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Abstract
Over the last 20 years, cochlear implants (CIs) have become what is arguably the most successful
neural prosthesis to date. Despite this success, a significant number of CI recipients experience
marginal hearing restoration, and, even among the best performers, restoration to normal fidelity is
rare. In this article, we present image processing techniques that can be used to detect, for the first
time, the positions of implanted CI electrodes and the nerves they stimulate for individual CI
users. These techniques permit development of new, customized CI stimulation strategies. We
present one such strategy and show that it leads to significant hearing improvement in an
experiment conducted with 11 CI recipients. These results indicate that image-guidance can be
used to improve hearing outcomes for many existing CI recipients without requiring additional
surgical procedures.

Index Terms
auditory nerve; cochlear implant; image-guidance; spiral ganglion; stimulation strategy

I. Introduction
Cochlear implants (CIs) are surgically implanted neural prosthetic devices used to treat
severe-to-profound hearing loss [1]. Over the last few decades, the design of CIs has
evolved to produce what is arguably the most successful neural prosthesis to date. CIs
induce hearing sensation by stimulating auditory nerve pathways within the cochlea using an
implanted electrode array. The CI processor, typically worn behind the ear, is programmed
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to process sound received through a microphone and to send instructions to each electrode.
CI programming begins with selection of a general signal processing strategy, e.g.,
continuous interleaved sampling [9]. Then, the audiologist defines what is referred to as the
“MAP,” which is the set of CI processor instructions. The MAP is tuned by specifying
stimulation levels for each electrode based on measures of the user’s perceived loudness and
by selecting a frequency allocation table, which defines which electrodes should be activated
when specific frequencies are in the detected sound. The number of electrodes in the
intracochlear array ranges from 12 to 22, depending on the manufacturer. Electrode
activation stimulates spiral ganglion (SG) nerves, the nerve pathways that branch to the
cochlea from the auditory nerve (see Figure 1).

CI devices available today lead to remarkable results in the vast majority of users with
average postoperative sentence recognition reaching over 70% correct for unilaterally
implanted recipients and over 80% correct for bilateral implant recipients [31]. Despite this
success, a significant number of users receive marginal benefit, and restoration to normal
fidelity is rare even among the best performers. This is due, in part, to several well-known
issues with electrical stimulation that prevent CIs from accurately simulating natural
acoustic hearing. Electrode interaction is an example of one such issue that, despite
significant improvements made by advances in hardware and signal processing, remains
challenging [4, 5]. In natural hearing, a nerve pathway is activated when the characteristic
frequency associated with that pathway is present in the incoming sound. Neural pathways
are tonotopically ordered by decreasing characteristic frequency along the length of the
cochlea, and this precisely tuned spatial organization is well known (see Figure 1c) [10]. CI
electrode arrays are designed such that when placement is optimal, each electrode stimulates
nerve pathways corresponding to a pre-defined frequency bandwidth [3]. However, in
surgery the array is blindly threaded into the cochlea with its insertion path guided only by
the walls of the spiral-shaped intra-cochlear cavities. Since the final positions of the
electrodes are generally unknown, the only option when designing the MAP has been to
assume the electrodes are optimally situated in the cochlea and use a default frequency
allocation table. Because MAP efficacy is sensitive to sub-optimal electrode positioning [2,
3], which can lead to, e.g., electrode channel interactions [4, 5], more effective MAPs could
be selected if the positions of the electrodes were known. In this article, we show how new
image processing techniques we have developed can be used to visualize, for the first time,
the positions of the SG nerves and the electrodes for individual users. This enables the
design of processor programming strategies that more closely mimic natural hearing by
leveraging this user-specific spatial information. We implement and test one such strategy
that aims to reduce interaction of electrode stimulation patterns.

In the following sections, we first present the image processing techniques we use to identify
the positions of the electrodes and the SG nerves they stimulate for individual CI recipients.
Then in Section III, we present our approach for visualizing and analyzing the spatial
relationship between the electrodes and the SG to facilitate the design of image-guided
processor programming strategies, and we introduce one programming strategy that uses this
user-specific spatial information to reduce interaction of electrode stimulation patterns. In
Section IV, we present results that demonstrate the accuracy of our image-processing
techniques and that show how our methods lead to significant hearing improvement in an
experiment conducted with 11 CI users. Finally, these results are discussed in Section V.
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II. Identifying the position of cochlear implant electrodes and the spiral
ganglion
A. Overview

The major obstacle for determining the spatial relationship between the electrodes and the
SG lies in identifying the SG nerve cells. Identifying the SG in vivo is difficult because
nerve fibers have diameter on the order of microns and are too small to be visible in CT,
which is the preferred modality for cochlear imaging due to its otherwise superior
resolution. Since the SG lacks any contrast in CT, we cannot segment it directly. However,
the external walls of the cochlea are well contrasted in CT, and, as shown in [6], external
cochlear anatomy can be used to estimate the location of intra-cochlear anatomy using a
statistical shape model (SSM). Extending that method, the goal with the approach we
present in this paper is to use the location of external cochlear features as landmarks to
estimate the position of the SG. To do this, we have constructed a SSM of cochlear anatomy
that includes the SG.

The data set we have used to construct the SSM consists of images of six cadaveric cochlea
specimens. For each specimen, we acquired a μCT image volume with a SCANCO μCT.
The voxel dimensions in these images are 36 μm isotropic. We also acquired CTs of the
specimens with a Xoran xCAT® fpVCT (flat panel volumetric computed tomography)
scanner. In these volumes, voxels are 0.3 mm isotropic. In each of the μCT volumes, the
scala vestibuli, scala tympani, and SG were manually segmented. Figure 2 shows an
example of a conventional fpVCT image and its corresponding μCT image.

Prior to constructing the SSM, we identify which points in the manual segmentations
correspond to strong cochlear edges in CT. To those points we arbitrarily assign an
importance weighting of 1. To all others we assign a lesser weighting of 0.01. These weights
are used to construct a point distribution model (PDM) on the registered manual
segmentation surfaces for weighted active shape model (wASM) segmentation [24]. To
segment a new image, the SSM is iteratively fitted in a weighted-least-squares sense to
features in the target image. The edge points with their weight of 1 are fitted to strong edges
in the CT. The non-edge points with low weight are fitted to the positions determined by
non-rigid registration with an atlas image. With the weights that we have chosen, the non-
edge points provide enough weak influence on the optimization to ensure that the wASM
stays near the atlas-based initialization position, while the edge points strongly influence the
whole wASM towards a local image gradient-based optimum for a highly accurate result.

During model construction, the set of SG points in the model that interface with intra-
cochlear anatomy were also identified. These points are referred to as the active region (AR)
since they correspond to the region most likely to be stimulated by an implanted electrode
(see Figure 1). The tonotopic mapping of each point in the AR in the reference volume is
computed using known equations that relate cochlear place frequency and angular depth
[10]. Once segmentation is completed, the tonotopic frequency labels from the model are
transferred to the target image. While the position of each of the electrodes is identified in
post-operative CT, the SG is segmented in the pre-operative CT where there are no CI-
related metallic artifacts in the image. The transformation that registers the pre- and post-
operative CTs is used to project the positions of the electrodes and the SG into the same
space [8]. These methods are detailed in the following sub-sections.

B. Model Creation
To model cochlear structures, we: (1) establish a point correspondence between the structure
surfaces that were manually segmented in μCT, (2) use these points to register the surfaces
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to each other with a 7 degrees of freedom similarity transformation (rigid plus isotropic
scaling), and (3) compute the eigenvectors of the registered points’ covariance matrix. Point
correspondence is determined using the approach described in [6]. Briefly, non-rigid
registration is used to map the set of training volumes to one of the training volumes chosen
as a reference, and any errors seen in the results are manually corrected. Then, a
correspondence is established between each point on the reference surface with the closest
point in each of the registered training surfaces. Once correspondence is established, each of
the training surfaces is point registered to the reference surface. Since the cochlear edge
points will be the highest weighted points for the wASM segmentation, identical weights are
used to register the training shapes in a weighted-least-squares sense using standard point
registration techniques [26] prior to computation of the eigenspace so that the model will
best capture the shape variations at these points.

To build the model, the principal modes of shape variation are extracted from the registered
training shapes. This is computed according to the procedure described by Cootes et. al.
[25]: First, the covariance matrix of the registered training shapes is computed as

(1)

where the v⃗j’s are the individual shape vectors and v¯ is the mean shape. The shape vectors
are constructed by stacking the 3D coordinates of all the points composing each structure
into a vector. The modes of variation in the training set are then computed as the
eigenvectors {u⃗j} of the covariance matrix,

(2)

These modes of variation are extracted for the combined shape of the scala tympani, scala
vestibuli, and SG for all the samples in the training set.

C. Weighted Active Shape Model Segmentation
The procedure we use for segmentation with a wASM follows the traditional approach, i.e.,
(1) the model is placed in the image to initialize the segmentation; (2) better solutions are
found while deforming the shape using weighted-least-squares fitting; and (3) eventually,
after iterative shape adjustments, the shape converges, and the segmentation is complete.
Initialization is performed using the atlas-based methods proposed in [6].

Once initialized, the optimal solution is found using an iterative searching procedure. At
each search iteration, an adjustment is found for each model point, and the model is fitted in
a weighted-least-squares sense, as described below, to this set of candidate adjustment
points. To find the candidate points, two approaches are used. For cochlear edge points,
candidates are found using line searches to locate strong edges. At each external point y⃗i, a
search is performed along the vector normal to the surface at that point. The new candidate
point is chosen to be the point with the largest intensity gradient over the range of −1 to 1
mm from y⃗j along this vector. For all other points, it is impossible to determine the best
adjustment using local image features alone because there are no contrasting features at
these points in CT. Therefore, the original initialization positions for these points, which
were provided by atlas-based methods, are used as the candidate positions. With the weights
that we have chosen, information from the atlas weakly influences the wASM to stay near
the initialization position, while the edge points strongly influence the whole wASM
towards a local image gradient-based optimum.
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The next step is to fit the shape model to the candidate points. We do this in the
conventional wASM manner. A standard 7 degree of freedom weighted point registration is
performed, creating similarity transformation T, between the set of candidate points {y⃗i′}
and the mean shape {v¯i}, where v¯j are the 3D coordinates of the ith point in the mean shape.
Then, the residuals

(3)

are computed. To obtain the weighted-least-squares fit coordinates in the SSM’s eigenspace,
we compute,

(4)

where d⃗ is composed of {d⃗i }stacked into a single vector,  is the
matrix of eigenvectors that correspond to non-trivial eigenvalues, and W is a diagonal
matrix with the importance point weightings in the appropriate entries along the diagonal.
This equation results in a vector b⃗ that represents the coordinates in the SSM space
corresponding to a weighted-least-squares fit of the model to the candidate points. The final
approximation to the shape is computed by passing the sum of the scaled eigenvectors plus
the mean shape through the inverse transformation, equivalently,

(5)

where u⃗j,i is the ith 3D coordinate of the jth eigenvector. As suggested by Cootes, the
magnitude of the bj’s are constrained such that

(6)

which enforces the Mahalanobis distance between the fitted shape and the mean shape to be
no greater than 3.

At each iteration, new candidate positions are found and the model is re-fitted to those
candidates. The wASM converges when re-fitting the model results in no change to the
surface. The tonotopic mapping of the SG points in the model, computed when the model
was built, are directly transferred to the target image via the corresponding points in the
converged solution. An example result of this mapping process is shown in Figure 1C–D.

D. Electrode Identification
Identifying the position of electrodes in arrays manufactured by Med El and Advanced
Bionics is straightforward since the individual contacts, which are spaced further than 1 mm
apart, are well contrasted in post-operative CT. However, the contacts in arrays
manufactured by Cochlear are not well contrasted from each other because the space
between contacts, which ranges from 0.4 to 0.8 mm, is relatively small. To identify these
electrodes, we use techniques we have previously presented [8]. First, the centerline of the
image artifact created by the array is identified. This is straightforward since the array is
very bright in the image. Then, using a model of the array that describes the spacing
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between contacts, points representing the centers of each contact are sampled along the
extracted centerline.

To permit analysis of the spatial relationship between the electrodes and the SG, the last step
of the electrode identification procedure is to use the transformation that registers the
subject’s pre- and post-operative CTs to bring the extracted electrode positions and the
segmented SG surface into the same space.

III. Image-guided cochlear implant programming
A. Spatial visualization and analysis

Once the positions of the electrodes and the SG are identified, analysis of their spatial
relationship is necessary to extract programming-relevant information. Thus, to support the
design of new image-guided MAPping methods, we have also developed a new technique
for visualizing programming-relevant spatial information that we call the electrode distance-
vs.-frequency curve, an example of which is shown in Figure 1E. This plot summarizes the
important information our new image processing techniques provide. The height of the
curve on the vertical axis shows the distance from SG nerve pathways, organized by
characteristic frequency along the horizontal axis, to the closest electrode. The label above
each of the curve segments, which alternate color between red and blue, indicates which
electrode is the closest in the frequency region spanned by that segment. Using this new
visualization method, not only is it easy to infer the region of the SG that a specific electrode
will best stimulate, e.g., the nerve pathways with characteristic frequencies around 1 kHz are
closest to electrode 5; but also it is easy to detect when two electrodes stimulate the same
region. For instance, the absence of local minima in curve segments associated with
electrodes 6 and 9 indicates that the neural pathways stimulated by these two electrodes are
receiving overlapping stimulation from neighboring electrodes, and hence are affected by
channel interaction. The electrode distance-vs.-frequency curve for this subject’s contra-
lateral ear is shown in Figure 1F. While electrode interactions are only one of many factors
that could affect CI performance, it is interesting to note that for this particular subject, the
curves indicate that channel interactions are less likely to be occurring in the better
performing ear in (F) than in the poorer performing ear (E).

B. Image-guided MAPping strategy
To demonstrate the utility of the new information we provide, we have tested one example
image-guided MAPping strategy. Our approach incorporates the continuous interleaved
sampling (CIS) signal processing strategy introduced by Wilson et al. [9]. Since its
introduction, CIS has been widely adopted, and all CI manufacturers today use CIS-based
strategies [2]. By using non-simultaneous, interleaved pulses, CIS decreases cross-electrode
electric field channel interactions without precise knowledge of the relative location of the
neural pathways and the electrodes. But, by integrating spatial information provided by our
image-processing techniques, we can extend this concept to decrease electrode interactions
at the neural level, i.e., reduce the cross-electrode neural stimulation overlap. In our
experiments, the MAP adjustment strategy is simple. We deactivate electrodes that are likely
to cause stimulation overlap, which, as discussed above, can be inferred from our distance-
vs.-frequency curve. Conveniently, this approach does not conflict with existing signal
processing strategies, and thus the MAP adjustments do not require major processing
changes. Electrode deactivation schemes are not new, e.g., some groups have experimented
with randomly deactivating a number of electrodes and found little effect on speech
recognition as long as more than 4–8 electrodes are active [11, 12]. Other groups deactivated
electrodes based on psychoacoustics measures, resulting in detectable increases in a sub-set
of the measures of speech recognition reported by the authors [13, 14]. However, the
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deactivation scheme we present is the first that uses image-guidance. In our experiments,
after identified electrodes are deactivated, the sound spectrum is simply remapped to the
remaining active electrodes using the CI manufacturer’s clinical software. No other
programming variables are adjusted.

IV. Results
A. Spiral ganglion segmentation results

The SG segmentation approach was tested on CTs of the set of cochlea specimens. The
experiments were conducted using a leave-one-out approach, i.e., the specimen being
segmented is left out of the model. A CT was not available for one of the six specimens, and
its μCT was used as the model reference volume to simplify the leave-one-out validation
study. Thus, in the validation study, we measured segmentation error on the remaining five
specimens when using PDMs with four modes of variation. Because these samples were
excised specimens, rather than whole heads, the atlas-based initialization process required
manual intervention; however, when applied to whole head CTs, the approach is fully
automatic.

To validate the results, we again rely on information provided by the set of corresponding
μCT volumes. Each CT was rigidly registered to the corresponding μCT of the same
specimen. The automatic segmentations were then projected from CT to μCT space. Finally,
Dice index of volume overlap [27] and surface errors were computed between the registered
automatic segmentations and the manual segmentations to validate the accuracy of our
results. Figure 3 shows the overall distributions of these recorded values. Surface errors
were recorded between the whole SGs (WSG) and also between the active regions (AR).
Dice indices were not computed for the AR because it is not a closed surface and does not
represent a volumetric region. The green bars, red bars, blue rectangles, and black I-bars
denote the median, mean, one standard deviation from the mean, and the overall range of the
data set, respectively. As can be seen in the figure, the wASM achieves mean dice indices of
approximately 0.77. For typical structures, a Dice index of 0.8 or greater is considered good
[28]. Here, we consistently achieve Dice indices close to 0.8 for segmentation of a structure
that is atypically small and lacks any contrast in the image. Mean surface errors are
approximately 0.15 mm for both the WSG and the AR, which is about a half a voxel’s
distance in the segmented CT. Maximum surface errors are above 1 mm for the WSG but
are all sub-millimetric for the AR.

Segmentations for all 5 specimens are shown color encoded with surface error in Figure 4. It
can be seen that the wASM results in mean surface errors under 0.15 mm for the majority of
the SG with average maximum errors of about 0.7 mm (<3 voxels). As can be seen in the
figure, errors in the AR above 0.5 mm are rare and highly localized. Shown in Figure 5 are
contours of a representative automatic segmentation overlaid with the CT (the volume on
which segmentation was performed) and the corresponding registered μCT. It can be seen
from the figure that the contours achieved by automatic segmentation of the CT are in
excellent agreement with contours manually delineated in the high resolution μCT,
especially in the AR. Localization errors that are apparent in the μCT are less than 2 voxels
width in the CT.

B. Spiral ganglion segmentation results
Eleven bilaterally implanted, long-term CI users participated in the image-guided
programming experiment. Prior to this study, each of these subjects had undergone several
iterations of traditional programming adjustments and was considered by an expert
audiologist to have achieved the best hearing performance possible using the traditional
behavioral programming approach. Length of CI use among subjects ranged from 0.8 to 8.9
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years with an average of 3.4 years. For each subject, a battery of hearing and speech
recognition tests was performed on both ears individually as well as in the bilateral
condition. Then, the MAP for the poorer performing ear was manipulated according to our
electrode deactivation scheme described above. The electrode distance-vs-frequency curves
and deactivation plans are shown in Figure 1e for subject 1 and Figure 6 for the remaining
subjects. Each subject returned for post-adjustment re-testing 3–4 weeks following the
image-guided MAPping. Several widely used speech recognition metrics were measured
including Consonant Nucleus Consonant (CNC) [15] word and phoneme scores (% correct),
AzBio sentence recognition [16] in quiet and at a +10 dB signal-to-noise ratio (% correct),
and the Bamford-Kowal-Bench Speech-In-Noise (BKB-SIN) test (dB SNR) [17].
Additionally, we assessed spectral modulation detection (SMD), which is a non-speech
based hearing performance metric that provides a psychoacoustic estimate of spectral
resolution, i.e., the ability of the auditory system to decompose a complex spectral stimulus
into its individual frequency components [18–20]. The spectral modulation detection task
used a 3-interval, forced-choice procedure to contrast flat-spectrum noises with spectrally
modulated noises. The task included a fixed number of trials at fixed spectral modulation
depths ranging from 8 to 16 dB in 2-dB steps and was thus not an adaptive, iterative process
but rather incorporated a methodology based upon the method of constant stimuli [29]. Sixty
trials were presented at both 0.5 and 1.0 cycle per octave (c/o), and performance was
expressed in % correct. All speech and non-speech testing was conducted at a calibrated
presentation level of 60 dB SPL using a single loudspeaker presented at 0° azimuth at a
distance of 1 meter. In Figure 7, a box plot for each hearing performance metric shows the
distribution across subjects of pre-adjustment scores subtracted from post-adjustment scores.
As seen in the figure, results of the pre- and post-adjustment tests performed on the
unadjusted ear alone show no detectable change on average. In contrast, the group average
test results for the adjusted ear improve dramatically for all measures. While it is difficult to
detect significance for measures that are not normally distributed with sample sizes this
small (N≤11), it is notable that we were able to detect statistically significant differences for
the BKB-SIN and SMD measures using the Wilcoxon signed rank test [21] at p<0.05
(indicated in the plot by red circles). In the bilateral condition, each of the measures also
improves on average. In both the pre- and post-adjustment condition, each subject was also
asked to complete an Abbreviated Profile of Hearing Aid Benefit (APHAB) [22]
questionnaire that measures several aspects of hearing-related communication effectiveness.
These results are shown in a similar box plot on the right. The APHAB questionnaire is
scored as the percentage of problems with overall ease of communication, reverberation,
background noise, aversiveness, and a global score that incorporates all problem types. The
plot shows that the group average of each APHAB score decreases for the post-adjustment
questionnaires, and the improvements in 4 of 5 of these measures reach statistical
significance measured using the Wilcoxon signed rank test at the p<0.05 level. The most
significant qualitative improvement may be performance in background noise. This is also
reflected in the quantitative results, where in the adjusted ear, measures that include noise,
i.e., AzBio +10 dB, BKB-SIN, and SMD at both modulation rates all substantially increase
on average from pre- to post-adjustment tests.

Results color-coded by individual subject are shown in as line plots in Figure 8. Lines with
positive slope indicate scores that have improved from pre- to post-adjustment. For APHAB
scores, a lower value indicates better hearing performance. To keep a similar visual
convention with the other plots, the y-axis for APHAB results on the bottom row is reversed
relative to the top rows. Due to some logistical constraints, not all measures were tested for
every subject, and lines corresponding to measurements that were not tested are omitted
from the plot. Although we did not exclude the results for subject 10 in any of our results,
we believe they are outlier measurements as there are substantial differences in scores for
the unadjusted ear, and the adjusted ear appears to follow the same trend. It was noted
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during testing that this subject exhibited signs of cognitive decline, but in this study we did
not administer any screening instruments designed to identify those at risk for cognitive
impairment. Several subjects experienced remarkable improvement in scores for their
adjusted ear, e.g., CNC word scores for subjects 1, 2, 3, 5, and 7 more than or almost
doubled. Performance improvement for subjects 1, 2, 3, 5, 7, and 11 reached statistical
significance at the individual level measured using a binomial distribution statistic for CNC
monosyllables [30] and AzBio sentences [16]. SMD at 1.0 cycle/oct improved for every
subject and almost double on average. This finding alone is substantial, as few developments
in strategy in the past 20 years have been shown to significantly improve spectral resolution
for CI recipients [20].

Improvements in bilateral performance may not seem substantial at first glance. However,
with the exception of subjects 2, 9, and 11, all of the subjects already had very high scores
due to their better performing ear (1, 3, 4, 7, and 8) or had very low overall scores (6 and
10), and thus the change in performance could be masked in these quantitative scores by
effects of range saturation of the measures we used. Bilateral scores for subjects 2, 9, and 11
on the other hand improved substantially. The quality of overall changes is best reflected in
the APHAB scores. With the exception of subject 10, performance in background noise
substantially improves for all subjects. This is especially significant considering that speech
recognition in noise is one of the most common problems even among the best performing
CI users [4]. All other measures of sound quality either also improve or, at worst, are
approximately unchanged post-adjustment. With the exception of subjects 6 and 10, each
subject requested no further changes to their adjusted ear and elected to keep their
experimental MAPs following these experiments.

V. Discussion & Conclusions
In this work, we have presented a set of novel methods that facilitate image-guided CI
programming. Our approach is to extract programming-relevant information in the form of
electrode distance-vs.-frequency curves by analyzing the spatial relationship between the CI
electrodes and the SG nerves they stimulate. We also have presented an example image-
guided MAPping strategy and have shown that it leads to significant improvement in
hearing outcomes.

The biggest obstacle for user-specific CI spatial analysis is to identify the SG, which lacks
any contrast in conventional CT. To do this, we have used a weighted active shape model-
based approach. This approach accurately locates the SG by using the exterior walls of the
cochlea as landmarks. We have relied on high resolution images of cadaveric specimens to
serve two functions. First, they provided information necessary to construct an SSM of the
structure, permitting segmentation of the structure in conventional imaging for the first time.
Second, the high resolution images were used to validate the results. This was performed by
transferring the automatically segmented structures from the conventional images to the
corresponding high resolution images and comparing those structures to manual
segmentations. Our approach achieves dice indices of approximately 0.77 and sub-
millimetric maximum error distance in the region of interest for CI stimulation.

The results of our image-guided MAPping tests show that our image-guidance techniques
can be used to significantly improve hearing outcomes with CIs. Since the MAP strategy we
presented only requires deactivating electrodes, it is simple to integrate with existing sound
processing strategies, such as CIS, using the existing clinical software provided by CI
manufacturers. Typically when changes to a MAP are made, quantitative and qualitative
hearing scores tend to favor the original MAP [23]. Thus, it is remarkable that the majority
of the subjects in our experiments noted substantial improvement in sound quality
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immediately after re-programming, and these improvements are reflected in our quantitative
results. It is likely that long-term experience with the new MAP will result in further
improvements in hearing performance. According to the NIDCD, over 200,000 people have
received CIs as of 2010 [1]. Our electrode deactivation strategy could improve hearing in
many of these CI users, thus improving their communication abilities and hearing-related
quality of life, without requiring additional surgical procedures. Our results show that
image-guided, personalized approaches to CI programming can indeed improve spectral
resolution and speech recognition in quiet and noise. However, the electrode deactivation
strategy we present exploits only a small fraction of the programming relevant information
captured by the image processing and analysis techniques we propose. Thus, we believe that
this study presents just the first of many new and significant user-customized stimulation
strategies that will be developed now that analysis of the spatial relationship between
electrodes and stimulation targets is possible.
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Fig. 1.
Spatial analysis of an implanted subject. The scala tympani (red) and scala vestibuli (blue),
the two principal cavities of the cochlea, are shown in (A–C). In (B), also shown is a
rendering of the auditory nerve bundles of the SG in green. In (C–D), the AR (the surface
representing the interface between the nerves of the SG and the intra-cochlear cavities) is
colorcoded with the tonotopic place frequencies of the SG in Hz. Also shown in (D) are the
implanted electrodes of the CI, numbered 1–12. An illustration of current spread from each
electrode is rendered transparently in red and blue, with the color alternating between
neighboring electrodes. Electrode distance-vs.-frequency curves, shown as a sequence of
blue and red segments, are plotted in (E), which corresponds to the ear shown in (D), and
(F), which is the curve for the better performing contra-lateral ear of the same subject.
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Fig. 2.
Shown in (a) and (b) are a slice of a μCT and a CT of a human cochlea. In (c) and (d), the
scala tympani (red), scala vestibuli (blue), and bundle of nerve cells of the SG (green) are
delineated in the same slice.
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Fig. 3.
Segmentation error distributions of Dice similarity scores for the whole SG (WSG) and
mean and max symmetric surface error distributions for the WSG and in the active region
(AR).
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Fig. 4.
Automatic (top row) and manual (bottom row) segmentations of the active region of the SG
in the 5 test volumes (left-to-right) color encoded with error distance (mm).
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Fig. 5.
Delineations of the automatic (red/blue) and manual (green) segmentation of the SG in the
CT (a) and μCT (b) slice from Figure 2. The active region is shown in blue.
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Fig. 6.
Electrode distance-vs.-frequency curves for each test subject. (A)–(I) Show the electrode
distance-vs.-frequency curves, similarly to Figure 1e, for subjects 2–10. Electrodes
deactivated in our experiments are shown in red.
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Fig. 7.
Box plots of the difference between post- and pre-adjustment scores of each hearing
performance measure. Shown are the interquartile range (box), median (red line), individual
data points (black dots). Whiskers extend to data points that lie within 2 times the
interquartile range from the mean. Outlier points that lie beyond the whiskers are
highlighted in red. Measures that reach statistical significance are indicated by red circles.
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Fig. 8.
Individual hearing performance results for all ten subjects shown as line plots. The left and
right ends of each line plot show pre- and post-adjustment results for the indicated subject
and hearing performance measure, respectively.
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