic diversity for resistance [16].

Because MHC class II genes recognize extracellular parasites,

there might be stronger relationships between parasites with pro-

minent extracellular stages (such as helminths, arthropods and

some microbes) and measures of DRB diversity. We compiled para-

site richness data for each host species using the Global Mammal

Parasite Database (www.mammalparasites.org), the most compre-

hensive collection of published records of parasitic organisms from

free-living mammals [30]. For each host species, we recorded para-

site richness as the total number of viruses, bacteria, protozoa,

helminths and parasitic arthropods, as defined at the species-level

based on current taxonomic schemes. We also recorded separately

the numbers of helminths (thought to have strong coevolutionary

relationships with their hosts), microparasites (viruses, bacteria

and protozoa) and macroparasites (helminths and arthropods) to

test whether some groups were more strongly associated with

MHC class II diversity than others. We could not examine all para-

site subgroups (e.g. viruses and bacteria) individually owing to low

numbers for some host taxa.

Parasite richness estimates depend strongly on research effort

[45]; better-studied host species tend to have more parasites

reported to infect them. We therefore controlled for uneven

sampling effort among hosts using the total number of citations

for each host species (using Latin binomials and common taxo-

nomic variants) from Web of Science as an indicator of scientific

effort per host. Following previous studies [15,31,46,47], we used

citation counts to control for research effort instead of the cumulat-

ive number of individual hosts sampled across all studies, as some

studies did not publish the number of animals sampled, and other

studies had high sample sizes despite testing for only a single

parasite. We used residuals from a regression analysis of log(para-

site richness) against log(citation count) (R2 ¼ 0.45, F1,96¼ 78.29,

p , 0.001) to estimate corrected parasite richness per host.

(c) Estimates of sexual selection and ecological traits
Genetic mating system, and specifically the potential for female

mate choice (as females tend to be the choosier sex [48]), is expected

to influence the strength of sexual selection on the MHC. Females in

monogamous or polygynous mating systems are likely to be more

constrained in their choice for mates that can provide direct or

indirect benefits [49]. By contrast, females in promiscuous or poly-

androus mating systems are expected to have greater opportunity

to select among potential mates. Relative testes size (testes mass/

body mass) was used as a proxy for female promiscuity and oppor-

tunities for mate choice, as this measure has been shown to predict

sexual selection and mating system across mammals (e.g. primates

[27]; rodents [28]; carnivores [29]) and it is available for a large

number of species. We compiled testes mass data and male body

mass from the literature (see the electronic supplementary material,

dataset S1). In some instances, only testes length, circumference or

volume measurements were available, and in those cases, we con-

verted these data to mass using the method of [27]. We then used

the residuals from a regression analysis of log(testes mass) against

log(male body mass) to obtain relative testes size per species and

performed this separately for each taxonomic group.

For each mammal species, we also compiled data on two vari-

ables that could strongly influence parasitism, mating behaviour,

and/or MHC diversity and evolution. First, effective population

size (Ne) can impact genetic diversity by affecting the realized

mutation rate, strength of selection and the amount of genetic

drift experienced by a population [50]. Ne can also influence
parasite richness measures as larger populations can theoretically

retain more parasites than smaller populations [51,52]. In addition,

species with greater population density might harbour more para-

sites with density-dependent transmission [53], and species with

larger geographical range sizes could encounter a greater diversity

of parasites [31,32]. We used census population size as a proxy for

effective population size, with the caveat that the ratio of Ne/N is

approximately 0.1 on average [54]. Population size was estimated

by multiplying average population density (individuals per km2)

from the PanTHERIA database [55] by the species geographical

range size (km2) extracted from spatial data provided by the

2010 International Union for Conservation of Nature Red List

(http://www.iucnredlist.org/technical-documents/spatial-data#-

mammals, last accessed on 6 July 2012). Previous studies have

shown that this measure of population size is a significant predictor

of both Ne [15,56] and parasite richness [52]. Second, body mass is

known to scale with many life-history traits, including population

size, reproductive rate, evolutionary rate [57] and parasite diversity

[31,32,52], and thus was included as a covariate. Body mass (g) data

were extracted from PanTHERIA [55], or when not available, the

primary literature. Our full comparative dataset can be found in

the electronic supplementary material, S1. Variables were log trans-

formed or square root arcsin transformed (dS rate data; [58]) when

necessary to meet normality assumptions, and no predictor

variables showed strong collinearity (r , 0.07) [59].
(d) Comparative analyses
We tested whether log MHC allelic diversity and rates of positive

selection (dN) at functional sites (as two separate dependent vari-

ables) were associated with parasite richness and estimates of

sexual selection. Because closely related species are more likely to

share genetic and life-history traits [60], we used phylogenetic

least-squares (PGLS) regressions that handle phylogenetic structure

through a variance–covariance matrix [61]. We assessed the impor-

tance of each predictor through a stepwise model selection

procedure, in which the full models included the following: cor-

rected parasite richness, relative testes size, log body mass, log

population size, and the interaction between corrected parasite

richness and relative testes size, while also including dS at ABS

as a covariate to control for underlying substitution rate. We then

simplified the starting model using Akaike information criteria cor-

rected for smaller sample sizes (AICc) following [62] and removed

variables that did not improve model fit (DAICc . 4). To avoid

problems associated with missing values in AIC-based model com-

parison where sample size changes as terms are removed, we

removed any species from our dataset that did not have complete

coverage for all of the predictor variables of interest in the starting

full model. To test for associations between relative testes size (as a

response variable) and corrected parasite richness (predictor vari-

able), we ran PGLS models controlling for the effects of

taxonomic group, log population size and male body mass.

The PGLS regression was conducted using the caper package

in R [63] using Pagel’s l to adjust models for the amount of phy-

logenetic signal observed in each variable. The phylogeny was

constructed using the mammalian supertree [64], and polytomies

were randomly resolved (by adding branches of length equal to

zero) using the multi2di function in the ape R package [65].

Species in the dataset but missing from the supertree assumed

the names of the closest relatives (i.e. Papio cynocephalus was

changed to Papio hamadryas, and Zalophus wollebaeki was changed

to Zalophus californianus).

To test the robustness of our results, we estimated taxon-

specific effect sizes in the form of correlation coefficients [66] and

ran meta-analyses to compare the overall effect sizes for predictor

variables across taxa in explaining MHC variation. We estimated

grand classwise effect sizes after considering differences in

sample size among orders, and also examined differences among

http://www.mammalparasites.org
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package [67] in R [68].
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Figure 1. Forest plots showing predictors of the rate of non-synonymous sub-
stitutions (dN ) at ABS. PGLS models show the effect of (a) relative testes size and
(b) parasite richness, run separately for each mammal group. The vertical dotted
line is positioned at zero and error bars denote 95% CIs. N refers to the number of
species included; RE model, random effects model. Heterogeneity test for relative
testes size: Q ¼ 8.433, p ¼ 0.038, I2 ¼ 63.84%; parasite richness: Q ¼
17.408, p ¼ 0.002, I2¼ 79.06%.

spb.royalsocietypublishing.org
ProcR

SocB
280:20131605
3. Results
Our final dataset comprised 112 mammal species (26 carnivores;

14 chiropterans; 37 primates; 16 rodents and 19 ungulates), 2454

sequences and 2665 host–parasite species combinations (list

of species with full trait and genetic datasets are provided in

the electronic supplementary material, dataset S1 and S2).

We tested for relationships between parasitism (using total para-

site richness, helminth richness, and micro- and macroparasite

richness) and sexual selection (using relative testes size as an

indicator of mating system) on the rate of positive selection

(dN at ABS) and MHC allelic richness across mammals. Ana-

lyses controlled for mammal phylogeny, the rate of neutral

substitutions (dS at ABS), measures of sampling effort and two

host traits known to be important for parasitism and/or genetic

diversity based on previous studies (body mass and population

size; electronic supplementary material, tables S1–S3). All

predictor and response variables except relative allelic richness

and parasite richness showed strong phylogenetic signal and

were more similar among closer relatives (see the electronic

supplementary material, table S2).

Multivariate models showed that the strength of selection

at ABS increased with relative testes size across all five

mammal orders tested here (figure 1a and the electronic sup-

plementary material, table S1). Effect sizes differed among

orders with approximately 64% of the variability attributed

to heterogeneity among the true effects [67] (Q ¼ 8.43,

p ¼ 0.04, I2 ¼ 63.84%), possibly owing to biological differ-

ences among mammal groups or the methodology used in

different studies. When corrected parasite richness was

included as a predictor in the full model with relative testes

size, its main effect and interaction with relative testes size

was non-significant. However, removing the relative testes

size variable (and including 21 additional species that were

missing testes data) showed that the strength of selection at

ABS increased with total parasite richness (corrected for

sampling effort) for bats and ungulates and decreased with

parasite richness for carnivores (figure 1b and the electronic

supplementary material, table S1).

Tests using data from parasite subgroups, including

microparasites, macroparasites and helminths, showed that

selection on ABS decreased with helminth and macroparasite

richness for carnivores, and also decreased with microparasite

richness for primates (figure 2; electronic supplementary

material, figure S2). Ratios of dN : dS increased with macropar-

asite and microparasite richness for carnivores and ungulates

(see the electronic supplementary material, figure S2). Neutral

substitution rate (dS at ABS) was a positive predictor of dN at

ABS (see the electronic supplementary material, figure S4) but

only in models without relative testes size (and larger sample

sizes). Taxonomic group was also a significant predictor of alle-

lic substitution at ABS, with both dN and dS being greatest for

bats and primates and lowest for carnivores and ungulates

(figure 3c).

We tested allelic richness as a separate measure of selection

on ABS. This measure differed among mammal taxonomic

groups and increased with population size for ungulates

(electronic supplementary material, tables S1 and S3e) but did

not depend on measures of parasite richness or testes size.
Allelic richness was significantly lower for ungulates than any

other mammal group (figure 3b). A post hoc ANOVA revealed

that ungulates also had significantly fewer duplicated DRB loci

than other mammal orders, whereas primates had the most

(F1,39¼ 8.359, p ¼ 0.006; figure 3a).

Finally, we tested for a relationship between relative testes

size and corrected parasite richness, to ask whether the strength

of sexual selection might covary positively with parasite

pressure. Across all orders, we found a weak negative associ-

ation between relative testes size and total parasite richness

( p ¼ 0.09; electronic supplementary material, figure S5a) with

homogeneous effect sizes across taxa (Q ¼ 1.079, p ¼ 0.18,

I2 ¼ 0.00%), although other components of parasite richness

showed no trend ( p . 0.1; electronic supplementary material,

figure S5).
4. Discussion
We found evidence that pressure from a diverse parasite fauna

(represented by corrected parasite richness at the host

species level) was associated with positive selection at the

MHC DRB locus in bats and ungulates only. Species in these

two groups that harboured greater parasite richness also

showed higher rates of functionally significant evolutionary

change within the MHC. By comparison, greater potential for

sexual selection (represented by relative testes size as an indi-

cator of mating system) predicted greater positive selection on

functionally important MHC sites across all five orders of

mammals examined here.

Very few studies have considered predictors of cross-species

variation in MHC polymorphism, and those conducted to date

focused on the relationship between parasite richness and MHC
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Figure 2. Forest plots showing predictors of the rate of non-synonymous
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(a) microparasite richness, (b) macroparasite richness and (c) helminth richness,
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coefficient. N refers to number of species; RE model, random effects model.
Heterogeneity test for microparasite richness: Q ¼ 5.186, p ¼ 0.159,
I2 ¼ 43.24%; macroparasite richness: Q ¼ 6.506, p ¼ 0.089, I2 ¼ 55.08%;
helminth richness: Q ¼ 4.329, p ¼ 0.228, I2¼ 0.00%.
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allelic richness [15–17]. In spite of the extensive intraspecific

empirical evidence for MHC–parasite associations (reviewed

in [7,69]), there is surprisingly weak support for parasites

driving variation in MHC diversity among species. One study

found that allelic richness increased with helminth richness

across 10 rodent species [16], and another study found that

the rate of positive selection at ABS (but not allelic richness)

was positively related to nematode richness (but not total para-

site richness) across 27 primates [15]. Our study differed from

prior studies by using genetic data from multiple populations

per species, by including broader taxonomic groups in parasite

richness estimates, by not delineating alleles by their functional

lineages, and by not separately analysing nematode richness

(for which insufficient data were available from all orders).

The negative relationship between parasite richness

and measures of the strength of selection on MHC in carni-

vores ran counter to our expectations. One reason for this

pattern could be due to interactions between threat status

and infectious disease risk, such that carnivores might be

more vulnerable to population bottlenecks and genetic drift

that concurrently reduce their genetic diversity and increases

their susceptibility to parasitism. Many high-profile threatened
carnivores have depleted MHC diversity (wild dogs [70];

Ethiopian wolves [71]; cheetahs [72]) and have simultaneously

experienced declines from introduced infectious diseases such

as rabies, canine distemper and sarcoptic mange [73,74]; these

carnivore species might be exceptionally well studied and

better represented in our dataset. One way to examine this

issue further might be to include estimates of effective popu-

lation size in comparative analyses and to distinguish

between native versus introduced parasites and pathogens.

An alternative explanation is that different taxa are in different

stages of the coevolutionary arms race. If parasites lead the

game, evidence might support parasitism as a driver of MHC

polymorphism (leading to a positive relationship). However,

if hosts lead the game, greater MHC diversity might reduce

parasite pressure (leading to a negative relationship).

In contrast to the taxon-specific evidence of parasite-

mediated selection, we found that relative testes size, as an

indicator of sperm competition and the potential for sexual

selection to operate at the species level [27], was positively

associated with the rate of evolution at ABS across all

mammal groups in our study. This finding provides evi-

dence that species with high potential for mate choice tend

to have higher MHC nucleotide diversity at functionally

important sites. There are several non-exclusive explanations

for this result. First, species with greater relative testes size

and sperm competition might have faster reproductive rates,

increasing the speed of selection for new variants. Indeed,

Sommer et al. [75] found higher levels of MHC variation in a
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fast-reproducing and promiscuous rodent relative to a monog-

amous and slower reproducing relative, and hypothesized

that slow reproduction might constrain MHC polymorphism.

A second hypothesis is that greater sperm competition indi-

cates greater promiscuity and increased exposure to sexually

or socially transmitted diseases, which could enhance selection

on immune defences [76,77]. As a third possibility, females

with more potential mates might select genetically comp-

lementary or non-related mates and by doing so, serve to

increase MHC variability. A fourth hypothesis is that relative

testes size is correlated with androgen levels [78], which can

suppress immune function or mediate male behaviour and

increase exposure to and selection by parasites [79,80]. Our

finding of a weak negative relationship between parasite rich-

ness and relative testes size, however, is not consistent with this

hypothesis. Importantly, each of these mechanisms predicts

that greater promiscuity will lead to greater genetic diversity,

a result already observed for MHC and neutral genetic diver-

sity across passerine birds [81]. Our analysis did not support

an interactive effect between parasite richness and relative

testes size, as might be expected if both high parasite pressure

and the potential for mate choice were necessary to drive high

MHC diversity.

Our study strongly supported taxonomic group as an

important predictor for MHC allelic and sequence diversity.

Specifically, ungulates had significantly lower allelic richness

than any other order, possibly owing to fewer duplicated

DRB loci (figure 2a). Primates, in comparison, had significantly

greater allelic richness and more duplicated DRB loci. Average

nucleotide divergence (p) is positively associated with the

number of duplicated DRB loci in rodents [44] and this could

be an important mechanism providing baseline genetic vari-

ation. Life-history traits or ecological conditions that affect

the likelihood of MHC gene duplication events might therefore

help predict MHC polymorphism in natural populations.
Overall, our study extends previous comparative work

on MHC evolution by showing that both parasite-mediated

selection and sexual selection can operate as independent

forces maintaining differences in MHC diversity across

mammal species. Evidence that parasites served as agents of

selection was only found for bats and ungulates, but support

for sexual selection was universal across mammal groups

tested here. Potential explanations for this pattern include

greater selection on immune genes driven by higher pressure

from socially or sexually transmitted disease, and greater

opportunities for mate choice leading to faster rates of substi-

tution. Importantly, our analyses emphasize that comparative

studies can contribute to knowledge on MHC ecology and

evolution. We expect results of this study will encourage

more work on the influence of sexual selection on MHC

variability in wild populations, with great relevance for conser-

vation genetics and predicting species responses to future

disease risk.
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