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Abstract
Difficult-to-reach populations are frequently sampled through various link-tracing based designs,
which rely on interpersonal networks to identify members of the population. This article examines
the substantive returns to one such multiple-link tracing design in the Colorado Springs “Project
90” HIV risk networks study. Cross-links were respondents who were targeted for enrollment
because of being named as partners by at least two other respondents in the sample. We compare
cross-links to other respondents on sociodemographic characteristics and network properties using
bivariate and multivariate adjusted statistics. We evaluate their contributions to observed network
structure by creating a set of counterfactual networks deleting the information they provided.
Results suggest that the link-tracing techniques led to identifying populations that would have
otherwise been missed and that their absence would have underestimated potential HIV risk by
distorting epidemiologically relevant measures within the network.

Introduction
Researchers rarely have clear sampling frames from which to recruit study participants from
hard-to-reach populations. To address this problem, researchers in numerous substantive
areas have developed strategies for finding, enumerating, and enrolling people from hidden
populations. Referral-based strategies, including snowball sampling (Frank and Snijders
1994; Johnson et al. 1989), link-tracing (Félix-Medina and Thompson 2004; Thompson and
Frank 2000), and respondent-driven sampling (Heckathorn 1997, 2002; Salganik and
Heckathorn 2004), provide an important class of approaches for studying such populations.
All of these rely on researchers’ ability to identify entry points, from which they uncover
additional members of the subpopulation of interest.

Link-tracing strategies are especially common in studies of sexually transmitted infections
(STIs) for following the trajectory of infection spread through a population (De et al. 2004;
Friedman et al. 2007; Klovdahl et al. 2001; Potterat et al. 2002) and identifying optimal
strategies for preventing further infections (Neaigus 1998). Link tracing often involves
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clinical interviews regarding an STI or other infectious agent, where infected patients
provide information about others with whom they have had contact and could potentially
have already transmitted the infection.1 Respondents generally report on frequency and type
of interactions for their own relationships—known as their “direct ties” along with basic
demographic attributes about these contacts. If respondents name more than one contact,
they can be asked to report on potential relationships among their contacts, here referred to
as “indirect ties.” For example, in Figure 1, A could report on “direct ties” with B, E, and F
as well as the indirect tie between B and F. Nominated contacts may be used to recruit
additional respondents for a particular study. The study we examine here focused on a
specific set of nominated contacts—known as “cross-links”—which identify people
nominated by at least two respondents. In Figure 1—supposing respondents B and C each
nominated G (a nonrespondent) among their direct ties, G would be identified as a cross-link
and subsequently targeted for recruitment. Because cross-links were expected to play an
important role in connecting the network, they became a focus of the link-tracing
recruitment strategy. In this article, we examine the specific gains resulting from recruiting
cross-links.

Link tracing is also increasingly being used to study the characteristics of the networks
connecting recruited participants (De et al. 2004; Handcock and Gile 2008). While standard
link-tracing approaches often focus only on ties through which a pathogen could potentially
spread, previous work shows that tracing a variety of ties—both those that are directly STI-
diffusion relevant (e.g., sexual or needle-sharing contacts) and those that are not (e.g.,
sharing meals or housing)—can assist in accurately reconstructing the networks within
populations of interest (Rothenberg et al. 1998b). Eliciting networks that represent both
“risky” contacts and social context can provide information about the community, and
ultimately the risk network itself that would be overlooked when sampling risky contacts
alone (Rothenberg et al. 1998b). As such, cross-links are identified based on nominations by
any two respondents—regardless of the tie type identified, though most were risk ties.

For any data collection strategy, researchers must carefully consider the tradeoffs inherent in
their chosen approach. For referral-based strategies, these tradeoffs frequently involve
decreased costs (financial and otherwise) at the expense of reduced representativeness of the
derived sample(s) (Heckathorn 1997). Researchers evaluating link-tracing must therefore
consider their ability to accurately estimate the size of such populations and match sample
characteristics to those of the target population (Goel and Salganik 2010; Heckathorn 2002;
Salganik and Heckathorn 2004; Woodhouse et al. 1994).

As described above, researchers using link-tracing based designs are also interested in how
network structure promotes or constrains STI spread (Friedman et al. 1997; Potterat et al.
2002; Rothenberg et al. 1995b, 1998a). Thus, an additional consideration important for
researchers using link tracing is whether, and how, different classes of respondents might
differentially contribute to measures of network structure within a study sample. It is
important to note that in this article we do not evaluate how readily the observed network
matches the “actual” risk network, since that question has been thoroughly explored
elsewhere (Potterat et al. 1999; Woodhouse et al. 1994). Our aim is to determine how
respondents recruited via link tracing differentially contributed to the observed sample and
network characteristics. In addition to informing future researchers examining disease
diffusion within this particular population, we also demonstrate an additional means by
which future link-tracing studies should be evaluated and provide a method for making those
comparisons.

1Similar strategies could be used to identify potential sources of patients’ infections or with subsequent interviews later contacts with
additional susceptibles.
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Data
The Colorado Springs “Project 90” study was a federally funded CDC project focused on
HIV transmission in heterosexual and intravenous drug use (IDU) populations. The primary
aim of the project was to identify and interview as many people in the target population as
possible (IDUs, prostitutes, and their sex partners), and to assess the size, structure, and
epidemic potential of the high-risk partnership network. Data were collected from 595
respondents using face-to-face interviews over a 5-year period, using an open cohort design.
Detailed overviews of the study and sample design have been published previously (Darrow
et al. 1999; Klovdahl et al. 1992; Potterat et al. 2004; Woodhouse et al. 1994).

Respondents were asked about basic risk-taking behaviors, daily activities, and health status.
The questionnaire also contained a local network module (Potterat et al. 2004)for collecting
data on respondents’ sexual, needle-sharing, drug-using, and personal contacts in the
previous 6 months. Respondents provided basic demographic information for each of their
contacts and the frequency and type of their interactions. Further, respondents reported
about the indirect ties among their contacts—indicating whether each pair shared sexual,
drug, or social ties. These data have been used previously to examine the impact of network
structure on disease transmission (Darrow et al. 1999; Potterat et al. 1999; Rothenberg et al.
1995a, 1998a).

Recruitment Strategy
Given that one aim of Project 90 was to approximate a census of the at-risk population, the
team employed a multi-pronged recruitment strategy. Respondents were recruited through
the public HIV testing center, STI clinic, drug clinic, and correctional system. Additional
persons were recruited through street outreach and a prior study of street prostitutes (CDC
1987; Khabbaz et al. 1990).

Klovdahl’s modified link-tracing mechanism was adopted as the primary method of chain-
referral (Potterat et al. 2004; Woodhouse et al. 1994). Identifying information (name,
address, phone number, etc.) on direct ties (sex, needle, drugs, social) was evaluated for
possible matches. If two or more respondents were found to have nominated the same
partner, identifying a cross-link, this partner was targeted for enrollment. Though
considerable effort was expended to identify, find, and interview cross-links, the yield was
low.2 Of the 341 cross-links identified and targeted for recruitment, only 92 (27%) were
successfully interviewed.

Analytic Strategy
We compare the 92 respondents recruited as cross-links across the 5-year study period to all
other respondents (N=503). Once enrollment was completed, researchers identified a group
of directly recruited respondents who, like cross-links, were also multiply nominated.
Because there was no tracing process involved in enrolling this group, they cost no more to
enroll than non-cross-linked respondents; however, they share some partner-based
characteristics with cross-links. As such, for some analyses we split direct recruits into those
who were multiply nominated (“DR2+,” N=172) and those who were not (“DR0 1,”
N=331).3 We use bivariate and multivariate statistics to evaluate whether cross-links differ
from other respondents on a range of sociodemographic characteristics.

2The bulk of the additional cost and effort was in identifying cross-links. This required real-time data cleaning and matching of
network nominations from multiple respondents. While it did not add substantially to cost (time or financial), for the subsequent
recruitment of cross-links, this real-time data processing occupied the bulk of researchers’ time during data collection.
3Previous Project 90 literature occasionally refers to multiply nominated direct recruits as “coincidental cross-links.” Since our focus
is on recruitment strategy differences, our terminology differentiates between cross-links and direct recruits (multiply nominated,
DR2+, and non-multiply nominated, DR0 1).
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Individual Measures
Demographic Attributes—First, we compare cross-links to other respondents on a range
of characteristics: Demographic attributes include sex, age, and race; risk category attributes
include recent (within 6 months) IDU, exchanging sex for money or drugs, and sex with
persons in either risk category (paid or not).

Network Position—For each node, we calculate a number of standard network-based
measures that have direct relevance for STIs regarding individual risk exposure and
population transmission dynamics. Unless indicated, formal definitions of network measures
are available in Wasserman and Faust (1994). We construct two types of individual position
measures from the observed network: Local network measures focus on single respondents
and those to whom they are connected, while global network measures describe an
individual’s location in the entire observed network. For both local and global network
measures, we include direct and indirect tie reports (see adams and Moody 2007) for an
evaluation of respondents’ ability to accurately report indirect ties. While cross-links could
be identified based on social, sexual, or drug-sharing ties, the analyzed networks include
only the HIV epidemiologically relevant ties (i.e., sex and drug-sharing ties).

The local network measures we examine are degree, local network density, and racial
heterogeneity. A respondent’s degree is the number of persons they are directly linked to via
sex and/or drug sharing. We derive from the aggregate network—constructed across time
from all respondents—rather than a personal estimate from a single survey question. Local
network density measures the extent to which one’s partners have sex or drug ties among
themselves. This measure is normalized by the total number of possible ties, and ranges
from 0 (no partners connected to each other—e.g., node G in Figure 1) to 1 (all partners
connected to each other—e.g., node F or H in Figure 1). Computed local density is limited
to nodes with degree 2 or higher (see Table 1 for N). Degree and density increase the
epidemic potential within the local network. Racial heterogeneity reflects the racial diversity

within each respondent’s local network. It is calculated as , where k indexes the
different racial groups, nk is the number of people in race k and N is the total number of
people in the local network (Blau 1977). Respondents with racially heterogeneous networks
often act as bridges between racial groups otherwise separated by patterns of selective
mixing (Morris 1993; Youm and Laumann 2002).

The global network positional measures we examine include membership in the largest
component and bicomponent, closeness centrality, and positional equivalence. A component
is defined as a set of persons who are connected by a path of any length. Most large
networks, including the observed Project 90 risk network, contain a “giant component”
(Palmer 1985) comprising over half of all participants connected through a chain of
relations. The measure in largest component indicates whether a node is in the giant
component (e.g., in Figure 1, only node J would not be in the connected component).
Component membership represents both the personal risk of infection and the potential to
infect others due to the large number of reachable persons. In largest bicomponent measures
a subgroup within the largest component where every person is connected by at least two
completely independent paths (Harary 1969; Moody and White 2003). There are two bi-
components in Figure 1—A–B–F and C–D–H. In a risk-contact network, bi-components are
subsections of the graph where a higher likelihood of transmission exists because pathogens
can follow multiple distinct routes between pairs.

Closeness centrality measures the inverse of the average distance between a person and all
other people in the largest connected component.4 The standardized index ranges from 0 to
1. High values indicate persons close to many others. Since exposure risk declines with
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relational distance, persons with higher closeness centrality are at greater risk of disease
acquisition. All of the measures described above are computed for each node in the observed
network.

Network equivalence measures the extent to which groups of persons have similar patterns
of ties. Two persons occupy an equivalent network position if they have the same types of
ties to similar types of people, where “types” are defined by tie patterns (White et al. 1989).
For example, nodes A and D in Figure 1 are regularly equivalent—they each have one tie
that includes only sex (to nodes not connected to anyone else), one tie that includes only
drugs (to nodes with one additional sexual partner, G), and one tie that includes both sex and
drugs (who also share drugs with their respective drug-only tie). Here, we define
equivalence by examining—for all pairs of nodes in the network—the similarity on their
triadic census distributions, incorporating drug, sex, or both links for constructed triads.5

Two respondents who are strictly “regularly equivalent” across sex and drug tie patterns
would have identical distributions across the possible triad configurations.

Results
In the following sections, we present bivariate and multivariate comparisons of cross-links
to direct recruits, where appropriate separating the latter into those who were multiply-
nominated and those who were not. Table 1 presents comparisons of individual attributes
and network measures across the two recruitment strategies (columns I–II) and splitting DR
(columns III–IV).

Bivariate Results
Individual Measures—While cross-links and direct recruits are predominantly male,
DR2+ are more likely to be female (Column IV). Recruited cross-links yielded respondents
who were on average nearly 3 years older than direct recruits, and more likely than direct
recruits to be non-white. Cross-links also display distinctive patterns of risk behavior and
network position. Virtually all respondents report sexual or drug-sharing partners during the
study interval, though cross-links report less IDU. While female cross-links are less likely to
participate in prostitution, male cross-links are more likely to be pimps. On average, cross-
links have more risk partners than direct recruits, though they have fewer than DR2+. Local
network density is highest among cross-links. Average closeness centrality does not differ
appreciably by recruitment status and is normally distributed, suggesting an absence of
“hubs” in this network who provide between other nodes. Cross-links are more likely to be
in the largest component than DR, however this difference is much smaller when compared
only to DR2+. Multiply nominated respondents (whether cross-links or direct recruits) are
similarly likely to be in the largest bicomponent (89% and 86% respectively).

Network Measures—The largest connected component (see Figure 2) of the risk-
partnership network includes 405 respondents and 3,779 total persons (68% of respondents,
and all names mentioned respectively).The full study population includes 5,595 named
persons, of whom, 595 are respondents. For more details see (Potterat et al. 2004). The
layout algorithm in Figure 2 (Fruchterman and Reingold 1991) tends to group nodes with
similar patterns of ties closer to each other in the figure (Batagelj and Mrvar 2003). Thus, if
cross-links occupy different locations from DR (whether multiply nominated or not), they

4Because distance between components is undefined and centrality within the multiple small components uninformative, closeness
centrality is only calculated for persons in the largest connected component.
5The details of the measurement are given in Harary (1969). We modify the traditional triad census (Moody 1998) to account for the
possible combinations that arise from three tie types—sex, drugs, and both sex and drugs. The measure captures each person’s
position as their frequency distribution across the resulting 40 possible triadic positions (available from authors).
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may appear in different regions of this figure. The absence of such obvious differences
suggests that cross-links and DR occupy approximately similar positions and may share
similar patterns of ties. Table 2 formally quantifies similarity in network position,
comparing the correlation in network equivalence across recruitment strategy. If different
recruitment strategies find respondents with different network positions, the result would be
high within-group correlations and low between-group correlations. The within-group
correlations are generally high (r~0.6). Remarkably, cross-links are similar to all DR (r~0.5),
though slightly more similar to DR2+ than DR0 1 (r~0.6, 0.5 respectively). This seems to
indicate that all respondents fulfill roughly similar roles in the network, and the similarity
between cross-links and DR2+ is virtually indistinguishable from similarity among each.

Multivariate Results
While cross-links possess unique demographic characteristics, risk-behavior attributes, and
network positions (see Table 1), controlling for demographic differences reduces the
magnitude and significance of some network-based differences. Table 3 presents these
differences between cross-links and DR2+,6 with Column 1 including only a recruitment
strategy dummy, while Column 2 controls for recruitment strategy plus age, race, sex, and
risk category. Net of controls, cross-links lower degree, density and centrality is reduced and
insignificant. However, even controlling for demographic attributes, cross-links continue to
have more racially homogeneous partners and are more often in the largest component.

Network Structure Contributions
Cross-links were more likely than DR to provide redundant nominations, naming alters who:
were more likely to be respondents themselves (34.5%, compared to 15.5% for DR) and
received more nominations on average (2.1 nominations on average, compared to 1.6 for
DR). Combined, these suggest they may differentially contribute to the observed network
structure. Even combining these observations with the respondent class differences from
above, does not sufficiently account for how cross-link recruitment changed estimated
epidemic potential of the global network. We estimate this contribution by constructing a
version of the risk network that assumes no cross-links were enrolled. This counterfactual
network removes all the information uniquely provided by each cross-link: any of their
partners who were not nominated by other respondents and any ties that were reported
exclusively by the cross-links. Note that this will not result in the removal of cross-links
from the network, since, by definition, they were nominated by at least two other
respondents. We compare this cross-link reduced network to the observed network and to a
series of 100 randomly reduced networks, each of which is created by following a similar
procedure for 92 randomly chosen direct recruits and removing the information they
uniquely provide. By comparing the observed network to these reduced networks, we can
identify how the information obtained from cross-links contributed to the observed network.

For these comparisons, we examine how the reduced and observed networks differ on
network size, the number of ties, the size of the largest component, and reachability over
short paths (Rothenberg et al. 1995a, 1998a). Network size and number of ties measures
network volume as the number of persons and ties in the network, respectively. Giant
component size measures the number of persons linked together in the largest component
(e.g., in Figure 1, the large component contains nine nodes). Reachability in three steps
captures the proportion of dyads in the giant component that are linked by a path no longer

6One could compare cross-links to all direct recruits and/or DR0 1. Such comparisons would reveal significant differences but would
be misleading due to the confound in degree between cross-links and the comparison groups. By definition, cross-links have higher
degree than all DR except for DR2+. The network measures examined are all degree dependent (Wasserman and Faust 1994); thus,
restricting the comparison group to DR2+ is necessary to uncover differences in position that are net of differences in degree.
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than three ties. For example in the giant component in Figure 1 (which excludes only J),
there are (N*N 1)/2 = 36 possible dyads. Of those, 25 can be connected in three steps or less
(only AD, AH, AI, BI, CE, DE, DF, EH, EI, FH, and FI are longer than three steps). Thus,
reachability is 25/36 = 0.694. Intuitively, these are one’s partners’, partners’ partners.
Potential disease diffusion between a randomly selected pair of (indirectly) connected nodes
rapidly declines with increases in the distance between them. For each of these measures,
differences resulting from removals reveal the inverse effects of the contributions provided
by the removed group. For example, if cross-links bridge disparate populations, then
removing their information will result in greater distances between people, suggesting they
provided “shortcuts” for potential disease diffusion across the observed network.

Figure 3 compares these network statistics for the observed network (circle), the
counterfactual network with cross-links information deleted (diamond), and the range from
the corresponding 100 DR-removed counterfactual networks (boxplot). To be able to
compare across these differences, Figure 3 presents them as Z-score standardizations;
however, we discuss the absolute differences. Given the extent of redundancy in the nodes
nominated by cross-links, removing cross-link information has a comparatively small effect
on measures of network volume. Had cross-links not been enrolled, 364 persons would have
been missed, about 6.5% of the observed network. We also would have missed 1,243
partnerships, about 10.3% of the total, and found 379 fewer persons in the largest
component, a drop of 10.1%. While potentially substantively important, the effect on each of
these measures is substantially less than if we had not sampled an equivalent number of DR.
Information from cross-links also played a role in reducing the distance between persons
(Figure 3, “3-step Reach”). Within the largest component of the observed network, the
median person can reach 157 people in three steps; this falls to 123 people without cross-
link information, a 21.7% drop. Combined, these findings suggest that while information
provided by cross-links did not identify many new people, the ties reported by cross-links
were more likely to form bridges in the largest component, shortening overall distance
between pairs.

Discussion
Project 90 sought to identify the potential for HIV transmission among a high-risk
population in Colorado Springs by mapping their drug and sex partner network. The study
enrolled respondents with a conventional convenience sample and a modified link-tracing
design. Here, we use standard bivariate and multivariate statistical comparisons to examine
how recruits resulting from these strategies differed on individual demographic and network
characteristics, and a new strategy using simulated counterfactual networks to examine their
differential contributions to observed network connectivity. Our findings suggest that the
cross-links were systematically different, but that their network position differences were
largely explained by their demographic attributes. The network information provided by
cross-links was largely redundant with respect to the individuals identified, but unique in the
pattern of relations identified among these persons. Findings do not provide unqualified
support for targeted contact tracing, but they do help clarify three important conditions
under which the additional costs associated with link-tracing may be justified.

First, cross-link sampling captured a subpopulation that differed significantly from that
obtained using conventional sampling (e.g., more likely to be older, male, pimps, and black).
While the specific attributes that marked this population may not apply to other contexts, the
first potentially generalizable finding is that cross-link tracing can uncover populations that
would otherwise be hidden. Particularly when the target population involves high-risk
groups that are hard to reach, a cross-link design can help counteract the limitations of
convenience sampling. This was a challenging setting for observing such an effect, as the
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study team had more than 20 years of experience in STI control in this community. The high
levels of trust and local knowledge developed here likely raised the quality of the
convenience sample obtained. If, even in this context, the cross-link tracing strategy led to
different members of the high-risk network, the value of cross-link strategies for revealing
hidden subpopulations is likely quite general. Second, cross-links’ network characteristics
differed in important ways from DR (they had lower average degree, lower density, and less
racially heterogeneity, and were less central in the global network than DR). These
differences in network position largely disappear, if conditioned on demographic attributes
and risk group. Thus, in similar contexts, one could combine external information on the
demographic profile of the high-risk population with more detailed information from a
convenience sample to obtain better estimates of network structure. In Project 90, the tracing
sample changed estimates of the profile of the high-risk population, and thus was required to
model missing data. However, the results suggest researchers may be able to accomplish this
with a relatively small tracing sample.

Finally, while cross-links and DR (especially DR2+) occupied similar network positions and
contributed similar kinds of information regarding network connectivity, the cross-links
provided a specific epidemiologically relevant capacity for identifying and mapping the
community risk network. The fact that partners named by cross-links were often redundant
should not be surprising, since (by definition) these people are within the risk circles of at
least two other respondents. What makes them valuable is that cross-links identified
connections among other respondents that change the overall distance between pairs. To
clarify, if B and C (Figure 1) were targeted cross-links, they have similar characteristics to
others in their local network (e.g., A and D respectively) regarding number and types of ties.
However, without recruiting them, we likely would have missed their ties to G, whose
presence connects those on the left and the right of the graph. Because pathogens are more
likely to be passed through short relational chains, this finding has direct implications for
estimates of the network STI transmission potential. This difference would not have been
discoverable from the positions of cross-links in the global network, nor would variations in
their local-network or the complete network among cross-links. We were only able to
discern this unique characteristic of the information provided by cross-links via our strategy
for comparing observed networks to simulated counterfactual networks.

These findings are limited by the relatively low response rate Project 90 staff obtained
among targeted cross-links. It is possible that nonenrolled cross-links had different
characteristics and networks. This reflects the inherent difficulties of contact tracing.
Although it limits our ability to estimate the true population values of cross-links’ attributes,
our findings are still likely useful for estimating the practical value that cross-links added to
Project 90 network estimates. To quantify the value of the targeted cross-link tracing
strategy, we can compare the costs of their recruitment to those with similar characteristics
found through the convenience sampling mechanism. Of the 503 enrolled DR, 172 were
multiply nominated, so the relative cost per DR2+ is 2.9 times the cost per DR0 1. Roughly
speaking, then, if it costs three times more to trace and enroll cross-links, that is about the
break-even point. This is likely to be a conservative estimate. The relatively high yield of
DR2+ here is due to the effort expended in enrolling as many high-risk persons as possible
in a relatively small community and the high levels of connectedness in this network. In a
larger community, with less connectivity, any corresponding drop in the yield of
convenience strategies would quickly raise the relative gains provided from recruiting cross-
links.
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Figure 1.
Exemplar Graph of Network Characteristics
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Figure 2.
Network Position by Sample Strategy
Largest Component, Pooled Drug or Sex Tie Network
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Figure 3.
Network Structure Counterfactuals
Measures with and without Information Provided by Node Types
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Table 2

Mean Network Equivalence by Recruitment Category

A B B1 B2

A) Cross links 0.62 (0.38) 0.54 (0.35) 0.49 (0.36) 0.63 (0.33)

B) Direct Recruits 0.59 (0.32) - -

 1) <2 Nominations 0.66 (0.31) 0.52 (0.33)

　2) ≥ 2 Nominations 0.66 (0.31)

NOTE: Numbers presented are the mean correlations across the tie-type specific triad distributions, with standard deviations in parentheses.
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Table 3

Network Position Comparison: Cross-Links and Multiply Nominated Direct Recruits (DR2+)

Dependent Variable

Coefficient for Cross-Linksa

Unadjustedb Adjustedc

Average Degree −7.24 ** (1.99) −2.94 (1.98)

Race Heterogeneity −0.10 ** (0.03) −0.07 * (0.03)

Local Net Density −0.05 * (0.02) −0.03 (0.02)

Closeness Centrality −0.01 * (0.004) −0.004 (0.004)

In Largest Component 1.89 (1.05) 2.19 * (1.06)

In Largest Bicomponent 0.30 (0.40) 0.49 (0.42)

a
Multiply nominated direct recruits is the reference category

b
Unadjusted includes a recruitment category dummy only

c
Adjusted controls for age, race, sex, and risk group, with a dummy for recruitment category.

d
Logistic regressions were used for modeling membership in the largest component/bicomponent. OLS regressions were used for all other models.
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