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abStraCt

Much is known about the immediate and predictive antecedents of smoking lapse, which include situations (e.g., presence of 
other smokers), activities (e.g., alcohol consumption), and contexts (e.g., outside). This commentary suggests smartphone-based 
systems could be used to infer these predictive antecedents in real time and provide the smoker with just-in-time intervention. 
The smartphone of today is equipped with an array of sensors, including GPS, cameras, light sensors, barometers, accelerom-
eters, and so forth, that provide information regarding physical location, human movement, ambient sounds, and visual imagery. 
We propose that libraries of algorithms to infer these antecedents can be developed and then incorporated into diverse mobile 
research and personalized treatment applications. While a number of challenges to the development and implementation of such 
applications are recognized, our field benefits from a database of known antecedents to a problem behavior, and further research 
and development in this exciting area are warranted.

IntroduCtIon

Cigarette smoking is a chronic relapsing disorder—over half of 
all smokers will attempt to quit each year, but fewer than 7% of 
those who quit will achieve long-term abstinence (Centers for 
Disease Control [CDC], 2011). Smoking lapses, which nearly 
always result in relapse (Kenford et al., 1994), frequently occur 
in situations that provoke stress and/or involve the presence of 
smoking-related cues or activities (Shiffman, Paty, Gnys, Kassel, 
& Hickcox, 1996). Cessation counseling helps smokers identify 
high-risk situations and provides them with strategies that can be 
invoked when those situations occur (e.g., relaxation, avoidance, 
and distraction). However, such interventions are limited by 
the fact that smokers are (a) required to maintain vigilance for 
high-risk situations and (b) remember to enact the requisite 
coping strategies in time to effectively avoid lapse or relapse. 
In this commentary, we propose for the first time that the nearly 
ubiquitous smartphone, with its onboard sensing and computing 
functions, can assist the smoker in these tasks by detecting the 
predictive antecedents to smoking lapse, alerting the smoker to 
these high-risk situations, and delivering in-time interventions.

ImmedIate and PredICtIve 
anteCedentS of SmoKIng

Our knowledge of the immediate and predictive antecedents 
of smoking and smoking lapses is considerable and has been 
informed by dozens of ecological momentary analysis (EMA) 
studies. In these studies, smokers are asked to indicate occur-
rences of smoking behavior in an electronic diary (i.e., per-
sonal digital assistant) and are then queried about the contexts, 
activities, and internal states that preceded smoking. EMA 
studies have identified a broad range of temporal (time of day 
and day of week), situational (presence of other smokers), 
activity (food/alcohol consumption, standing outside), and 
psychological (stress/negative affect) factors that are predic-
tive of smoking and smoking lapses (Beckham et  al., 2008; 
Chandra, Scharf, & Shiffman, 2011; McCarthy, Piasecki, 
Fiore, & Baker, 2006; Shapiro, Jamner, Davydov, & James, 
2002; Shiffman et al., 1996, 2002, 2007; Shiffman, Kirchner, 
Ferguson, & Scharf, 2009; Shiffman, Paty, Gwaltney, & Dang, 
2004) (see Table 1).
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Could SmartPhoneS be uSed 
to deteCt the PredICtIve 
anteCedentS of SmoKIng?

One possible yet unrealized way, in which to close the loop 
on knowledge gained from EMA studies would be to develop 
a smartphone application that detects the predictive anteced-
ents of smoking lapse in real-time and provides just-in-time 
intervention. The smartphone, in addition to having onboard 
communications and computing functions, is equipped with 
a diverse array of sensors (global positioning system [GPS], 
cameras, microphones, Bluetooth, accelerometers, magnetom-
eters, and gyroscopes) that can be used to provide informa-
tion regarding physical location, human movement, ambient 
sounds, and visual imagery. Algorithms developed using signal 
processing and machine-learning techniques can take signals 
from smartphone sensors and use them to make inferences 
regarding real-world events. Mobile phone applications that 
sense and infer human behavior and context have already 
appeared in diverse fields including health care, transportation, 
safety, entertainment, and commerce (Campbell & Choudhury, 
2012; Lane et al., 2010). Moreover, smartphone-based systems 
have been developed that detect human activity types (Hicks 
et  al., 2010; Lu, Pan, Lane, Choudhury, & Campbell, 2009), 
environmental context (Azizyan, Constandache, & Choudhury, 
2009), mode of transportation(Liao, Patterson, Fox, & Kautz, 
2007; Thiagarajan, Biagioni, Gerlich, & Eriksson, 2010), 
mood (Lee, Choi, Lee, & Park, 2012; LiKamWa, Liu, Lane, & 
Zhong, 2011), and well-being (Lane et al., 2011).

Similar systems could be developed on the premise that 
many of the conditions antecedent to smoking exhibit a 
“fingerprint’’ on multiple sensing dimensions, and hence can 
be detected by smartphones (see Table  1). A  smartphone-
based system built on this premise, for instance, could warn 
the ex-smoker of imminent lapse when it detects she has left 
a bar at 10  p.m. (GPS, clock), is in the presence of others 
(conversation detection using the microphone), and is standing 
outside (accelerometer and temperature sensor) in a smoking 
area (visual detection of cigarette butts). The system could also 
record the sensed conditions or locations antecedent to smoking 
before an individual smoker quits. It might detect that the same 
smoker, now having quit, is approaching a place or context 
he frequently smoked (GPS, database of prequit smoking 
behavior) and suggest alternative routes (i.e., avoidance), 

unreinforced exposure to these contexts (i.e., extinction; 
O’Connell, Shiffman, & Decarlo, 2011), or other coping 
responses. Indeed, delivery of GPS-triggered interventions 
upon approach of patient-identified alcohol use locations has 
been suggested (Gustafson et al., 2011). Moreover, other, self-
reported factors including urge to smoke upon waking (Shiffman 
et al., 1997) predict increased lapse probability during that day 
and their inclusion could be used to modulate system resources 
allocated to detecting lapse antecedents. In addition to sensing 
antecedents, the system could infer a lapse episode from 
sensed smoking behaviors including lighter ignition (acoustic 
signature), hand-to-mouth motion (accelerometer), and the 
close proximity of a lit cigarette (visual object recognition). 
Likewise, off-board sensors could detect physiological states 
associated with smoking (Plarre et al., 2011), smoking behavior 
itself (Lopez-Meyer, Tiffany, & Sazonov, 2012), or the presence 
of smoke (Liu, Antwi-Boampong, Belbruno, Crane, & Tanski, 
2013) and transmit this information to the smartphone in order 
to infer smoking lapse.

ClInICal SIgnIfICanCe of 
SmartPhone SyStemS that deteCt 
SmoKIng and ItS anteCedentS

Smartphone-based sensing systems, such as the one imagined 
here could have myriad clinical applications. For instance, 
mobile phone-based cessation interventions that deliver pre-
scheduled text messages have demonstrated efficacy (Whittaker 
et  al., 2012) but could be improved by initiating or opti-
mizing just-in-time messages based on sensed conditions. 
Similarly, smartphone cessation apps are available (Abroms, 
Padmanabhan, Thaweethai, & Phillips, 2011) but do not include 
capabilities for alerting the smoker to the presence of high-risk 
situations. Smartphone sensing of lapse antecedents may also 
have application in mobile interventions including those that 
(a) attempt to prevent relapse following a detected lapse, (b) 
schedule biomarker provision and provide incentives for absti-
nence, and (c) prompt pharmacotherapy use in order to ward 
off craving/withdrawal. Beyond texting/messaging, smart-
phone communication and multi-media capabilities open up 
possibilities for a broad range of theory/evidence-based inter-
ventions (Heron & Smyth, 2010; Riley et al., 2011) including 

table 1. Example Smoking Antecedents, Their Associated Multimodal Sensory Dimensions for Fingerprinting, 
and Relevant Smartphone Sensors

Predictive antecedent
Sensory and other  

characteristics
Smartphone sensors and other  

information sources

Standing in a place 
outdoors

Location, posture, movement, and 
brightness

GPS, gyroscope, accelerometer, and light 
sensor

Traveling by vehicle Speed, motion, and location GPS, cell tower signals, and accelerometer
Social interaction Speech sounds, existence of other 

Bluetooth/WiFi devices in the vicinity
Microphone (and speech processing), 

Bluetooth, and WiFi
Stress Speech sounds, word choice, and gestures Microphone, voice and text recognition, and 

visual recognition of gestures
Food/alcohol 

consumption
Time of day, location, ambient light and 

sound
Clock, GPS, WiFi SSID, accelerometer, 

light sensor, and microphone

Note. GPS = global positioning system; SSID = service set identifier.
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social networking/engagement (Richardson et al., 2013), cogni-
tive training (Attwood, O’Sullivan, Leonards, Mackintosh, & 
Munafò, 2008), video messaging (Whittaker et al., 2011), and 
in situ cue-exposure treatment (Conklin & Tiffany, 2002).

SmartPhone SenSIng for 
ConduCtIng the next generatIon 
of ema StudIeS

In addition to clinical application, a smartphone-based system 
for detecting smoking, available as an app, could be used to 
cheaply acquire data on millions of smoking episodes from 
thousands of users in brief amounts of time, in otherwise 
remote or distant locations. Combined with data using tradi-
tional EMA methods, smartphone sensed data could be mined 
in order to discover previously unknown smoking antecedents, 
conduct surveillance of smoking at the community level, and 
improve lapse detection algorithms. Similar approaches to 
understanding real-time correlates of self-reported depression 
symptoms have been attempted (Burns et al., 2011) with some 
success. Looping back to clinical significance, with enough 
data, algorithms could be developed that learn which inter-
ventions result in the best outcomes for which smokers (and 
at what times/locations); and adaptively suggest and/or apply 
these interventions as needed.

ChallengeS aSSoCIated WIth 
SmartPhone SenSIng of SmoKIng 
anteCedentS

In addition to the engineering challenges associated with devel-
oping the library of algorithms necessary for detecting smok-
ing and its antecedents, a number of other challenges must be 
addressed, including the following. (1) Continuous smartphone 
sensing, regardless of the application, is energy intensive, and 
systems must be designed that optimize the balance between 
detection of smoking antecedents and energy consumption. 
Ideas rooted in hierarchical sensing are of interest, where cer-
tain low-energy sensors (e.g., accelerometer) remain on con-
tinuous “vigil,’’ and wake up high-energy sensors (e.g., GPS) 
when a relevant event seems imminent. (2) More pragmatically, 
smokers (like all humans) often keep their phones in locations 
that decrease sensor signal (e.g., in pocket/purse). The adoption 
of external mobile computing platforms (e.g., Google glasses) 
may obviate this limitation, but creative solutions will be nec-
essary in the near term, including opportunistic sensing (e.g., 
when the user is checking her E-mail). (3) Additional research 
will be needed to determine and overcome barriers to smokers 
adopting a technology that senses their behavior and optimizes 
the usability of such systems. (4) Issues around data privacy 
and confidentiality will need to be addressed both from techni-
cal and ethical perspectives. (5) Very little is known regarding 
the effects of delivering preemptive or just-in-time interven-
tions in the context of smoking cessation or other interven-
tions. For instance, no algorithms will be 100% accurate, and 
providing interventions at the wrong time or place (i.e., false 
positives) could inadvertently bring smoking to mind possibly 
triggering an urge to smoke. Much additional research will be 

needed to evaluate whether implementing sensing capabilities 
in order to provide just-in-time interventions improves cessa-
tion outcomes and in what subgroups of smokers.

Summary

We estimate there are approximately 15 million adult smokers 
who own a smartphone in the United States alone (CDC, 2011; 
Smith, 2011; US Census Bureau, 2010). Widely available 
and easy to distribute smartphone apps that (a) detect smok-
ing behavior and its antecedents and (b) provide personalized, 
real-world, just-in-time interventions could have enormous and 
beneficial impact in both clinical and research fields. Whereas 
smartphone systems have been developed to infer other behav-
iors with health/safety consequences (e.g., physical activity/
driving), we are fortunate as a field to know so much about the 
situational and contextual antecedents to a behavior of inter-
est—these antecedents themselves can be the target of sensing. 
Increased research that further refines our understanding of the 
contextual and behavioral antecedents of smoking lapse; and 
the development and evaluation of novel systems that capital-
ize on these findings is needed. This research will necessitate 
building bridges between tobacco research and computer sci-
ence/engineering, and we encourage the field to seek opportu-
nities and forums to promote such collaboration.
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