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A crucial component of the analysis of shotgun proteom-
ics datasets is the search engine, an algorithm that at-
tempts to identify the peptide sequence from the parent
molecular ion that produced each fragment ion spectrum
in the dataset. There are many different search engines,
both commercial and open source, each employing a
somewhat different technique for spectrum identification.
The set of high-scoring peptide-spectrum matches for a
defined set of input spectra differs markedly among the
various search engine results; individual engines each
provide unique correct identifications among a core set of
correlative identifications. This has led to the approach of
combining the results from multiple search engines to
achieve improved analysis of each dataset. Here we review
the techniques and available software for combining the
results of multiple search engines and briefly compare the
relative performance of these techniques. Molecular &
Cellular Proteomics 12: 10.1074/mcp.R113.027797, 2383–
2393, 2013.

The most commonly used proteomics approach, shotgun
proteomics, has become an invaluable tool for the high-
throughput characterization of proteins in biological samples
(1). This workflow relies on the combination of protein diges-
tion, liquid chromatography (LC)1 separation, tandem mass
spectrometry (MS/MS), and sophisticated data analysis in its
aim to derive an accurate and complete set of peptides and
their inferred proteins that are present in the sample being
studied. Although many variations are possible, the typical
workflow begins with the digestion of proteins into peptides
with a protease, typically trypsin. The resulting peptide mix-
ture is first separated via LC and then subjected to mass
spectrometry (MS) analysis. The MS instrument acquires frag-
ment ion spectra on a subset of the peptide precursor ions
that it measures. From the MS/MS spectra that measure the
abundance and mass of the peptide ion fragments, peptides

present in the mixture are identified and proteins are inferred
by means of downstream computational analysis.

The informatics component of the shotgun proteomics
workflow is crucial for proper data analysis (2), and a wide
variety of tools have emerged for this purpose (3). The typical
informatics workflow can be summarized in a few steps:
conversion from vendor proprietary formats to an open for-
mat, high-throughput interpretation of the MS/MS spectra
with a search engine, and statistical validation of the results
with estimation of the false discovery rate at a selected score
threshold. Various tools for measuring relative peptide abun-
dances may be applied, dependent on the type of quantitation
technique applied in the experiment. Finally, the proteins
present, and their abundance in the sample, are inferred
based on the peptide identifications.

One of the most computationally intensive and diverse
steps in the computational analysis workflow is the use of a
search engine to interpret the MS/MS spectra in order to
determine the best matching peptide ion identifications (4),
termed peptide-spectrum matches (PSMs). There are three
main types of engines: sequence search engines such as
X!Tandem (5), Mascot (6), SEQUEST (7), MyriMatch (8), MS-
GFDB (9), and OMSSA (10), which attempt to match acquired
spectra with theoretical spectra generated from possible pep-
tide sequences contained in a protein sequence list; spectral
library search engines such as SpectraST (11), X!Hunter (12),
and Bibliospec (13), which attempt to match spectra with a
library of previously observed and identified spectra; and de
novo search engines such as PEAKS (14), PepNovo (15), and
Lutefisk (16), which attempt to derive peptide identifications
based on the MS/MS spectrum peak patterns alone, without
reference sequences or previous spectra (17). Additionally, el-
ements of de novo sequencing (short sequence tag extraction)
and database searching have been combined to create hybrid
search engines such as InSpecT (18) and PEAKS-DB (19).

The goal of this review is to evaluate the potential improve-
ment made possible by combining the search results of mul-
tiple search engines. On their own, most of the common
search engines perform well on typical datasets, with the
results having significant overlap between the algorithms (20);
and yet, the degree to which there is divergence in the results
of different search engines remains quite high. Disagreement
between search engines, where multiple different peptide se-
quences are identified with high confidence, is quite rare. It is
much more common to observe different engines being in

From the ‡Institute for Systems Biology, Seattle, Washington
98109; ¶Department of Pathology, University of Michigan, Ann Arbor,
Michigan 48109; �Department of Computational Medicine and Bioin-
formatics, University of Michigan, Ann Arbor, Michigan 48109

Received January 24, 2013, and in revised form, April 26, 2013
Published, MCP Papers in Press, May 29, 2013, DOI 10.1074/

mcp.R113.027797
1 The abbreviations used are: FDR, false discovery rate; MS/MS,

tandem mass spectrometry; PSM, peptide-spectrum match.

Review
© 2013 by The American Society for Biochemistry and Molecular Biology, Inc.
This paper is available on line at http://www.mcponline.org

Molecular & Cellular Proteomics 12.9 2383



agreement on the correct identification, yet with neither of the
identifications having a probability high enough to allow it to
pass the selected error criterion when analyzed indepen-
dently. When the results are analyzed together, the agreement
on the identification might propel the PSM to pass the same
error criterion. In cases when only one engine scores the PSM
highly enough that it passes an acceptance threshold, these
identifications are reported within the acceptable error rate.
Also, some engines use unique methods to consider peptides
or modifications not considered by other engines. Even if the
experimenter is careful to choose similar search parameters
when running multiple tools, different search engines will al-
low one to set non-identical search parameters, which con-
tributes to reduced overlap between the search results. Spec-
tral library search engines tend to be far more sensitive and
specific than sequence search engines, but only for peptide
ions for which there is a spectrum in the library.

Given that different search engines excel at identifying dif-
ferent subsets of PSMs, it seems natural to combine the
power of multiple search engines to achieve a single, better
result. Many algorithms and software tools have emerged that
combine search results (21–28), each demonstrating an im-
proved final result over any individual search engine alone.
Such improved results come at the cost of the increased
complexity of managing multiple searches in an analysis pipe-
line, as well as a several-fold increase in computational time in
what is already the most computationally expensive step.
However, with the ever-growing availability of fast computers,
computing clusters, and cloud computing resources, re-
searchers now have within reach the ability to quickly search
their MS/MS data using several of the still-growing number of
search engine algorithms. In some cases the open-source
search engines are quite similar to their commercial alterna-
tives; for example, Comet (29) is very similar to SEQUEST.
Given the significant amount of time the average researcher
takes to design an experiment, process the samples, and
acquire the data, it is natural that a researcher would wish to
maximize the number and confidence of peptide and protein
identifications in each dataset with a rigorous computational
analysis. Furthermore, when using label-free spectral count-
ing for abundance analysis, maximizing the number of PSMs
increases the dynamic range and accuracy of the quantitative
approach (23). Therefore, the demand to use multiple search
engines and integrate their results with the goal of maximizing
the amount of information gleaned from each dataset is ex-
pected to continue growing.

Also emerging are software tools that use several iterative
database searching passes of the same data, combining mul-
tiple database search tools, searches with different post-
translational modifications, and searches against different da-
tabases in an attempt to use each specific tool under ideal
conditions, utilizing each for its specific strengths and inte-
grating the results (30). Some relevant aspects of such strat-
egies are discussed by Tharakan et al. (31).

In the following sections, we review the various approaches
and software programs available to assist with the merging of
results from different search engines. We also provide a per-
formance comparison of the various approaches described
here on a test dataset to assess the expected performance
gains from the various described methods.

MATERIALS AND METHODS

The following software was used in the analysis of the data pre-
sented in this review: search engines InsPecT, version 20090202;
Mascot, version 2.2.04; OMSSA, version 2.1.1; SEQUEST, version 27;
MyriMatch, version 1.5.7; and X!Tandem (k-score) 2007.07.01.3. The
Trans-Proteomic Pipeline (TPP) version used in the analysis was
4.6.2. MSBlender was downloaded and built from source using code
available on February 15, 2012. PepArML searches and analysis were
completed through the PepArML website, and the results were down-
loaded on July 15, 2012.

The searches done locally were completed in parallel on a Linux
cluster running CentOS release 5.9. Upon search completion, the
search results were combined in all possible combinations using
iProphet, without rerunning the searches. MSBlender was also done
on the same search results and on our local cluster. In the case of
PepArML, we uploaded our data to the PepArML website and per-
formed the searches and PepArML analysis on their systems. When
these were completed, we were able to download and process the
results. Because the formats generated by MSBlender and PepArML
are different than iProphet-generated pepXML output, tools for pars-
ing and processing the MSBlender and PepArML results had to be
written; these were based on the TPP scripts for performing decoy-
based error rate calculations, reusing as much codebase as possible
while adapting them to the unique tables and pepXML flavors gener-
ated by the non-TPP tools analyzed.

Overview of Approaches—In order to provide a multi-tool result,
there are several notable obstacles that need to be cleared before one
is able to perform search engine merging. First, nearly every search
engine writes its output data in a different file format (32). Second,
running multiple search engines requires bookkeeping to transfer and
collate the output files for jobs farmed out to computing clusters that
require dedicated nodes to perform the searches (e.g. Mascot). Third,
nearly every search engine produces a different score parameter to
indicate the quality of a PSM. Finally, the PSMs are sometimes given
different identifiers by different search engines, which can make it
difficult to match the PSMs corresponding to the same spectrum. The
techniques by which these obstacles are overcome vary depending
on the approach and are discussed below.

To overcome the problem of different output file formats for each
search engine, the combiners must either use custom parsers for
each supported search engine or require that the native search engine
output is first converted to a common format, such as the community-
developed HUPO-PSI mzIdentML (33) format or pepXML (21). Once
the issues of differing output formats have been surmounted, one of
the easiest approaches is to filter a final list of PSMs based on search
engine congruency. The results from each of the search engines are
merged in such a way that only those PSMs for which there is a
minimum threshold of congruency for the supplied search results are
considered. An example of such criteria is the requirement that all
search engines be in complete agreement, or at least a majority
consensus such as two out of three or three out of five, depending on
the number of engines used. Decoys can be propagated through such
a simple approach to estimate false discovery rates (FDRs) for the
output. Although implementing such an algorithm is easy, spectra
that may be very confidently identified by only one search engine are
lost. Instead, a more sophisticated combination scheme is desired,
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one that can take advantage of multiple search engines without
inflating the FDR while incorporating as many correct peptide assign-
ments as possible.

Keller et al. (21) demonstrated the earliest mechanism for combin-
ing the output of three search engines, SEQUEST, Mascot, and
COMET, within ProteinProphet (34) by merging results based on
probabilities uniformly calculated in the different search results by
PeptideProphet (35). The overlap between different engine results
was shown to be incomplete, and an improved result was achievable
via the SearchCombiner within ProteinProphet. This functionality has
since been moved out of ProteinProphet and into iProphet (25), which
is described in detail below.

The concept was expanded by Searle et al. (24) in the calculation
of an agreement score for each spectrum, and it was implemented in
Scaffold (Proteome Software, Portland, OR). Scaffold considers mul-
tiple top-scoring matches from each search engine. It uses a Bayes-
ian approach implemented in an expectation maximization algorithm
to combine the probabilities of the individual search engine results
into a single probability for each PSM. Another commercial tool is the
inChorus software tool (Bioinformatics Solutions, Inc., Waterloo, ON,
Canada), a multi-engine search tool that incorporates results from
SEQUEST, Mascot, OMSSA, X!Tandem, and the PEAKS de novo
search engine.

PepArML (36) is described as an unsupervised, model-free, ma-
chine-learning meta-search engine wherein one submits a dataset to
their Web interface for analysis. Multiple search jobs for Mascot,
X!Tandem, OMSSA, X!Tandem with the K-score plug-in (37), SScore,
MyriMatch, and InSpecT are queued to their own clusters for these
submitted data, and the combined result is made available to the
submitter free of charge after processing. A significant advantage of
this system is that there is no reliance on local computer power to run
multiple searches. It is open-source software and is freely available.
However, throughput is limited to whatever is provided by the system,
and one cannot upload custom databases without contacting the
support team, which to date has been very responsive. The output of
PepArML is a compressed archive containing the results of the indi-
vidual searches and their combinations in pepXML and protXML
formats, along with images estimating the FDR performance of the
analysis.

MSblender (23) uses a probabilistic approach to combining results
from multiple search engines, first computing probabilities of correct
identification based on individual search engine scores and then
combining results on this basis. This was shown by Kwon et al. (23) to
dramatically improve the completeness of identifications in several
datasets, performing as well as or better than previous approaches.
The increased completeness improved the dynamic range and accu-
racy of a spectral counting quantitative approach, and MSblender
was shown to compute an accurate estimation of the FDR in the
combined result. MSblender is open-source software and is freely
available online, and at present it is compatible with SEQUEST,
X!Tandem, OMSSA, MyriMatch, MS-GFDB, and InSpecT, although it
is claimed the approach could be applied to additional search en-
gines. MSblender generates .tsv files as output and requires writing
custom parsers to work with the results.

FDRAnalysis (38) is a recently published tool for combining the
results of Mascot, X!Tandem, and OMSSA. FDRAnalysis is distributed
as a stand-alone application that can be downloaded and run on a
local computer or as a Web application that can be accessed by
anyone with a Web browser. The input to FDRAnalysis is mzIdentML
formatted results, although it is also able to process Mascot’s dat
format, OMSSA’s csv format, and X!Tandem’s native xml output. The
FDRAnalysis algorithm counts decoy matches in the results and
produces output consisting of a collection of tables in csv format and

images showing distributions of identified peptide attributes for decoy
and non-decoy proteins in the database.

The ConsensusID tool (28), a component of the OpenMS toolkit
(39), forms a probabilistic consensus on the top-scoring PSM results
of several search engines utilizing all the high-ranking scoring
matches output by each search engine. A key feature of this tool is its
sequence similarity scoring mechanism, which is a method to esti-
mate the scores for PSMs in cases when the peptide is missing from
the high-ranking results of a search engine. ConsensusID explicitly
computes peptide match scores for all peptides and search engines
involved by utilizing the highest sequence similarity peptide se-
quences in the other searches, thereby including all potential peptides
reported by each search in a consensus-based rank order in the
result. ConsensusID is open-source software and is freely available
within the OpenMS suite.

The iProphet tool (25) is a component of the TPP (21, 40) that is
used between PeptideProphet (35) and ProteinProphet (34). Pep-
tideProphet uses a mixture model to discriminate between correct
and incorrect assignments, assigning a probability of being correct to
every PSM and calculating global FDRs at several thresholds. Any
search engine for which the output can be written out in or converted
to the pepXML format (21) is supported by PeptideProphet, including
the spectral library search engine, SpectraST. PeptideProphet output
is also written in pepXML. If a dataset has been searched with
multiple search engines, each of the separate PeptideProphet mod-
eling results can be combined with the iProphet tool. The iProphet
algorithm recomputes the PSM probabilities and calculates peptide-
level probabilities via several other mixture models, taking into ac-
count corroborating evidence of other PSMs, and it writes the result-
ing information in pepXML format. ProteinProphet then takes the
results of iProphet pepXML to perform its protein inference calcula-
tion and writes the result in protXML. The iProphet software is open-
source and is freely available within the TPP suite. Although iProphet
is assessed here in the context of combining multiple search engines,
it should be noted that the model for combining multiple searches
used by iProphet (the Number Sibling Searches model) is only one out
of a set of six models that can be applied to improve the identification
rates on the analysis of even a single search engine.

Uses of Decoy Matches—It is a common practice to include decoy
proteins in the database search step. PeptideProphet’s semi-super-
vised (41) and semi-parametric (42) modes require the presence of
decoy sequences in the database for estimating the mixture models.
PSMs matching to peptides present only in decoy sequences are
true negative results. In the iProphet paper, we used two independent
sets of decoys in the database. One set of decoys was used to run
PeptideProphet in the semi-parametric mode (which is currently the
only way to run search engines other than Mascot, SEQUEST, Comet,
and X!Tandem through the TPP). The second set of decoys was used
to show that PeptideProphet, iProphet, and ProteinProphet gener-
ated accurate probabilities when compared against an independent
set of true negative PSMs not known to be decoys to the TPP. This
was a clean cross-validated approach unsusceptible to over-fitting of
the model. As we showed in the iProphet paper, this approach
provided accurate probabilities for PSMs, distinct peptides, and pro-
tein levels.

In practice, however, generating two independent decoy sets cre-
ates additional bookkeeping overhead and can be avoided. If there is
only one set of decoys in the database, the user can specify the
option called DECOYPROBS during the PeptideProphet modeling
step, which allows PeptideProphet to compute probabilities among
the known decoy PSMs using the mixture model learned during the
last iteration of the algorithm. When the same decoy sequences are
used in the model and their probabilities are computed, the FDRs
based on the mixture models’ probabilities should match very closely
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to the decoy-estimated FDRs. Because the iProphet search engine
combining tool depends on accurate PSM-level probabilities com-
puted by PeptideProphet for each search engine, any bias after the
PeptideProphet step, seen as disagreement between decoy-esti-
mated FDRs and model-estimated FDRs, should be addressed prior
to running iProphet. One way to address potential bias in the Pep-
tideProphet models used by TPP is to selectively disable all but one
model at a time until the model causing disagreement between Pep-
tideProphet-estimated FDRs and decoy-estimated FDRs is identified
and disabled. Another way to deal with PeptideProphet bias is to
apply the CLEVEL option in PeptideProphet. CLEVEL controls the
number of standard deviations away from the mean of the negative
f-value model that PeptideProphet may draw positive results from. By
default, CLEVEL is set at 0; setting a higher CLEVEL ensures that only
higher quality matches can make it past PeptideProphet with non-
zero probability.

Comparison of Approaches—It is expected that methods combin-
ing results should demonstrate improved performance over any one
individual contributing search engine, but certain sets of search en-
gines might compare more favorably than others. Further, there will
likely be a point of diminishing returns, after which including additional
search engine results will not be worth the increase in computation
time required in order to generate them. Finally, some search engine
result combining tools might perform better than others. To address
these questions, we analyzed a common dataset using various com-
bination approaches and compared the results.

We selected a dataset from Shteynberg et al. (25) as a reference
dataset with which to compare the tools. This dataset was taken from
a study on Human Jurkat A3 T leukemic cells (43). The cells were
lysed, the lysate was separated using one-dimensional SDS-PAGE,
and sections of the gel were digested with trypsin. Digestion was
followed by analysis using a Thermo-Fisher Scientific (San Jose, CA)
LTQ linear ion trap mass spectrometer. For this article, we used a
single complete replicate of the whole cell lysate experiment (replicate
1; 19 gel bands). It comprises a set of 19 MS files containing 161,425
MS/MS spectra in total. All raw data and search results used for this
comparison are available online in Peptide Atlas.

We used the original search engine results from Shteynberg et al.
(25). Six search engines were used on the data: InSpecT, MyriMatch,
OMSSA, Mascot, SEQUEST, and X!Tandem � K-score (37). The
iProphet tool was then applied to each possible unique combination
of one to six search engines, and the results were compared using
matches to decoy proteins to establish estimates of both the error
rate and the number of correct results. In each analysis, all potential
iProphet models were used to obtain the best possible result set each
time. Fig. 1 provides a comparison of the performance on the PSM
level of all combinations of one to six search engines combined with
iProphet. The spline function in R was used to evaluate the receiver
operating characteristic curves at decoy-estimated error rates of 0%,
0.5%, 1%, 1.5%, and 2%, where the decoys did not always yield an
exact value.

The results in Fig. 1 indicate that combining larger and larger
groups of search engines yields generally higher identification rates.
In fact, when any superset and subset of iProphet combinations are
compared (see Fig. 1), the superset yields performance that is at least
as good as that of any subset. In other words, one can safely add
more search engines to the iProphet combination without degrading
performance. On this dataset there does appear to be a ceiling that is
reached by the iProphet combination of the best performing set of five
search engines, which attains results on par with the iProphet com-
bination of all six search engines, but this does not mean that on
another dataset generating larger and larger combinations will result
in the same ceiling.

We installed and applied all the search engine combiners intro-
duced above on this dataset. We were successful in applying
PepArML and MSblender, and the results from those tools are de-
picted in Fig. 1. We also aimed to use FDRAnalysis and ConsensusID
for comparison. However, FDRAnalysis is a Web-page-based tool
that works on a single searched MS/MS run at a time, and its use was
not feasible for high-throughput proteomics of this type. Our attempt
to run one MS/MS file through the FDRAnalysis Web page generated
errors, and the run did not finish. The ConsensusID tool is part of the
OpenMS pipeline, and we were able to successfully deploy this
software on our computers. Unfortunately, the results generated by
ConsensusID for our dataset had very high independently estimated
error rates, and therefore we are unable to report the results from this
tool.

From Fig. 1 it appears that MSblender might have under-performed
relative to some individual search results. However, the individual
search results shown here were processed through PeptideProphet
and iProphet, which apply statistical models to significantly improve
the classifier and, consequently, the number of correct PSMs that can
be recovered at a given FDR; this step is currently not performed by
the MSblender pipeline.

It is clear from Fig. 1 that the benefit afforded by combining multiple
search engines depends significantly on which engines are used for
the combination. Intuitively, one might expect that combining the best
performing single search engines would yield the best performing
combinations; however, this was not always observed. Different
search engines identify different overlapping subsets of spectra and
peptides, which might complement each other differently. Specific
examples of this include spectra for which one search engine yielded
a low-scoring incorrect assignment and another one matched the
correct peptide with a high score, or instances in which both searches
agreed on the peptide for a given spectrum but neither one could
pass the FDR threshold in the individual analyses. Although
SEQUEST and X!Tandem performed first and third best in the indi-
vidual search engine results, their combination performed ninth
among all 15 combinations of two search engines. This is likely
because the K-score scoring function used in the X!Tandem search is
inherently similar to SEQUEST’s scoring algorithm, so the two results
tend to agree more closely. MyriMatch seemed to contribute the most
to combinations of two searches when combined with SEQUEST,
X!Tandem� K-score, or OMSSA, perhaps because its scoring model
differs significantly from those. Although on its own InSpecT per-
formed lower on the scale than most engines, in combinations of
three, four, and five search engines it contributed a good share of
correct results.

Search Engine Combination Improvement Measure—We define a
measure for comparing the contribution of correct results by a given
search engine combination at a certain FDR—for instance, the ubiq-
uitous 1%.

Assume En represents a combined set of n search engines {e1, e2,
. . ., en}.

Assume R(En) represents the number of correct results at an FDR
of 1% for search engine combination En.

Assume En is a superset of Em; then let G(En, Em) � R(En) � R(Em)
represent the gain in correct results observed from using the combi-
nation En instead of Em.

Now we can define the best gain in results that can be observed by
expanding any starting set of search engines Es by exactly i new
search engines as follows:

Gmax
i �Es� � max@Ek,k�s�i G �Ek, Es� (Eq. 1)

Finally, we define the set of Ei(Es) as the search engine set of size
i that results in the largest gain when expanding the initial set Es.
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Ei�Es� � argmax@Ek,k�s�i G �Ek, Es� � Es (Eq. 2)

Table I shows the additional number of correct PSMs (and the
percentage) that can be gained by starting with one search engine
and incrementally adding between one and four more search engines
to maximize the gain with iProphet. Certainly, increasing the number
of search engines used in an analysis will require additional compu-
tational resources both in storage space for the additional data pro-
duced by each search algorithm and in computational time required
to execute the searches. Table I shows the requirements for storing
pepXML-formatted search results of multiple search engines (prior to

combining). Supplemental Table S1 shows the approximate compu-
tational speed requirements in terms of the number of PSMs gener-
ated per second for each of the sequence search engines used. The
total search time for multiple files depends on the number of
computers allocated to searching the data in parallel, which is
limited by the size of the computer cluster. With the emergence of
cloud-based computing, time on multiple cloud computers can be
purchased, and searches can be done in a highly parallel fashion. In
the cloud, for a cost and assuming no failures, a search of multiple
files and multiple search algorithms can be performed in the
amount of time it takes to do the longest search, plus the overhead

FIG. 1. Comparison of the number of PSMs for all combinations of one through six search engines combined with iProphet. Each bar
represents the correct PSMs that can be recovered from a given dataset using the computed scores to rank and filter the results while requiring
decoy-estimated error rates of 0%, 0.5%, 1.0%, 1.5%, and 2.0%. Also shown are MSblender results combining InSpecT, MyriMatch, OMSSA,
SEQUEST, and X!Tandem, as well as PepArML results combining Mascot, X!Tandem, X!Tandem � K-score, MyriMatch, OMSSA, SScore, and
InSpecT.
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that is required to upload the spectrum data to the cloud and
download the results from the cloud.

Search Engine Complementarity Measure—We also defined a
measure for computing similarity between pairs of search engines.
Given two sets of individual search engine results, A � {ei } and B �
{ej}, and a set of two search engines AB � {ei, ej}, let their comple-
mentarity be defined as

sum � R�A� � R�B� (Eq. 3)

max � max�R�A�,R�B��

C�AB� �
R�AB� � max
sum � max

(Eq. 4)

The idea behind this calculation is that if the sets of correct results
between two search engines are complementary to each other, they
should each contribute sets of spectra that overlap significantly less

FIG. 2. Scatter plot showing the
combined number of correctly identi-
fied PSMs at a 1% error rate plotted
against the complementarity scores
of all pairs of search engine combina-
tions. Combining the two most comple-
mentary search engines does not neces-
sarily lead to the best overall result, and
combining the two least complementary
search engines does not necessarily
lead to the worst overall result.

TABLE I
iProphet Search Engine Combinations to Maximize PSM Gains

iProphet PSM Gains (at 1% error) observed by starting with one search engine and adding the best performing 1 to 4 search engines to the
combination. Also displayed are the total storage requirements for the resulting data files.

Engine
Additional
engines

Best PSM gain
at 1% error

Best PSM
percent gain (%)

Best to add
Total storage

size (GB)

InSpecT 1 10,306 46.4 SEQUEST 1.2
Mascot 1 8761 38.1 SEQUEST 0.5
OMSSA 1 5938 22.3 SEQUEST 0.4
X!Tandem 1 5060 17.8 MyriMatch 1.7
MyriMatch 1 4936 16.9 SEQUEST 1.6
SEQUEST 1 3603 11.8 MyriMatch 1.6
InSpecT 2 12,516 56.3 SEQUEST, MyriMatch 2.6
Mascot 2 11,217 48.8 SEQUEST, MyriMatch 1.9
OMSSA 2 8379 31.4 SEQUEST, MyriMatch 1.8
X!Tandem 2 6490 22.8 SEQUEST, MyriMatch 1.9
MyriMatch 2 5801 19.8 OMSSA, SEQUEST 1.8
SEQUEST 2 4468 14.6 MyriMatch, OMSSA 1.8
InSpecT 3 13,358 60.1 SEQUEST, MyriMatch, X!Tandem 2.9
Mascot 3 12,255 53.3 SEQUEST, MyriMatch, X!Tandem 2.2
OMSSA 3 8889 33.3 SEQUEST, MyriMatch, X!Tandem 2.1
X!Tandem 3 7176 25.3 SEQUEST, MyriMatch, InSpecT 2.9
MyriMatch 3 6349 21.7 SEQUEST, X!Tandem, InSpecT 2.9
SEQUEST 3 5017 16.4 MyriMatch, X!Tandem, InSpecT 2.9
InSpecT 4 13,850 62.3 SEQUEST, MyriMatch, X!Tandem, OMSSA 3.1
Mascot 4 12,813 55.7 SEQUEST, MyriMatch, X!Tandem, InSpecT 3.1
OMSSA 4 9412 35.3 SEQUEST, X!Tandem, MyriMatch, InSpecT 3.1
X!Tandem 4 7667 27.0 SEQUEST, MyriMatch, InSpecT, OMSSA 3.1
MyriMatch 4 6841 23.4 SEQUEST, X!Tandem, InSpecT, OMSSA 3.1
SEQUEST 4 5508 18.0 MyriMatch, X!Tandem, InSpecT, OMSSA 3.1
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than between non-complementary search engines. We work under
the assumption that the number of correct results in the combination
is maximally the sum of correct results from each individual search.
Thus, if the number of correct results in the combination equals the
sum of correct results from the individual searches, the resulting
complementarity value will be 1. If there is no increase in the number
of correct results in the combination from the best performing indi-
vidual search, the complementarity is zero.

Fig. 2 presents the complementarity scores for the sequence
search engine results analyzed here as a scatter plot of total com-
bined identifications versus complementarity score. The numerical
values for these data points are listed in supplemental Table S1. For
this dataset, Mascot and InSpecT were the most complementary (i.e.
had the least overlap in results), yet their combined result was not as
good as the combined results of other pairs. Clearly, complementarity
is not the only factor of importance when considering which search
engines to merge into a combined result. We reiterate that these
results are derived from this single dataset, and there will be some
variability among scores. To be fair to the less well-performing algo-
rithms in this review, it is well known in the field that different database
search algorithms perform best on different datasets and under dif-
ferent conditions. So although in our evaluation some search engines
performed worse, the reader must not take this to mean that any
search engine is necessarily and unequivocally better than another
based on the analysis of this one dataset.

To help elaborate on the question of why certain search engine
combinations perform better than others, we take a simple example
that would never occur in the real world: combining a search with
itself. Obviously, such a combination would not be expected to yield
results any more correct than those of the original search, regardless
of how well the initial search performed. In fact, it is reasonable to
assume that the more similar the scoring function that two search
engine algorithms apply, the greater the likelihood that they will match
the same spectra with the same peptides; this would apply to PSMs
that are correctly identified as well as to those that are wrong. There-
fore, combining the search results of two very similar search engines
is not likely to add to the ability of the classifier to separate the correct
from the incorrect identifications and will not significantly improve per-
formance. This is the likely reason that the SEQUEST and X!Tandem
(k-score) combination performs less well than the SEQUEST and In-
SpecT combination, even though alone X!Tandem (k-score) performs
better than InSpecT.

We further dissect this analysis by comparing the set of spectra
identified by the iProphet combination of SEQUEST and InSpecT at a
1% error rate to the set of spectra identified by the iProphet combi-
nation of SEQUEST and X!Tandem (k-score) at a 1% error rate. There
are 29,952 spectra identified by both combinations within the ac-
cepted error threshold. The InSpecT and SEQUEST combination
yields an additional 2927 spectra not identified by the SEQUEST and
X!Tandem (k-score) combination within the error threshold, of which
105 spectra are unique to InSpecT, 1738 are matched to the same
peptide outside the error threshold by the SEQUEST and X!Tandem
(k-score) combination, and the remaining 1084 are matched to a
different peptide outside the error threshold by the SEQUEST and
X!Tandem (k-score) combination. In contrast, the SEQUEST and
X!Tandem (k-score) combination provides fewer unique identifica-
tions: 1739 spectra not identified by the InSpecT and SEQUEST
combination within the error threshold, of which only 8 spectra are
unique to X!Tandem (k-score), 934 are matched to the same peptide
outside the error threshold by the InSpecT and SEQUEST combina-
tion, and the remaining 797 are matched to a different peptide outside
the error threshold by the InSpecT and SEQUEST combination.

Additional manual exploration of the discrepancies in peptide as-
signments by exploring identifications contributed by the InSpecT

algorithm alone revealed chimeric spectra containing fragments from
differently charged precursors of similar m/z values, with both pep-
tides having strong probabilities of being correct. When spectra are
chimeras in the same charge, iProphet relies on consensus and picks
one best-scoring peptide assignment in that charge state. However,
when the chimeric precursors are of different charges, iProphet re-
ports the best-scoring peptide match in each of the charge states
searched, yielding an increase in the number of spectra that can be
correctly assigned, because a multiply charged chimeric spectrum
can now be identified in one of several charge states. The spectrum
charge state is unknown in an LTQ dataset of this type, and the
search engine must make an assumption of the charge, potentially
leading to missed identifications where assuming a different charge
on the spectrum would otherwise yield a high-scoring identification.
Each search engine makes its own charge assumptions for each
spectrum, accounting for the 105 identifications unique to InSpecT
and 8 unique to X!Tandem (k-score). The remaining spectra are
identified in both combinations in the same charge states, but not
within the same error threshold, and not necessarily matching the
same peptide sequence. When this occurs, a probable cause would
be a noisy or chimeric spectrum where one or more of the three
search engines identified different peptides (or having very low PSM
probabilities) and iProphet reduced the probability of that spectrum in
the combination. However, when one of the search engines in the
combination is able to correctly match the peptide with a high prob-
ability, it will often be sufficient to rescue that identification, even
when the other search in the combination matches the same (or
different) peptide with a low probability. In the comparison of these
two combinations, InSpecT is more successful than X!Tandem (k-
score) at rescuing the identifications missed by SEQUEST.

Search Engine Unique Contributions—We next evaluated the
unique contributions of PSMs made by each of the search engines in
this dataset. To perform this task, PSM lists returned by each search
engine (at a 1% error rate) were compared against the PSM lists
returned from the combination of the other five search engines (at a
1% error rate). The PSMs identified only by the single search engine
analysis, and not by the combination of the other five, were counted
as a percentage of the total PSMs identified by the single search
engine. From Fig. 3, we see that MyriMatch was the best at identifying
the greatest number of unique PSMs, whereas SEQUEST identified
the greatest total number of PSMs. One can also observe that In-
SpecT, while identifying the fewest PSMs in total, identified the third
proportionally largest set of unique PSMs missed by the combination
of the other five search engines. It should be noted that some of
Mascot’s relatively poor performance could be attributed to Mascot
being handicapped by searching only fully tryptic peptides to save
time; however, the identification of semi-tryptic peptides in this
dataset is less than 6%, indicating that the poor performance is not
due to this issue alone.

Distinct Peptide Sequence Level Performance—Next we examine
the performance at the distinct peptide sequence level of the three
combiners that generated usable results in our analysis: iProphet,
MSblender, and PepArML. The distinct peptide sequence level ac-
counts for each distinct peptide sequence observed in the data
exactly once, taking the probability of the highest scoring PSM to
match to that peptide sequence. The maximum combiner (e.g.
iProphet) probability for each distinct peptide sequence, as com-
puted, represents the distinct peptide sequence level probability for
that peptide sequence.

For this test, and MSblender used a combination of five searches:
InSpecT, MyriMatch, X!Tandem, OMSSA, and SEQUEST. PepArML
also adds X!Tandem-Native, SScore, and Mascot into the mix. Fig. 4
summarizes these results, showing the distinct peptide sequence
level comparison of the three approaches at decoy-estimated error
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rates of 0%, 0.5%, 1%, 1.5%, and 2%. MSblender seemed to gen-
erate the fewest correct unique peptide sequences relative to the
other two combiners, whereas the results of PepArML and iProphet
were rather similar.

Fig. 4 also shows the performance of the SpectraST spectral library
search tool on the same dataset. The spectral library used for the
search was the NIST 2010 human spectral library, plus decoy spectra
to evaluate the error rate beyond the estimate provided by the TPP

FIG. 3. Scatter plot showing the per-
centage of PSMs identified uniquely
by a single search engine, out of the
total PSMs identified by a single
search engine, relative to the combi-
nation of the other five search en-
gines. The x-coordinate shows the total
number of PSMs identified by a single
search engine analyzed with the TPP.

FIG. 4. Comparison of the distinct
peptide sequence identifications for
three search engine combiners
(MSblender, PepArML, and iProphet)
at decoy-estimated error rates of 0%,
0.5%, 1.0%, 1.5%, and 2.0%. These er-
ror rates are denoted by the bottom
whisker, bottom of the box, center line,
top of the box, and top whisker, respec-
tively. Also depicted on the right are the
results of a spectral library search with
SpectraST using the latest NIST spec-
tral library, as well as the result when
iProphet was used to combine
SpectraST results with the combined se-
quence search engine results. Data
points were inferred using the spline
function, as not all of the tools allowed
filtering at error rates below 1% as esti-
mated by the decoys.
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mixture modeling. As can be seen from Fig. 4, SpectraST on its own,
processed through PeptideProphet and iProphet, yielded a �16%
increase in the number of correctly identified distinct peptides at an
error rate of 1% over the iProphet combination of six search engines.
The reason for such a large number of identifications made by
SpectraST alone is that it is a very sensitive search tool that is able
to identify a large portion of spectra on a standard dataset such as
this, for which high-quality spectral libraries exist. However, one
cannot always expect the spectral library to contain all of the
peptides in the sample, and combining spectral library search
results with sequence database search results should yield even
more identifications. In fact, when SpectraST results were included
in the combination of all seven search engine algorithms and com-
bined with iProphet, the number of correctly identified distinct
peptides increased by �26% over the iProphet combination of six
sequence search engines. Fig. 5 displays the full receiver operating
characteristic curves for each of the considered search engines, as
well as the iProphet combined results as a function of FDR at the
distinct peptide sequence level.

CONCLUSION

We have reviewed the approaches and tools available for
improving dataset analysis via combining multiple search en-
gine results, and we compared different combinations of
search engines, using iProphet, applied to the same dataset.
We also processed the same dataset through several other
search combining algorithms and compared the peptide-level
results among the approaches. We were not able to make
some of the search engine result combining tools work prop-
erly, and therefore we could not include those results. Further
effort in providing user-friendly and well-designed tools is
encouraged to provide the field with effective alternatives.

It is clear that combining search engine results with one of
the available tools improves the results of a single search
engine. PepArML and iProphet appeared to perform the best
among the combiners we were able to test successfully. An
important consideration regarding which tool to use is which
one matches best with the available expertise and data format
handling capability. However, we also recommend that error

rates be monitored using decoy matches to establish that the
method of choice can perform precisely and accurately for
estimating error rates with or without an independent set of
decoys contained in the search space. When combining
search results, imprecision of the method can be overcome
by reliance on decoy searches and decoy counting in the
sorted and filtered result sets.

The combination of a few search engines showed a dra-
matic improvement. However, the difference between combi-
nations of five engines and six engines showed very small
gains in the test dataset, and thus the benefit from merging
more than five engines must be considered in the context of
cost derived from the added computational expense. How-
ever, we have also demonstrated that various search engines
and algorithms differ in their similarity to each other, and
selecting the engines with the most complementary scoring
functions is most beneficial. Combining search engines allows
one to utilize each search engine for its specific strengths and
can complement the identification of the whole analysis to
generate complete and maximal results from each proteomic
dataset.

In general, using as many search engines as possible with
a combiner will serve to improve the classifier and increase
the confidence of identified PSMs, distinct peptide se-
quences, and proteins. It will also maximize the coverage of
identified proteins by identifying peptides that would not oth-
erwise be identified in a single search engine result with high
confidence. Additionally, search engine combining might
have significant benefits for specific types of datasets. For
instance, spectra of phosphorylated peptides collected in
collision-induced dissociation tend to be of lower quality, and
under such conditions search engine combining is of great
benefit (44). However, because of the computational hurdles
and expertise required to install and run multiple search en-
gines, some will still choose not to use such methods until

FIG. 5. Receiver operating charac-
teristic curves on the distinct peptide
sequence level showing performance
of iProphet on single search engine
results versus the combination of all
search engines. The spectral library
search results are also included for
comparison.
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they become easy to install, use, and troubleshoot and can be
relied on to generate meaningful results under all conditions.
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