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Introduction

Cardiac fibrosis is characterized by net accumulation of 
extracellular matrix in the myocardium and is an integral 
component of most cardiac pathologic conditions [1]. 
Because the adult mammalian myocardium has negligible 
regenerative capacity, the most extensive fibrotic remod-
eling of the ventricle is found in diseases associated with 
acute cardiomyocyte death. Following acute myocardial 
infarction, sudden loss of a large number of cardiomyo-
cytes triggers an inflammatory reaction, ultimately leading 
to replacement of dead myocardium with a collagen-based 
scar (Fig. 1) [2]. Several other pathophysiologic conditions 
induce more insidious interstitial and perivascular deposi-
tion of collagen, in the absence of completed infarction. 
Aging is associated with progressive fibrosis that may 
contribute to the development of diastolic heart failure in 
elderly patients. Pressure overload, induced by hyperten-
sion or aortic stenosis, results in extensive cardiac fibrosis 
that is initially associated with increased stiffness and dias-
tolic dysfunction; a persistent pressure load may eventu-
ally lead to ventricular dilation and combined diastolic and 
systolic heart failure [1]. volume overload due to valvular 
regurgitant lesions may also result in cardiac fibrosis, char-
acterized by disproportionately large amounts of non-colla-
genous matrix [3]. Hypertrophic cardiomyopathy and post-
viral dilated cardiomyopathy are also often associated with 
the development of significant cardiac fibrosis [4, 5]. More-
over, a variety of toxic insults (such as alcohol or anthra-
cyclines) [6] and metabolic disturbances (such as diabetes 
[7] and obesity [8]) induce progressive fibrotic changes in 
the myocardium in both human patients and experimental 
models.

Although the pathophysiologic mechanisms leading to 
fibrotic remodeling of the ventricle differ in patients with 
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various cardiac diseases, the cellular effectors of fibrotic 
remodeling are common, and similar networks of molecu-
lar signals are involved. Our manuscript reviews the cellu-
lar and molecular mechanisms involved in the pathogenesis 
of cardiac fibrosis. After a general discussion on the cellular 
and molecular biology of the cardiac fibrotic response, we 
will summarize the current understanding of the pathogen-
esis of fibrotic myocardial remodeling in the most impor-
tant cardiac pathophysiologic conditions. Because cardiac 
fibrosis has profound consequences on myocardial func-
tion, understanding its pathogenesis may identify promis-
ing targets for the treatment of patients with heart failure.

The normal cardiac interstitium

In the adult mammalian heart, ventricular myocytes are 
arranged in layers of tightly coupled cardiomyocytes [9]; 
adjacent layers are separated by clefts. The laminar archi-
tecture of the myocardium is defined by an intricate net-
work of extracellular matrix proteins, comprised primarily 
of fibrillar collagen. Based on morphological character-
istics, the cardiac matrix network can be subdivided into 

three constituents: the epi-, peri-, and endomysium [10]. 
The epimysium is located on the endocardial and epicar-
dial surfaces providing support for endothelial and meso-
thelial cells. The perimysium surrounds muscle fibers, and 
perimysial strands connect groups of muscle fibers. The 
endomysium arises from the perimysium and surrounds 
individual muscle fibers. endomysial struts tether mus-
cle fibers together and to their nutrient microvasculature 
and function as the sites for connections to cardiomyo-
cyte cytoskeletal proteins across the plasma membrane 
[1, 11]. The collagen-based cardiac matrix network does 
not only serve as a scaffold for the cellular components  
but is also important for transmission of the contractile 
force. Approximately 85 % of total myocardial collagen 
is type I, primarily associated with thick fibers that con-
fer tensile strength. Type III collagen, on the other hand, 
represents 11 % of the total collagen protein in the heart, 
typically forms thin fibers, and maintains the elasticity of 
the matrix network [10, 12]. In addition to collagens, the 
cardiac extracellular matrix also contains glycosaminogly-
cans (such as hyaluronan), glycoproteins, and proteogly-
cans. Significant stores of latent growth factors and pro-
teases are also present in the cardiac extracellular matrix; 

Fig. 1  Types of cardiac fibrosis (histopathologic images show Sir-
ius-red stained sections of samples from mouse models of fibrosis 
to identify the collagen network). a Myocardial infarction results in 
sudden loss of a large number of cardiomyocytes leading to replace-
ment fibrosis. b Interstitial fibrosis is associated with increased dep-
osition of collagen in the cardiac interstitial space in the absence of 
significant cardiomyocyte loss. c Perivascular fibrosis is characterized 

by expansion of the vascular adventitial matrix. d The fibrotic heart 
exhibits expansion of the interstitial space associated with deposition 
of collagens and other matrix proteins. Myofibroblasts (MF) are the 
main effector cells in cardiac fibrosis; however, macrophages, lym-
phocytes, mast cells, vascular endothelial cells, and cardiomyocytes 
may also participate in the process
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their activation following injury may trigger the fibrotic 
response.

The cardiac interstitium contains several distinct cell 
types. Cardiac fibroblasts are enmeshed in the endomy-
sial interstitial matrix that surrounds cardiomyocytes and 
represent the most abundant interstitial cells in the adult 
mammalian heart. In the developing heart, cardiac fibro-
blasts regulate cardiomyocyte proliferation through a 
fibronectin/β1–integrin-mediated pathway [13]. As the 
predominant matrix-producing cells in the myocardium 
[14], fibroblasts play an important role in preserving the 
integrity of the matrix network. The cardiac fibroblast pop-
ulation undergoes a dramatic change during the neonatal 
period [15]. As the fetal circulation transitions to the neo-
natal circulation, elevated left ventricular pressures trig-
ger a marked expansion of the cardiac fibroblast popula-
tion within the first two neonatal weeks [15]. In the young 
adult heart, cardiac fibroblasts remain quiescent and do not 
exhibit significant inflammatory or proliferative activity. 
vascular cells (smooth muscle cells, endothelial cells, and 
pericytes) are also abundant in the cardiac interstitium; 
relatively small numbers of mast cells and macrophages 
[16] also reside in the mammalian heart, usually localized 
around vessels.

The role of cardiac fibrosis in the pathogenesis of heart 
failure

Mature fibrillar collagen is highly stable with a half-life 
of 80–120 days. Collagen turnover in the normal heart 
is primarily regulated by resident cardiac fibroblasts. 
Homeostatic control of the cardiac extracellular matrix 
involves ongoing synthesis and degradation of matrix 
proteins [17, 18]. Disturbance of the tightly regulated 
balance between the synthetic and degradative aspects of 
collagen metabolism results in profound structural and 
functional abnormalities of the heart. Fibrosis disrupts 
the coordination of myocardial excitation–contraction 
coupling in both systole and diastole and may result in 
profound impairment of systolic and diastolic function 
[19]. Increased deposition of interstitial collagen in the 
perimysial space is initially associated with a stiffer ven-
tricle and diastolic dysfunction. However, active fibrotic 
remodeling of the cardiac interstitium is also associated 
with matrix degradation leading to the development of 
ventricular dilation and systolic failure [20]. Disturbance 
of the collagen network in the fibrotic heart may cause 
systolic dysfunction through several distinct mechanisms. 
First, loss of fibrillar collagen may impair transduction of 
cardiomyocyte contraction into myocardial force devel-
opment resulting in uncoordinated contraction of car-
diomyocyte bundles [21]. Second, interactions between 

endomysial components (such as laminin and collagen) 
and their receptors may play an important role in car-
diomyocyte homeostasis. Laminin α4 chain-deficient 
mice exhibit microvascular abnormalities leading to sys-
tolic ventricular dysfunction, suggesting a link between 
defects in the matrix network and the structural integrity 
of the myocardium [22]. Finally, fibrosis may result in 
sliding displacement (slippage) of cardiomyocytes lead-
ing to a decrease in the number of muscular layers in the 
ventricular wall and subsequent left ventricular dilation 
[23]. Beyond its profound effects on cardiac function, 
fibrotic ventricular remodeling also promotes arrhythmo-
genesis through impaired conduction and subsequent 
generation of re-entry circuits [24].

The cellular effectors of cardiac fibrosis

Regardless of the pathophysiologic mechanisms responsi-
ble for development of the fibrotic response, cardiomyocyte 
death is often the initial event responsible for activation 
of fibrogenic signals in the myocardium. In other cases, 
injurious stimuli (such as pressure overload or myocardial 
inflammation) may activate pro-fibrotic pathways in the 
absence of cell death. Several cell types are implicated in 
fibrotic remodeling of the heart, either directly by produc-
ing matrix proteins (fibroblasts)  or indirectly by secreting 
fibrogenic mediators (macrophages, mast cells, lympho-
cytes, cardiomyocytes, and vascular cells). The relative 
contribution of the various cell types is often dependent on 
the underlying cause of fibrosis. However, in all conditions 
associated with cardiac fibrosis, fibroblast transdifferen-
tiation into secretory and contractile cells, termed myofi-
broblasts, is the key cellular event that drives the fibrotic 
response.

The myofibroblasts

Definition

Myofibroblasts are phenotypically modulated fibroblasts 
that accumulate in sites of injury and combine ultrastruc-
tural and phenotypic characteristics of smooth muscle 
cells, acquired through formation of contractile stress fib-
ers, with an extensive endoplasmic reticulum, a feature 
of synthetically active fibroblasts [25, 26]. expression of 
α-smooth muscle actin (α-SMA) identifies differentiated 
myofibroblasts in injured tissues, but is not a requirement 
for the myofibroblast phenotype. At the earliest stages of 
reparative or fibrotic responses, myofibroblasts may lack 
α-SMA expression, but exhibit stress fibers composed of 
cytoplasmic actins; these cells are termed proto-myofibro-
blasts [27].



552 P. Kong et al.

1 3

The origin of myofibroblasts in cardiac fibrosis

Regardless of the etiology of cardiac injury, myofibroblasts 
are prominently involved in both reparative and fibrotic 
processes. Increased myofibroblast accumulation in the 
cardiac interstitium has been reported, not only in myo-
cardial infarction [28]  but also in the pressure and volume 
overloaded myocardium [29, 30], in the aging heart [31], 
and in alcoholic cardiomyopathy [32]. The origin of myofi-
broblasts in the fibrotic heart remains controversial (Fig. 2). 
The abundance of fibroblasts in the normal myocardium, 
and the marked induction of mediators that promote myofi-
broblast transdifferentiation following cardiac injury (such 
as TGF-β1 and eD-A fibronectin), suggest that activa-
tion of resident cardiac fibroblasts may represent the most 
important source of myofibroblasts in the fibrotic heart. 
Moreover, proliferating myofibroblasts are commonly 
found in large numbers in infarcted hearts [33, 34]. Stud-
ies in human patients with cardiac fibrosis due to chronic 
transplant rejection have demonstrated that most of the col-
lagen deposited in fibrotic human hearts is derived from 
cells of intracardiac origin [35].

A growing body of evidence suggests that bone marrow-
derived circulating fibrocytes may represent an additional 
source of myofibroblasts in cardiac injury. In a model 
of non-infarctive cardiac fibrosis due to brief repetitive 

myocardial ischemia and reperfusion [36], we have docu-
mented recruitment of blood-derived fibroblast progenitors 
in the cardiac interstitium [37]. Moreover, studies using 
bone marrow transplantation with enhanced green fluores-
cent protein (eGFP)-labeled cells demonstrated numerous 
myofibroblasts of hematopoietic origin in the infarcted 
myocardium [38] and in the aging mouse heart [31]. exper-
iments in experimental mouse models have suggested that 
endothelial to mesenchymal transition may contribute to 
cardiac fibrosis in models of pressure overload and chronic 
allograft rejection [39]. Using Tie1Cre;R26RstoplacZ mice, 
in which endothelial cells and their descendants are marked 
by LacZ, and FSP-1-GFP transgenic mice, Zeisberg et al. 
[39] identified a substantial fraction of activated fibroblasts 
in the fibrotic heart as cells of endothelial origin. Although 
the poor specificity of FSP-1 as a fibroblast marker is a 
major limitation for interpretation of the findings, the pos-
sibility of an endothelial source of myofibroblasts in car-
diac fibrosis should be strongly considered, considering 
the perivascular location of activated fibroblasts in many 
fibrotic conditions. The relative contribution of resident 
cardiac, hematopoietic, and endothelial sources of myofi-
broblasts in the fibrotic heart has not been systematically 
studied. In a transgenic model of dilated cardiomyopathy, 
a significant fraction (almost 17 %) of collagen-produc-
ing fibroblasts were of hematopoietic origin [40]. On the 
other hand, an investigation using bone marrow transplan-
tation from GFP-transgenic mice into nude rats suggested 
that proliferation of resident cardiac fibroblasts is the main 
source of myofibroblasts in the healing infarct [41]. The 
cellular origin of cardiac myofibroblasts may be dependent 
on the pathophysiologic context; the contribution of blood-
derived progenitors may be more significant in conditions 
associated with more intense inflammatory responses and 
chemokine upregulation [42, 43].

The molecular signals mediating myofibroblast 
transdifferentiation and activation

Quiescent cardiac fibroblasts exhibit no actin-associated 
cell–cell and cell–matrix contacts [44], and do not secrete 
significant amounts of matrix proteins [26, 27]. Follow-
ing cardiac injury, alterations in the matrix environment, 
induction, and release of growth factors and cytokines 
and increased mechanical stress dynamically modulate 
fibroblast phenotype. Regardless of the etiology of fibro-
sis, myofibroblast transdifferentiation is a hallmark of the 
cardiac fibrotic response. Incorporation of α-SMA into 
the stress fibers is a characteristic of differentiated myofi-
broblasts and significantly increases fibroblast contractile 
activity. Several key factors are required for myofibro-
blast transdifferentiation in the injured heart. First activa-
tion of TGF-β in the cardiac interstitium promotes α-SMA 

Fig. 2  Origin of the myofibroblast in fibrotic hearts. Resident car-
diac fibroblasts (abundant in adult mammalian hearts), circulating and 
resident fibroblast progenitors (including fibrocytes), epicardial epi-
thelial cells undergoing epithelial to mesenchymal transition (EMT), 
and endothelial cells undergoing endothelial to mesenchymal trans-
differentiation (EndMT) are documented sources of myofibroblasts in 
fibrotic hearts. Their relative contribution to the myofibroblast popu-
lation likely depends on the underlying cause of fibrosis. Pericytes 
may represent an additional source of myofibroblasts in the fibrotic 
myocardium; however, their role in fibrotic remodeling of the ventri-
cle has not been elucidated



553Cardiac fibrosis

1 3

transcription in fibroblasts through activation of the Smad3 
signaling cascade [45]. Second, alterations in the composi-
tion and mechanical properties of the extracellular matrix 
facilitate myofibroblast transdifferentiation by altering 
responses to mechanical stress or by modulating trans-
duction of growth factor signals. Induction of specialized 
matrix proteins (such as eD-A fibronectin), increased dep-
osition of non-fibrillar collagens (such as collagen vI), and 
incorporation of matricellular proteins in the cardiac matrix 
(such as the potent TGF-β activator Thrombospondin-1/
TSP-1) are implicated in differentiation of α-SMA-positive 
myofibroblasts in the injured heart. The splice variant 
eD-A of cellular fibronectin is upregulated in the infarcted 
heart [46] and mediates acquisition of the myofibroblast 
phenotype [47, 48]. Type vI collagen also potently induces  
myofibroblast differentiation in vitro [49]; in vivo, collagen 
vI disruption attenuates fibrosis and improves cardiac func-
tion following myocardial infarction. Third, expression of 
cell surface receptors, such as the integrins and syndecans, 
may be important for transduction of growth factor-medi-
ated signals in cardiac fibroblasts leading to myofibroblast 
transdifferentiation. Mechanosensitive or cytokine-induced 
upregulation of cell surface integrins [50, 51] and synde-
cans [52, 53] may accentuate growth factor signaling, 
leading to myofibroblast transdifferentiation and promot-
ing fibrotic cardiac remodeling. Finally, mechanical stress 
directly stimulates α-SMA mRNA synthesis in fibroblasts 
through Rho/Rho kinase signaling [54], but may not be suf-
ficient to trigger myofibroblast transdifferentiation in the 
absence of TGF-β. As cardiac injury is often associated with 
disruption of the structural integrity of the myocardium, 
exposure of cardiac fibroblasts to increased mechanical  
stress may significantly contribute to proto-myofibroblast 
transdifferentiation [27].

The monocyte/macrophage system in cardiac fibrosis

A growing body of evidence implicates monocytes and 
macrophages in the regulation of the fibrotic response. 
Monocytes and macrophages not only play important roles 
in initiation and progression of fibrotic responses, but may 
also mediate resolution of fibrosis [55]. Both monocytes 
and macrophages are highly heterogeneous cells; their 
functional and phenotypic versatility enables them to exert 
a wide range of pro-fibrotic and anti-fibrotic actions, which 
are dependent on the relative activity of specific subpopu-
lations and on the effects of microenvironmental factors. 
Thus, subsets of monocytes and macrophages may regulate 
fibrosis by differentiating into myofibroblasts, by serving 
as sources of cytokines and growth factors with fibrogenic 
properties, and by secreting proteases that participate in 
matrix remodeling. Moreover, through their phagocytotic 
properties, macrophages may contribute to the fibrotic 

process by removing dead cells (thus facilitating growth 
of reparative fibroblasts), or may negatively regulate fibro-
sis by clearing apoptotic myofibroblasts and cellular and 
matrix debris (thus eliminating key pro-fibrotic stimuli). 
Although large numbers of macrophages accumulate in 
injured hearts and are located in close proximity to matrix-
producing myofibroblasts [56, 57], their role in regulation 
of the fibrotic response remains unknown. Characterization 
of subpopulations of “fibrogenic” and “matrix-degrading” 
macrophages in the injured myocardium and dissection of 
their role in cardiac fibrosis is urgently needed to under-
stand the cell biology of the fibrotic response.

Monocytic cells as sources of myofibroblasts in the injured 
heart

Studies using bone marrow transplantation strategies to 
generate chimeric mice have suggested that at least some 
of the fibroblasts infiltrating the injured or failing heart 
may be of hematopoietic origin [31, 38, 40]. The identity of 
these cells remains obscure; they may represent monocyte 
subsets capable of fibroblast differentiation with similari-
ties to the CD14+ “fibrocytes” identified in human subjects 
[58]. Because chemokine upregulation is a consistent fea-
ture of cardiac injury regardless of etiology [36, 42, 43, 59, 
60], it is attractive to hypothesize that specific chemokine/
chemokine receptor pairs may be involved in recruitment 
of monocyte subsets that differentiate into fibroblasts, thus 
contributing to the development of fibrosis. Differentiation 
of progenitor cells into fibroblasts appears to be dynami-
cally regulated by cytokines [61] and growth factors [62].

Macrophage subpopulations as sources of inflammatory 
and fibrogenic mediators

Monocytes and macrophages are capable of producing and 
secreting large amounts of pro-inflammatory mediators 
(such as the cytokines interleukin (IL)-1β, tumor necrosis 
factor (TNF)-α, and IL-6) and pro-fibrotic growth factors 
(such as TGF-β, PDGFs, and FGFs). In response to sig-
nals induced by ischemic cardiac injury, sequential recruit-
ment of monocytes with distinct properties regulates the 
inflammatory and reparative response following myocar-
dial infarction [63]. During the early inflammatory phase 
of infarct healing [2], monocytes with pro-inflammatory, 
phagocytic, and proteolytic properties are recruited; these 
cells express the chemokine receptor CCR2 and infiltrate the 
infarcted myocardium in response to the marked upregula-
tion of the CC chemokine monocyte chemoattractant pro-
tein (MCP)-1 [59]. In contrast, during the reparative phase, 
monocytes with attenuated inflammatory activity and pre-
dominant expression of angiogenic mediators are predomi-
nantly recruited [63]; whether some of these cells exhibit 
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fibrogenic properties remains unknown. In addition to the 
time-dependent chemokine-responsive recruitment of mono-
cytes subsets with distinct properties, the contribution of the 
monocytes/macrophage system in the injured and fibrotic 
myocardium can be regulated through effects of microenvi-
ronmental signals on macrophage phenotype. Macrophages 
are known to exhibit considerable functional plasticity and to 
respond to changes in their microenvironment by modulat-
ing their cytokine and growth factor expression profile [64]. 
Traditionally, two distinct macrophage polarization states are 
recognized: classically activated M1 macrophages, induced 
by IFN-γ, either by itself or in combination with TNF-α, or 
GM-CSF, express pro-inflammatory cytokines and reactive 
oxygen species, whereas alternatively-activated M2 mac-
rophages, induced by IL-4 or IL-13, express high levels of 
IL-10 and participate in the resolution of inflammation and 
angiogenesis [65]. Following cardiac injury, the complexity 
of environmental conditions may result in generation of mul-
tiple macrophage subpopulations with distinct properties that 
mediate pro-inflammatory, anti-inflammatory, or fibrogenic 
actions. Although differentiation of M2 macrophages in the 
myocardium has been associated with the development of 
cardiac fibrosis [66], “fibrogenic” macrophage subsets in the 
fibrotic myocardium have not been systematically charac-
terized, and their role in the fibrotic response has not been 
investigated.

Are monocytes/macrophages essential for cardiac fibrotic 
responses?

The relative contribution of monocytes and macrophages 
in the cardiac fibrotic response is likely dependent on the 
pathophysiologic basis of cardiac fibrosis. In a model of 
ischemic non-infarctive cardiac fibrosis due to brief repeti-
tive ischemic insults followed by reperfusion, chemokine-
mediated recruitment of macrophages was crucial for the 
development of interstitial fibrosis [36]. Moreover, in experi-
mental models of hypertensive fibrotic remodeling, angioten-
sin II and mineralocorticoids may mediate their pro-fibrotic 
actions, at least in part, through activation of macrophage 
responses [67, 68]. Deletion of mineralocorticoid receptors 
from lysozyme M-positive myeloid cells attenuated cardiac 
fibrosis in deoxycorticosterone/salt-induced hypertension 
[69], and in a model of hypertensive cardiac remodeling 
upon infusion of L-NAMe/angiotensin II [70], suggesting 
that the fibrogenic effects of aldosterone signaling are medi-
ated through modulation of macrophage phenotype [70].

The potential role of macrophages in inhibition  
and resolution of cardiac fibrosis

Most studies on the role of macrophages in tissue fibro-
sis have focused on identification of pro-fibrotic actions; 

however, a growing body of evidence suggests that distinct 
macrophage subpopulations may be involved in resolu-
tion of the fibrotic response. In a model of hepatic fibrosis, 
Ly6Clo macrophages expressed high levels of MMPs and 
were suggested to play a role in regression of the fibrotic 
response [71, 72]. Macrophage subsets with anti-inflam-
matory properties may have indirect anti-fibrotic effects 
by suppressing fibroblast activation [2]. Moreover, phago-
cytotic macrophages may contribute to resolution of the 
fibrotic response by removing apoptotic myofibroblasts. 
However, subpopulations of anti-fibrotic macrophages in 
the injured myocardium have not been characterized, and 
the role of monocytes/macrophage subsets in negative reg-
ulation and resolution of cardiac fibrosis remains unknown.

The mast cell in cardiac fibrosis

Mast cells are capable of releasing large amounts of fibro-
genic mediators, including histamine, the mast cell-spe-
cific proteases, tryptase and chymase, and a wide range 
of cytokines and growth factors (Fig. 3). Both associative 
studies and experiments using mast cell-deficient rodent 
models suggest an important role for mast cells in tissue 
fibrosis and extracellular matrix remodeling [73, 74]. The 
normal myocardium is populated by chymase and tryptase-
positive mast cells that exhibit a distinct immunologic and 
biochemical phenotype [75]. Cardiac fibrosis is associated 
with increased accumulation of mast cells that store a wide 
variety of pro-inflammatory and fibrogenic mediators in 
their granules. Increased mast cell density has been dem-
onstrated in myocardial infarcts [33, 76] in patients with 
dilated and ischemic cardiomyopathy [77], as well as in 
the pressure- [78] and volume-overloaded [79] heart. The 
factors responsible for mast cell accumulation in areas of 
fibrosis are poorly understood. Several lines of evidence 
suggest that stem cell factor (SCF) is critically involved in 
recruitment of mast cell progenitors and in differentiation 
and growth of mature mast cells. Although, an association 
between SCF expression and increased mast cell density 
has been shown in failing hearts [77] and following myo-
cardial infarction [33], direct evidence that SCF may stimu-
late mast cell growth in these conditions is lacking.

Several recent investigations provide compelling evi-
dence that mast cells play an essential role in the patho-
genesis of cardiac fibrosis. In mouse models of pressure 
overload, mast cell-deficient mice were protected from the 
development of perivascular fibrosis and the progression of 
compensated hypertrophy to heart failure [80]. Moreover, 
accumulation of mast cells in the atria of pressure-over-
loaded hearts was implicated in the pathogenesis of atrial 
fibrosis through expression of PDGF-A and caused atrial 
fibrillation [81]. In a rat model of hypertension, admin-
istration of a mast cell stabilizer prevented myocardial 
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macrophage infiltration and attenuated fibrotic ventricular 
remodeling [82]. In a model of fibrotic cardiomyopathy 
due to TNF-α overexpression, mast cell–fibroblast interac-
tions were required for the development of cardiac fibrosis 
[83]. Mast cells were also implicated in cardiac remodeling 
induced by chronic volume overload; stabilization of mast 
cells prevented ventricular dilation and attenuated systolic 
and diastolic dysfunction [84]. The potent pro-fibrotic 
actions of mast cell-derived mediators on the heart are sup-
ported by findings demonstrating diastolic left ventricular 
dysfunction in many patients with systemic mast cell acti-
vation disorders [85].

which mediators are responsible for the pro-fibrotic 
actions of mast cells in the failing heart? Activated mast 
cells release a wide variety of granule-stored bioactive 
mediators, cytokines, and growth factors which have 
been demonstrated to stimulate cardiac fibroblast prolif-
eration and collagen synthesis [86]. Mast cell granules 
contain large amounts of TNF-α [87], TGF-β, IL-4 [88], 
PDGFs, and FGFs; however, these fibrogenic mediators 
are also synthesized by many other cell types involved in 
cardiac fibrosis, including macrophages and lymphocytes. 
Thus, their contribution to the cardiac fibrotic response 
remains unknown. Mast cell-derived histamine  also 
stimulates fibroblast proliferation [89] and collagen syn-
thesis [90]; its actions may be mediated at least in part 
through increased connective tissue growth factor (CTGF) 
synthesis [91]. Administration of a histamine H2 recep-
tor inhibitor in a small prospective study improved both 
cardiac symptoms and ventricular remodeling in patients 
with heart failure [92]; these findings may reflect, at least 

in part, inhibition of the pro-fibrotic effects of histamine 
in the failing heart.

On the other hand, the release of mast cell-specific prod-
ucts such as the proteases chymase and tryptase may rep-
resent a unique contribution of the mast cell in the fibrotic 
response and in extracellular matrix remodeling. Mast 
cell chymase exerts fibrogenic actions through genera-
tion of angiotensin II [93] or through activation of TGF-β-
induced Smad-dependent pathways [94]. In failing hearts, 
over 75 % of cardiac-specific highly fibrogenic angioten-
sin II is derived from the angiotensin converting enzyme 
(ACe)-independent chymase pathway [95]. This pathway 
is not affected by ACe inhibitors and thus may constitute a 
potential mechanism for the progression of cardiac fibrosis 
despite ACe inhibition. Beyond its effects on extracellular 
matrix protein synthesis, chymase also modulates matrix 
metabolism through activation of MMPs [96, 97]. Studies 
in both rodent and large animal models of cardiac fibrosis 
have demonstrated the importance of chymase signaling in 
fibrotic remodeling of the ventricle, and suggest a poten-
tially important opportunity for treatment. Matsumoto and 
co-workers [98] showed that chymase inhibition decreases 
fibrosis and attenuates diastolic but not systolic dysfunc-
tion in a dog model of tachycardia-induced heart fail-
ure. In a porcine model of ischemia/reperfusion, chymase 
antagonism reduced cardiac fibrosis and attenuated MMP 
expression [99]. In addition, chymase inhibition in a rat 
model of non-reperfused myocardial infarction attenuated 
left ventricular interstitial fibrosis and diastolic dysfunc-
tion without affecting the dilative pattern of cardiac remod-
eling [100]. Tryptase, the most abundant secretory product 

Fig. 3  Mast cells in cardiac 
fibrosis. Cardiac mast cell 
numbers increase in failing and 
remodeling hearts. Mast cell 
degranulation results in release 
of a wide range of fibrogenic 
mediators, leading to activation, 
proliferation, and differentiation 
of cardiac fibroblasts
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of the human mast cell, is also a fibrogenic mediator and 
potently stimulates proliferation [101] and collagen I syn-
thesis [102] in dermal and pulmonary fibroblasts. In car-
diac fibroblasts, tryptase activates erk MAPK signaling and 
promotes collagen expression through activation of the pro-
tease-activated receptor (PAR)-2 [103]. Despite convincing 
in vitro evidence on the fibrogenic effects of tryptase and 
the abundance of tryptase-positive mast cells in experi-
mental models of cardiac fibrosis [33, 76], the potential in 
vivo role of tryptase in the pathogenesis of fibrotic cardiac 
remodeling has not been documented.

Although the bulk of the evidence suggests that mast 
cell-derived mediators promote fibrous tissue deposition, 
a recent investigation demonstrated an antifibrotic role for 
mast cells in a rat model of homocysteine-induced cardiac 
fibrosis and remodeling [104]. These protective actions 
may be mediated through effects of mast cell products on 
the MMP:TIMP balance. Much like macrophages, mast 
cells may respond to microenvironmental cues by altering 
their growth factor and protease expression profile, thus 
transitioning from pro-fibrotic to anti-fibrotic phenotypes.

The role of lymphocytes in cardiac fibrosis

CD4+ T helper cells have been implicated in the patho-
genesis of a wide range of fibrotic conditions [105]. Th2 
cell differentiation is associated with marked upregula-
tion of the pro-fibrotic cytokines IL-4 and IL-13, both 
potent stimulators of fibroblast-derived collagen synthesis. 
Moreover, Th2 cytokines drive macrophage differentiation 
towards an M2 phenotype, further enhancing fibrogenic 
responses. Although the role of Th2 cells in the pathogen-
esis of hepatic [106] and pulmonary fibrosis [107] is well 
established, direct evidence on the involvement of Th2 cells 
in cardiac fibrosis is lacking. Descriptive studies have sug-
gested that increased expression of IL-4 and IL-13 in the 
aging heart was associated with cardiac fibrosis [108]; 
however, the hypothesis that Th2 cells may play a direct 
role in fibrotic cardiac remodeling has not been tested.

Other T cell subpopulations may also be involved in the 
pathogenesis of cardiac fibrosis, especially in conditions 
associated with intense T cell-mediated inflammation. In an 
experimental model of fibrosis due to autoimmune inflam-
matory myocarditis, Th17 cells have been implicated as 
important effectors of the cardiac fibrotic response [109]. 
whether certain T cell subsets are also involved in inhibi-
tion of the fibrotic response remains unknown. However, a 
growing body of evidence suggests that cell therapy with 
regulatory T cells (Tregs) attenuates cardiac fibrosis in 
experimental models of hypertensive heart disease [110], 
angiotensin-induced cardiomyopathy [111], and myocar-
dial infarction [112]. whether Tregs reduce the fibrogenic 
potential of macrophages or fibroblasts through direct 

contact-mediated interactions, or express and release anti-
fibrotic signals remains unknown. Considering the high 
level expression of the fibrogenic growth factor TGF-β by 
Tregs, their anti-fibrotic actions may reflect cardiomyocyte 
protection rather than attenuation of the fibrogenic cascade.

The endothelium

The involvement of endothelial cells in cardiac fibrosis 
is suggested by the frequent co-existence of fibrotic and 
angiogenic responses and by the common occurrence of 
perivascular fibrosis in pathophysiologic conditions asso-
ciated with pressure overload. endothelial cells may pro-
mote fibrotic cardiac remodeling through three distinct 
mechanisms:

(a) By expressing pro-fibrotic mediators, such as TGF-β1, 
FGFs or endothelin (eT)-1. eT-1 derived from vascu-
lar endothelial cells was implicated in the pathogenesis 
of cardiac fibrosis in a model of angiotensin-induced 
cardiomyopathy [113] and in diabetic cardiac fibrosis 
[114]. However, the role of endothelial cells as a source 
of fibrogenic growth factors is less well established.

(b) endothelial cells may contribute to fibrosis through the 
release of pro-inflammatory cytokines and chemokines, 
thus promoting recruitment of macrophages and lym-
phocytes with fibrogenic actions.

(c) endothelial cells may undergo endothelial to mesen-
chymal transition [39], thus directly contributing to 
expansion of the fibroblast pool in the fibrotic heart.

In addition to their pro-fibrotic actions, endothelial cells 
may also produce anti-fibrotic mediators. The anti-fibrotic 
chemokine interferon-γ-inducible protein (IP)-10/CXCL10 
exerts inhibitory actions on cardiac fibroblasts and is pro-
duced and secreted by endothelial cells following cardiac 
injury [115, 116]. Moreover, endothelial expression of 
hypoxia inducible factor (HIF)-1 has been shown to pro-
tect the pressure-overloaded myocardium from fibrosis; 
these anti-fibrotic actions may be mediated at least in part 
through suppression of TGF-β signaling [117].

The cardiomyocytes

Cardiomyocyte death triggers an inflammatory response 
that ultimately results in fibroblast activation and in replace-
ment of dead cardiomyocytes with fibrous tissue [118].  
A growing body of evidence suggests that, under condi-
tions of stress, viable cardiomyocytes may promote inter-
stitial fibrosis by activating interstitial fibroblasts; however, 
the molecular cascades responsible for these effects are 
poorly understood. ATP release through pannexin-1 chan-
nels may be one of the early cardiomyocyte-derived signals 
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that activate fibroblast responses following cardiac injury 
[119]. Loss of mineralocorticoid receptors in cardiomyo-
cytes attenuates deoxycorticosterone/salt-mediated cardiac 
fibrosis in mice, suggesting that cardiomyocyte-specific 
aldosterone signaling triggers the fibrogenic response 
[120]. Moreover, cardiomyocyte-selective TGF-β recep-
tor II (TβRII) knockdown significantly attenuated fibrosis 
of the pressure-overloaded heart, suggesting a crucial role 
for cardiomyocyte-specific TGF-β signaling in the patho-
genesis of fibrotic remodeling [121]. On the other hand, 
modulation of cardiomyocyte-specific signaling may also 
exert anti-fibrotic actions. Cardiomyocyte-specific overex-
pression of the angiotensin II type 2 receptor (AT2) inhibits 
angiotensin-induced cardiac fibrosis through activation of 
the kinin/NO system [122].

The extracellular matrix in the fibrotic heart

The fibrillar collagens

Increased accumulation of fibrillar collagen in the cardiac 
interstitium is the hallmark of cardiac fibrosis. Synthesis of 
both type I and type III collagen is markedly increased in 
the remodeling fibrotic heart regardless of the etiology of 
fibrosis [10, 123]. In models of hypertensive cardiac fibrosis 
and of myocardial infarction, type I collagen exhibits more 
intense and prolonged upregulation than collagen III [124, 
125]. However, in patients with ischemic cardiomyopathy, 
the ratio of collagen I:collagen III synthesis was decreased 
[126], suggesting that expression patterns of various col-
lagen isoforms in the fibrotic heart may depend on contex-
tual factors. Activated myofibroblasts are the main cellu-
lar sources of collagens in the fibrotic heart; once outside 
the cell, procollagen chains are processed, assembled into 
fibrils, and cross-linked. Collagen cross-linking is associ-
ated with the development of diastolic dysfunction in the 
fibrotic heart [127], but may also contribute to the integrity 
of the cardiac matrix preventing chamber dilation [128].

In addition to the deposition of fibrillar collagens, 
the extracellular matrix in the remodeling heart exhibits 
dynamic alterations in its composition that serve to facili-
tate proliferation and migration of fibroblasts and trans-
duce signals necessary for fibroblast activation. The extent 
and time course of these alterations are dependent on the 
underlying etiology of fibrosis. In replacement fibrosis 
associated with myocardial infarction, the sudden death 
of a large number of cardiomyocytes triggers an intense 
inflammatory reaction that dramatically alters the composi-
tion, inducing degradation of the normal interstitial matrix 
and generation of matrix fragments, followed by formation 
of a fibrin/fibronectin-based provisional matrix network 
and by the deposition of newly-synthesized “matricellular” 

macromolecules, which are incorporated into the matrix 
and modulate cell phenotype [45, 129].

Non-fibrillar collagens

In the fibrotic heart, deposition of non-fibrillar collagens 
(such as collagen vI) may play an important role in fibro-
blast activation. The role of collagen vI has been studied 
primarily in infarctive fibrosis; whether it is involved in 
other cardiac fibrotic conditions remains unknown [49]. In 
vitro, collagen vI potently stimulates myofibroblast trans-
differentiation, but has no significant effects on fibroblast 
proliferation [49]. In an experimental model of myocar-
dial infarction, collagen vI disruption reduced fibrosis and 
attenuated dysfunction. whether collagen vI acts primar-
ily by enhancing fibrosis remains unknown, because colla-
gen vI disruption also appears to attenuate cardiomyocyte 
apoptosis in the infarcted heart [130].

Fibrin and fibronectin: components of the provisional 
matrix that regulate fibroblast phenotype and function

During the early stages of the fibrotic response, extrava-
sation of plasma proteins (such as fibrinogen and plasma 
fibronectin) through the hyperpermeable vessels results in 
the formation of a provisional matrix network comprised 
of fibrin and fibronectin [131]. This dynamic matrix net-
work facilitates fibroblast migration and stimulates fibro-
blast proliferation [132] and activation through interactions 
that involve α5β1 and αvβ3 integrins [133] and syndecan-4 
[134]. Lysis of the plasma-derived provisional matrix by 
granulation tissue cells is followed by generation of an 
organized cell-derived “second order” provisional matrix 
that contains cellular fibronectin and hyaluronan [135]. In 
addition to its role as a conduit for migrating fibroblasts, 
the cell-derived provisional matrix also promotes myofi-
broblast transdifferentiation. The splice variant eD-A of 
cellular fibronectin is known to co-operate with TGF-β 
in mediating acquisition of the myofibroblast phenotype 
[27, 47, 48]. eD-A fibronectin is consistently upregulated 
in the infarcted and pressure-overloaded fibrotic heart 
and in models of chronic cardiac rejection [46, 136–138]. 
Although in vitro studies have suggested the role of eD-A 
fibronectin in cardiac myofibroblast transdifferentiation 
[139], direct in vivo evidence documenting its involvement 
in cardiac fibrotic conditions is lacking.

The matricellular concept: incorporation of 
macromolecules into the matrix transduces signals that 
modulate fibrotic responses and matrix remodeling

One of the most important alterations observed in the 
cardiac extracellular matrix in fibrotic conditions is the 
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induction and secretion of “matricellular proteins” into the 
interstitial space [129]. Matricellular proteins are a fam-
ily of structurally unrelated extracellular macromolecules 
that are not part of the normal tissue matrix, but are tran-
siently upregulated following injury and bind to the struc-
tural extracellular matrix. Matricellular proteins generally 
do not play a structural role  but function as “molecular 
bridges” between matrix proteins and cells, transducing or 
modulating cytokine and growth factor responses [140]. 
The family includes the thrombospondins (TSPs), tenascin-
C, osteopontin (OPN), SPARC (secreted protein acidic and 
rich in cysteine), periostin, and members of the CCN fam-
ily; new members and proteins that exhibit both matricel-
lular and non-matricellular functions are being increasingly 
recognized. Fibroblasts, macrophages, and vascular cells, 
the major cellular effectors of fibrosis, are major targets of 
matricellular proteins.

TSP-1, -2, and -4 are upregulated in cardiac fibrotic 
conditions and play distinct, but important, roles in the 
pathogenesis of the fibrotic response [141–143]. TSP-
1, a potent angiostatic mediator with an essential role in 
TGF-β activation [144], is upregulated in the infarcted 
and pressure-overloaded myocardium [141, 145], and is 
localized in areas with abundant myofibroblasts. In the 
pressure-overloaded myocardium, TSP-1 disruption is 
associated with increased MMP activity, impaired myofi-
broblast transdifferentiation, and reduced fibroblast-
derived collagen synthesis [141]. As an important activa-
tor of TGF-β, TSP-1 may promote a matrix-preserving 

phenotype in cardiac fibroblasts enhancing matrix deposi-
tion, while preventing chamber dilation. Because TSP-1 
inhibits MMP activation, its effects on the fibrotic heart 
may also be mediated through direct matrix-stabilizing 
actions [146, 147]. TSP-2 also exerts matrix-preserving 
actions on the remodeling myocardium. In TSP-2 null 
mice, angiotensin infusion induces fatal cardiac rupture 
associated with marked increases in MMP-2 and MMP-9 
expression and activity [148]. TSP-4, on the other hand, 
appears to inhibit the fibrotic response: TSP-4 null ani-
mals had increased collagen deposition in the pressure-
overloaded heart [143]. Recent evidence suggests that 
TSPs may also modulate cardiomyocyte function in the 
remodeling heart. TSP-2 absence is associated with an 
age-associated dilated cardiomyopathy, in part due to the 
loss of TSP-2-activated survival signals in cardiomyo-
cytes [142]. TSP-4 acts as a mechano-signaling molecule, 
necessary for augmentation of contractility in hearts sub-
jected to pressure overload [149].

The prototypical matricellular protein tenascin-C is 
consistently induced in remodeling fibrotic hearts regard-
less of the underlying etiology (Fig. 4) [150–152] and is 
localized in areas with heavy myofibroblast infiltration 
[152, 153]. Studies using tenascin-C null mice have sug-
gested pro-fibrotic effects of tenascin-C following cardiac 
injury. In a model of electrical myocardial injury [154], 
tenascin-C loss was associated with delayed recruitment 
of myofibroblasts in the site of injury. In an experimental 
model of myocardial infarction, tenascin-C null animals 

Fig. 4  Matricellular proteins are induced in the fibrotic heart and 
modulate cellular responses. Upregulation and deposition of matricel-
lular proteins in the cardiac interstitium is a hallmark of the fibrotic 
response. a Immunohistochemical staining shows deposition of the 
prototypical matricellular protein tenascin-C (arrows) in the border  

zone and remodeling myocardium in reperfused mouse infarcts. b 
Periostin is also expressed in myofibroblasts and deposited in the 
infarct matrix (arrows). c, d Both tenascin-C (c) and periostin (d) are 
upregulated in the murine pressure overloaded heart (arrows)
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had significantly reduced cardiac remodeling and attenu-
ated diastolic dysfunction associated with less pronounced 
fibrosis [155]. Although the cellular and molecular basis 
for the pro-fibrotic effects of tenascin-C have not been dis-
sected, in vitro experiments suggest that tenascin-C pro-
motes a deadhesive state and may facilitate migration of 
fibroblasts and other reparative cells in the remodeling 
myocardium.

SPARC and OPN are also well-documented regulators 
of fibroblast responses in cardiac remodeling. SPARC loss 
was associated with defective repair following myocardial 
infarction due to disorganized granulation tissue forma-
tion and impaired scar maturation. These defects resulted 
in increased mortality and a high incidence of heart fail-
ure [156]. In the remodeling heart, SPARC may act pri-
marily by promoting or facilitating TGF-β signaling in 
cardiac fibroblasts. OPN is also upregulated in cardiac 
fibrosis [157], and can act both as a matricellular pro-
tein (when bound to the matrix) and as a cytokine (when 
secreted in a soluble form). Loss-of-function studies sug-
gested that OPN plays an important role in cardiac fibro-
sis. Absence of OPN in a model of myocardial infarction 
resulted in increased left ventricular dilatation associated 
with reduced collagen deposition in the area of the infarct 
[158]. Moreover, OPN loss attenuated cardiac fibrosis in 
models of aldosterone [159] and angiotensin-induced 
cardiomyopathy [160], and in a genetic model of dilated 
cardiomyopathy [161], but not in the pressure-overloaded 
heart [162]. Although the mechanistic basis for the pro-
fibrotic effects of OPN has not been dissected, OPN may 
act by accentuating growth factor signaling in cardiac 
fibroblasts, by directly exerting pro-survival effects on 
cardiac fibroblasts [163], by modulating MMP expression 
and activity, or by directing macrophages towards a pro-
fibrotic phenotype.

Periostin expression is markedly upregulated in fibrotic 
hearts, localized almost exclusively in activated myofi-
broblasts and in the interstitial matrix (Fig. 4). Periostin 
absence results in decreased recruitment of fibroblasts, 
associated with impaired collagen fibrillogenesis; perturbed 
fibroblast function predisposes to cardiac rupture, but also 
attenuates late remodeling of the infarcted heart [164, 165]. 
The pathways mediating the pro-fibrotic actions of peri-
ostin have not been investigated.

Of the members of the CCN subfamily of matricellular 
proteins, CCN2/CTGF is consistently upregulated in the 
fibrotic heart and may be involved in fibrotic remodeling 
of the myocardium [166]. However, cardiac overexpres-
sion of CCN2 did not result in significant cardiac fibrosis 
[167], suggesting that CCN2 by itself may not be sufficient 
to induce fibrotic changes. As a TGF-β-inducible protein, 
CCN2 may contribute to the pathogenesis of fibrosis by 
accentuating TGF-β-mediated actions.

Molecular pathways involved in cardiac fibrosis

The wide range of molecular signals implicated in the 
fibrotic response and the complexity of their interactions 
have hampered understanding of the mechanistic basis of 
cardiac fibrosis. Recently, high-throughput genomic and 
transcriptomic strategies have been used to identify new 
pathways and molecular signals implicated with initiation, 
progression, and regression of the fibrotic response [168]. 
Although such approaches generate large amounts of inter-
esting information, they cannot distinguish mediators with 
critical involvement in the fibrotic process from the large 
number of genes that may be differentially regulated but do 
not play an essential regulatory role [169]. From a patho-
physiologic perspective, mechanism-oriented research 
using animal models,  and cell biological studies, remain 
the most effective and important tools in understanding the 
biology of cardiac fibrosis.

Several molecular pathways have been implicated in the 
pathogenesis of cardiac fibrosis; their relative significance 
is dependent on the underlying cause of the fibrotic reac-
tion. Inflammatory signals seem to be more important in 
reparative and ischemic fibrosis, which are associated with 
intense activation of cytokine and chemokine cascades  
[2, 42]. On the other hand, the angiotensin/aldosterone axis 
and fibrogenic growth factors, such as TGF-β and PDGF, 
appear to be involved in most fibrotic cardiac conditions 
regardless of etiology.

Reactive oxygen species

Oxidative stress has been implicated in the pathogenesis of 
cardiac fibrosis both through direct actions and through its 
involvement in cytokine and growth factor signaling. Reac-
tive oxygen species (ROS) directly regulate the quantity 
and quality of interstitial extracellular matrix by modulat-
ing both matrix protein expression and metabolism. Both 
matrix-preserving and matrix-degrading effects of ROS 
have been reported. Increased oxidative stress activates 
MMPs and decreases fibrillar collagen synthesis in cardiac 
fibroblasts [170]. On the other hand, the TGF-β activating 
effects of ROS may enhance extracellular matrix deposi-
tion in the cardiac interstitium [171]. Beyond their direct 
actions, ROS are also key mediators of cytokine- and angi-
otensin II-induced effects on fibroblasts [172]. Inflamma-
tory cytokine-mediated activation of mitogen-activated 
protein kinases and stress-responsive protein kinases is 
redox-sensitive. Subsequent activation of transcription fac-
tors such as AP-1, ets, and NF-κB leads to enhanced MMP 
transcription [173]. The effects of angiotensin appear to be 
in part dependent on ROS. Angiotensin II activates down-
stream ROS-sensitive kinases that are critical in mediating 
fibrotic remodeling of the heart [174]. In adult rat, cardiac 
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fibroblasts angiotensin II-stimulated collagen production is 
mediated through ROS generation [175].

In addition to the effects of oxidative stress on cardiac 
fibroblasts, a growing body of in vivo evidence supports the 
significance of ROS-mediated effects in the pathogenesis of 
cardiac fibrosis. Mice that overexpress catalase targeted to 
mitochondria are resistant to cardiac hypertrophy and fibro-
sis after angiotensin infusion, suggesting that mitochon-
drial oxidative stress mediates angiotensin-induced fibrotic 
cardiomyopathy [176]. Moreover, in a model of fibrotic 
ischemic cardiomyopathy due to brief repetitive myocar-
dial ischemia and reperfusion, extracellular superoxide 
dismutase (eC-SOD) overexpression attenuated interstitial 
fibrosis [177]. experiments in a rat model demonstrated 
that the profibrotic actions of aldosterone infusion are 
mediated at least in part through ROS generation [178].

Chemokines

Chemokines are chemotactic cytokines involved in leuko-
cyte trafficking [179]. Several members of the chemokine 
family have been implicated in the fibrotic process through 
recruitment of pro-fibrotic leukocyte subpopulations, 
through chemotactic attraction of fibroblast progenitors 
and through direct actions on fibroblasts [180]. The CC 
chemokine CCL2/MCP-1 is the best-studied chemokine in 
heart disease [181] and appears to play a role in ischemic 
and pressure overload-induced cardiac fibrosis. Pressure 
overload due to suprarenal aortic constriction induced 
myocardial MCP-1 mRNA expression followed by mac-
rophage accumulation, reactive fibrosis, and cardiomyo-
cyte hypertrophy. Treatment with the angiotensin II type I 
(AT-1) receptor antagonist candesartan significantly attenu-
ated MCP-1 upregulation, suggesting that AT-1 signaling 
may play a key role in MCP-1 induction in the pressure-
overloaded heart [67]. Chronic treatment with a monoclo-
nal neutralizing anti-MCP-1 antibody not only inhibited 
interstitial macrophage accumulation but also attenuated 
fibroblast proliferation and TGF-β induction. Furthermore, 
MCP-1 inhibition reduced myocardial fibrosis, but not car-
diomyocyte hypertrophy, and ameliorated diastolic dys-
function without affecting blood pressure and systolic func-
tion [182]. experiments from our laboratory demonstrated 
that MCP-1 also plays a critical role in the pathogenesis of 
a fibrotic ischemic cardiomyopathy due to brief repetitive 
ischemia and reperfusion [36].

MCP-1 may mediate its pro-fibrotic effects through 
several distinct mechanisms. First, mononuclear cells 
chemotactically attracted through MCP-1/CCR2 signal-
ing may be an important source of fibrogenic mediators, 
such as TGF-β and fibroblast growth factors. MCP-1 selec-
tively recruits CCR2+ monocytes; whether these cells 
are capable of driving the fibrotic response has not been 

systematically investigated. In addition to its chemotactic 
properties, MCP-1 may enhance the fibrogenic potential of 
macrophages by inducing TGF-β1 and collagen synthesis 
[183] and may accentuate macrophage OPN expression 
[59]. Second, MCP-1 may directly modulate fibroblast 
phenotype and activity. In vitro studies have demonstrated 
that MCP-1 enhances portal fibroblast proliferation and 
myofibroblast differentiation [184], upregulates collagen 
and TGF-β1 expression by rat pulmonary fibroblasts [185], 
and stimulates production of MMP-1 and tissue inhibitor 
of metalloproteinases (TIMP)-1 by human skin fibroblasts 
[186]. However, experiments in murine cardiac fibroblasts 
did not demonstrate significant effects of MCP-1 on fibro-
blast-derived MMP expression [36]. Third, MCP-1 may be 
an important mediator in the recruitment of fibroblast pro-
genitors [187, 188]. experiments in a model of ischemic 
fibrotic cardiomyopathy and in angiotensin-induced car-
diac fibrosis identified recruitment of monocytic fibroblast 
progenitors as an important mechanism mediating the pro-
fibrotic actions of MCP-1 [37, 189].

Certain chemokines may be involved in negative regula-
tion of fibrosis. Our experiments have identified the CXC 
chemokine IP-10/CXCL10 as a potent antifibrotic media-
tor in healing myocardial infarction [115, 116]. The antifi-
brotic effects of IP-10 may be primarily due to inhibition of 
growth-factor-induced fibroblast migration [116].

Cytokines

expression of the pro-inflammatory cytokines TNF-α, 
IL-1β and IL-6 is consistently induced in fibrotic hearts 
[190–193]. Circulating TNF-α and IL-6 levels correlate 
with markers of collagen turnover in patients with dilated 
cardiomyopathy [194], suggesting an association between 
cytokine activation and matrix remodeling. In vitro, pro-
inflammatory cytokines are potent regulators of collagen 
metabolism and profoundly affect fibroblast phenotype and 
gene expression [173]. TNF-α, IL-1β, and IL-6 decrease 
collagen synthesis in isolated cardiac fibroblasts and 
increase MMP expression and activity [195], while reduc-
ing synthesis of inhibitors of metalloproteinases [196]. 
These actions promote matrix degradation [197]. IL-1β  
and (to a lesser extent) TNF-α, but not IL-6, stimulate con-
centration-dependent increases in cardiac fibroblast migra-
tion [198]. Furthermore, IL-1β exerts potent antiprolifera-
tive effects on cardiac fibroblasts [199], altering expression 
of fibroblast cyclins, cyclin-dependent kinases, and their 
inhibitors [200], and enhances fibroblast sphingosine 
kinase activity [201]. In addition  to their direct effects on 
cardiac fibroblasts, proinflammatory cytokines also induce 
expression and release of a wide variety of mediators that 
may modulate the fibrotic process. Due to their highly plei-
otropic actions, the role of cytokine signaling in mediating 
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fibrous tissue deposition in vivo is likely to be complex and 
context-dependent. However, it is generally accepted that 
the activation of pro-inflammatory cytokines in the myocar-
dium promotes matrix-degrading responses that ultimately 
lead to ventricular dilation.

Transgenic mice with cardiac-specific overexpression 
of TNF-α developed heart failure [202] associated with 
increased collagen synthesis, deposition, and denaturation, 
and significantly enhanced MMP-2 and MMP-9 activity 
[203]. enhanced fibrosis in TNF-α overexpressing ani-
mals is associated with increased expression of TGF-β iso-
forms [204] and may involve fibroblast–mast cell interac-
tions [205]. On the other hand, TNF-α null mice exhibited 
reduced fibrosis and decreased MMP-9 activity in a model 
of cardiac pressure overload, highlighting the important 
role of the cytokine in the pathogenesis of cardiac fibrosis 
and remodeling [206]. The pro-fibrotic effects of TNF sign-
aling in the myocardium appear to be due to interactions 
involving the type 1 TNF receptor (TNFR1) [207]; in con-
trast, TNFR2 signaling may reduce fibrosis [208].

The renin–angiotensin–aldosterone system

extensive evidence implicates neurohormonal pathways 
in the pathogenesis of cardiac fibrosis. Activation of the 
renin–angiotensin–aldosterone system (RAAS) is consist-
ently found in fibrotic hearts regardless of etiology. Mac-
rophages and fibroblasts infiltrating the injured heart pro-
duce renin and angiotensin-converting enzyme (ACe), 
molecules necessary for generation of angiotensin II [209]. 
Locally released angiotensin II serves as a potent stimu-
lant for cardiac fibroblasts, both through direct actions and 
through TGF-β-mediated effects. In vitro studies have dem-
onstrated that angiotensin II stimulates cardiac fibroblast 
proliferation and enhances their collagen-synthetic activity 
through AT1 receptor-dependent interactions [210–212]. In 
contrast, AT2 signaling may inhibit AT1-mediated actions, 
suppressing fibroblast proliferation and matrix synthesis 
[213], and thus serving as a negative regulator of angio-
tensin II-mediated pro-fibrotic responses [122]. In vivo, 
extensive evidence supports the pro-fibrotic actions of AT1 
signaling. AT1 blockade significantly reduced intersti-
tial fibrosis in models of myocardial infarction [214] and 
fibrosis due to cardiac pressure overload [215]. The marked 
beneficial effects of ACe inhibition and AT1 blockade 
in patients with chronic heart failure or acute myocardial 
infarction may be due, at least in part, to inhibition of angi-
otensin-induced fibrogenic actions.

Aldosterone is also capable of inducing fibrotic changes 
in the myocardium [216], as suggested by experimental ani-
mal studies and by the development of reactive myocardial 
fibrosis in patients with adrenal adenomas [217]. Several 
distinct mechanisms may mediate the pro-fibrotic actions 

of aldosterone in the heart. First, aldosterone may act by 
promoting pro-inflammatory effects on vascular cells, thus 
accentuating expression of cytokines and chemokines [68]. 
Second, aldosterone may drive macrophages towards a 
fibrogenic phenotype [69]. Third, aldosterone may activate 
cardiomyocyte-derived fibrogenic signals [120]. Fourth, 
aldosterone may exert direct effects on fibroblasts, stimu-
lating proliferation [218] and increasing collagen synthesis 
[219]. whether the beneficial effects of aldosterone antago-
nism in patients with heart failure [220] are, at least in part, 
due to anti-fibrotic actions remains unknown.

TGF-β

Perhaps the best-characterized fibrogenic growth fac-
tor [221], TGF-β is markedly and consistently activated 
in experimental models of cardiac fibrosis [222] and in 
fibrotic human hearts [223, 224]. In mammals, TGF-β is 
found in three isoforms (TGF-β1, 2, and 3), encoded by 
three distinct genes. [225]. Although the three TGF-β iso-
forms signal through the same cell surface receptors and 
share common cellular targets, they exhibit distinct pat-
terns of expression. TGF-β1 is the predominant isoform in 
the cardiovascular system and is ubiquitously expressed, 
whereas the other isoforms are found in a more limited 
spectrum of cells and tissues. Although the three isoforms 
likely have distinct in vivo functions, most of our knowl-
edge on their role in cardiac fibrosis is limited to TGF-β1.

TGF-β1 is present in the normal heart as a latent com-
plex, unable to associate with its receptors. Following car-
diac injury, the extracellular concentration of TGF-β activ-
ity is regulated primarily through conversion of the latent 
to the active form; activation of a relatively small amount 
of latent TGF-β is sufficient to induce a maximal cellu-
lar response [226]. A wide range of mediators have been 
described as TGF-β “activators” and play a role at different 
stages of the activation process. Proteases, such as plasmin, 
MMP-2, and MMP-9, are capable of activating TGF-β, 
thus linking matrix degradation with activation of a mole-
cule that preserves matrix integrity and stability [226–228]. 
The matricellular protein TSP-1 is a key TGF-β activator 
with an important role in cardiac remodeling. ROS genera-
tion [229] and a mildly acidic environment [230] can also 
trigger TGF-β activation. The specific signals responsible 
for TGF-β activation in the fibrotic heart may be in part 
dependent on the type and intensity of the initial cardiac 
injury.

Pro-fibrotic actions of TGF-β have been suggested by 
generation of mice with myocardial overexpression of 
TGF-β1. Rosenkranz and co-workers [231, 232] dem-
onstrated that cardiac TGF-β1 overexpression induced 
ventricular fibrosis associated with accentuated colla-
gen deposition and inhibition of interstitial collagenases.  
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On the other hand, Nakajima and co-workers [233] showed 
that transgenic mice with a large proportion of constitu-
tively active TGF-β1 in the heart (due to a mutation that 
blocks covalent tethering of the TGF-β1 latent complex to 
the extracellular matrix) exhibited only atrial and not ven-
tricular fibrosis [233]. Loss-of-function approaches using 
several distinct experimental models of cardiac fibrosis 
suggested the involvement of TGF-β in fibrotic ventricu-
lar remodeling. Heterozygous TGF-β1±-deficient mice 
exhibited attenuated age-associated fibrosis and improved 
left ventricular compliance when compared to control wild-
type animals [234]. Moreover, TGF-β blockade prevented 
myocardial fibrosis in a rat model of cardiac pressure over-
load [235].

The profound and consistent activating effects of TGF-
β on cardiac fibroblasts may provide the cell biological 
basis for TGF-β-induced cardiac fibrosis (Fig. 5) [236]; 
TGF-β-mediated actions on other cell types (such as mac-
rophages, lymphocytes, and cardiomyocytes) may also 
contribute to the fibrotic response in a paracrine man-
ner. TGF-β stimulation induces myofibroblast transdif-
ferentiation [237] and enhances extracellular matrix pro-
tein synthesis. Moreover, the matrix-preserving effects 
of TGF-β are due to induction of expression of protease 
inhibitors, such as plasminogen activator inhibitor (PAI)-1 
and TIMPs [225]. TGF-β-mediated CCN2 induction may 
also contribute to its fibrogenic actions. The combined 
action of TGF-β1 and CCN2 may be responsible for a 
sustained fibrotic response [238].

which TGF-dependent signaling pathways are involved 
in the pathogenesis of cardiac fibrosis? Once released and 
activated, TGF-β binds to the constitutively active type 
II receptor (TβRII) on the cell surface, then the resulting 
complex transphosphorylates the cytoplasmic domain of 
the type I receptor (TβRI). Subsequently, TGF-β signals 
through downstream intracellular signals, the Smads, or 

by activating Smad-independent pathways. experiments 
from our laboratory have demonstrated that Smad3 sign-
aling plays an essential role in fibrotic remodeling of the 
infarcted ventricle [239]. The anti-fibrotic effects of Smad3 
deficiency were not due to reduced fibroblast infiltration 
into the infarct or to perturbed myofibroblast differentia-
tion. In fact, myofibroblast density in the infarcted myo-
cardium was significantly higher in Smad3 null infarcts, 
a finding that may be due to Smad3-dependent antiprolif-
erative actions of TGF-β on cardiac fibroblasts. However, 
TGF-β-mediated induction of extracellular matrix proteins 
(such as collagen and tenascin-C) in cardiac fibroblasts was 
dependent on Smad3, suggesting that decreased fibrotic 
remodeling in infarcted Smad3 null hearts may be due to 
abrogation of the pro-fibrotic TGF-β responses. Although 
the role of Smad-independent pathways in fibrotic cardiac 
remodeling has not been systematically studied, develop-
ment of transgenic mice with an activating mutation of the 
TGF-β activated kinase (TAK)-1 expressed in myocardium 
was sufficient to produce marked cardiac hypertrophy and 
interstitial fibrosis, suggesting that TGF-β/TAK-1 signaling 
may exert profibrotic actions.

Negative regulation of TGF-β signaling may play an 
important role in restraining cardiac fibrosis. Recently pub-
lished studies have suggested two potential mechanisms that 
may inhibit fibrogenic TGF-β actions in the infarcted or fail-
ing myocardium. Cleavage and release of a soluble form of 
endoglin may limit and inhibit TGF-β signaling in heart fail-
ure [240]. Moreover, expression of the TGF-β pseudo-recep-
tor BAMBI (bone morphogenetic protein/BMP and activin 
membrane-bound inhibitor) following pressure overload may 
downmodulate TGF-β signaling, attenuating its profibrotic 
actions [241]. Because prevention of uncontrolled TGF-
β responses in the myocardium may be crucial to maintain 
structure and function, multiple distinct pathways may co-
operate for negative regulation of the TGF-β system [242].

Fig. 5  Cellular effects of TGF-
β in cardiac fibrosis. TGF-β 
is a key fibrogenic mediator 
that may affect all cell types 
involved in the cardiac fibrotic 
response
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endothelin (eT)-1

Both in vitro and in vivo studies suggest that eT-1  is a 
potent fibrogenic mediator that may act downstream of 
TGF-β and angiotensin [166], and may serve as a link 
between inflammation and fibrosis [243]. Both TGF-β and 
angiotensin are capable of inducing eT-1 in various cell 
types [244]; eT-1 is known to be secreted in failing human 
hearts [245] and is upregulated in experimental models of 
hypertensive cardiac fibrosis [246]. In vitro, eT-1 enhances 
cardiac fibroblast proliferation [247], promotes matrix pro-
tein synthesis, decreases collagenase activity [248], and 
induces an apoptosis-resistant fibroblast phenotype [249]. 
In vivo, cardiac specific overexpression of eT-1 induced 
myocardial fibrosis associated with biventricular systolic 
and diastolic dysfunction [250]. Moreover, endothelin 
antagonism attenuated fibrotic myocardial remodeling in 
animal models of hypertensive and infarctive cardiac fibro-
sis [251, 252].

Platelet-derived growth factor

The platelet-derived growth factor (PDGF) family is com-
prised of homo- or hetero-dimeric growth factors (includ-
ing PDGF-AA, -BB, AB, CC, and DD) that signal through 
two different receptors: PDGFR-α and PDGFR-β. PDGF 
isoform and receptor expression is upregulated in fibrotic 
cardiac conditions [253]; however, because of the pleiotopic 
effects of PDGF signaling, its role in mediating the cardiac 
fibrotic response remains poorly understood. In vitro, PDGF-
AA potently stimulates cardiac fibroblast proliferation and 
matrix synthesis [254]. In vivo, PDGFR-α and PDGFR-β 
neutralization reduced collagen deposition in healing myo-
cardial infarcts [253]; however, PDGFR-β inhibition also 
prevented mural cell recruitment by infarct neovessels sup-
pressing vascular maturation [253]. In a model of chronic 
allograft rejection, adenoviral-mediated delivery of PDGF-
A, -C, and -D, but not PDGF-B, accelerated cardiac fibrosis, 
enhancing TGF-β expression [255]. In pressure-overloaded 
hearts, PDGFR-α neutralization attenuated atrial fibrosis and 
reduced the incidence of atrial fibrillation [81].

Pathophysiologic conditions associated with cardiac 
fibrosis

Although pathogenetic mechanisms in various cardiac 
fibrotic conditions share common cellular effectors and 
molecular pathways, the relative contribution of each path-
way is often dependent on the underlying cause of fibrotic 
remodeling. The distinct cellular alterations that occur with 
each type of injury have important pathophysiologic and 
therapeutic implications:

Replacement fibrosis in myocardial infarction is dependent 
on an inflammatory reaction

Because the adult mammalian heart has negligible regen-
erative capacity, the death of a large number of cardio-
myocytes following myocardial infarction results in their 
replacement with fibrous tissue. The cellular response to 
infarction can be divided in three overlapping phases: the 
inflammatory, the proliferative, and the maturation phase. 
Although this clearly represents an oversimplification, it is 
a useful approach to better understand the process of repar-
ative fibrosis. Cardiomyocyte death rapidly activates innate 
immune pathways that trigger cytokine, chemokine, and 
adhesion molecule expression initiating the inflammatory 
phase and leading to infiltration of the infarct with leuko-
cytes. As the wound is cleared of dead cells, inflammatory 
leukocytes become apoptotic, and activation of a inhibitory 
mediators suppresses the inflammatory reaction leading 
to transition to the proliferative phase. Differentiation and 
activation of macrophages may stimulate transdifferentia-
tion of myofibroblasts, the key effector cells in scar forma-
tion and the main source of extracellular matrix proteins in 
the healing infarct. At the same time, activation of angio-
genic pathways results in the formation of a rich microvas-
cular network in the healing infarct, necessary to provide 
oxygen and nutrients to the reparative cells. The end of the 
proliferative phase may be associated with activation of 
anti-fibrotic signals, in order to prevent uncontrolled fibro-
sis. Transition to the maturation phase follows, as extracel-
lular matrix proteins in the infarct are cross-linked, while 
most fibroblasts and vascular cells in the scar undergo 
apoptosis. Activation of fibroblasts and inflammatory cells 
may persist in the infarct border zone and in the remote 
remodeling myocardium, as pressure and volume loads 
may provide stimulatory signals [256–258].

The extracellular matrix during the inflammatory phase  
of infarct healing

During the inflammatory phase of reparative fibrosis, 
stimulation of cytokine and chemokine signaling enhances 
protease expression and activity, leading to extensive deg-
radation of the cardiac matrix [259, 260]. Matrix altera-
tions in the early stages of replacement fibrosis are char-
acterized by two major events. First, cardiac extracellular 
matrix constituents exhibit extensive fragmentation that 
is not limited to fibrillar collagen  but also involves gly-
cosaminoglycans (such as hyaluronan). Generation of low 
molecular weight hyaluronan fragments in the infarct may 
exert pro-inflammatory actions and activate fibroblasts 
through CD44-mediated pathways [131, 261]. Second, a 
highly dynamic provisional matrix is formed, comprised of 
fibrin and fibronectin, and creates a scaffold for infiltration, 



564 P. Kong et al.

1 3

migration, and proliferation of leukocytes and mesenchy-
mal cells, thus facilitating the reparative process [115, 131].  
Migrating cells use integrin receptors to interact with fibrin 
and fibronectin within the matrix network; integrin-medi-
ated interactions may also provide signals that modulate 
macrophage and fibroblast phenotypes and stimulate gene 
expression [258, 262].

Matrix:fibroblast interactions during the proliferative 
phase of cardiac repair

The transition from the inflammatory to the proliferative 
phase is associated with activation of “stop signals” that 
inhibit inflammation while promoting fibrous tissue depo-
sition and angiogenesis. Induction of interleukin recep-
tor-associated kinase (IRAK)-M in infarct macrophages 
suppresses their inflammatory activity and serves as one 
of many inhibitory pathways involved in restraining and 
containment of post-infarction inflammation [263]. Dur-
ing the proliferative phase of the reparative response, both 
secreted mediators and matrix-derived signals stimulate 
activation of myofibroblasts in the healing infarct. As the 
plasma-derived provisional matrix is cleared by the plas-
minogen system [264], cellular fibronectin is produced by 
macrophages and fibroblasts and serves as a “second order” 
provisional matrix [265]. The eD-A isoform of fibronectin 
co-operates with TGF-β to induce myofibroblast transdif-
ferentiation [27, 48, 266]. Locally generated angiotensin II, 
PDGF, TGF-β, and mast cell-derived chymase and tryptase, 
activate fibroblasts, enhancing their matrix synthetic capac-
ity. Spatially-restricted deposition of matricellular pro-
teins in the infarct border zone results in fine regulation of 
growth factor responses, preventing inappropriate expan-
sion of the inflammatory and fibrotic processes.

Formation of a mature scar

As the scar matures, increased expression of lysyl-oxidase 
induces cross-linking of the matrix in the infarcted myo-
cardium [267]. Matricellular proteins are cleared and the 
mature scar, comprised of dense cross-linked collagen, 
enhances tensile strength of the infarct while increasing 
passive stiffness and contributing to diastolic dysfunc-
tion [268]. In the mature scar, deprivation of growth fac-
tors, stress-shielding, and removal of matricellular pro-
teins result in apoptotic death of most myofibroblasts and 
vascular cells in the infarct [253, 269]. Although myofi-
broblasts are cleared from the mature scar, in the viable 
remodeling myocardium, fibroblasts may exhibit persis-
tent activation due to increased hemodynamic loading. 
These chronic fibrotic changes may play an important role 
in the pathogenesis of chronic cardiac remodeling and 
heart failure.

Fibrotic remodeling of the pressure-overloaded heart

Pressure overload is a common pathophysiologic condi-
tion in cardiac remodeling and plays a dominant role in 
the pathogenesis of fibrotic cardiomyopathy in patients 
with hypertension and aortic stenosis. In animal models, 
pressure overload induces early hypertrophy, fibrosis, and 
diastolic dysfunction, followed by decompensation, dilative 
cardiomyopathy, and the development of systolic dysfunc-
tion (Fig. 6) [270]. Induction of inflammatory mediators 
is consistently observed in experimental models of pres-
sure overload cardiomyopathy; however, the intensity of 
the inflammatory reaction is much lower than in infarcted 
hearts [270, 271]. The basis for initiation of the inflam-
matory reaction in the pressure-overloaded myocardium 
remains poorly understood and may involve activation of 
innate immune signals due to cardiomyocyte death, reactive 
oxygen generation, or angiotensin-mediated pro-inflam-
matory actions. Both chemokines (such as MCP-1/CCL2) 
and cytokines (such as TNF-α) have been implicated in 
the pathogenesis of pressure overload-induced myocardial 
fibrosis [67, 206], Pro-inflammatory signals may promote 

Fig. 6  Remodeling and fibrosis in the pressure-overloaded heart. 
Animal models of cardiac pressure overload exhibit rapid develop-
ment of concentric myocardial hypertrophy and fibrosis associated 
with diastolic dysfunction, followed by chamber dilation and systolic 
dysfunction. The protease/antiprotease balance plays an important 
role in remodeling of the pressure overloaded heart. During the early 
stages of the response to pressure overload, angiotensin II and TGF-
β may promote matrix preservation, stimulating collagen and TIMP 
synthesis. Although the events associated with decompensation are 
poorly understood, increased MMP synthesis may be involved in tran-
sition to the dilative phase. Lower panel The histopathological images 
show Sirius red staining in a mouse model of transverse aortic con-
striction to illustrate the typical alterations of the cardiac interstitium 
in the pressure-overloaded heart: perivascular (left) and interstitial 
(right) fibrosis
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fibrosis by inducing recruitment of fibrogenic monocytes 
subsets and fibroblast progenitors, by driving macrophages 
towards a fibrogenic phenotype, and by activating resident 
cardiac fibroblasts. early alterations in the cardiac intersti-
tial matrix may play an important role in the transition from 
inflammation to fibrosis. Upregulation of matricellular pro-
teins (including periostin, OPN, SPARC, TSP-1, and -2) in 
the pressure-overloaded heart is well documented and con-
tributes to activation of growth factor signaling responses 
[129, 272].

Generation of angiotensin II and activation of TGF-β 
are central events in the fibrotic response in the pressure-
overloaded myocardium and are capable of modulating 
phenotype and function of all cells involved in the fibrotic 
process. Although both angiotensin and TGF-β are potent 
activators of fibroblasts, whether their effects in cardiac 
fibrosis are mediated directly through fibroblast-spe-
cific actions remains unknown. Angiotensin- or TGF-β-
mediated effects on macrophages and cardiomyocytes may 
also contribute to activation of fibrogenic signaling through 
paracrine mechanisms.

Because late development of cardiac dilation in the 
pressure-overloaded ventricle marks progression to decom-
pensated heart failure and systolic dysfunction, the molecu-
lar signals involved in transition from the hypertrophic/
pro-fibrotic stage to dilative remodeling are of outstanding 
interest. MMP activation has been reported in dilated pres-
sure-overloaded hearts [20], and may be in part responsi-
ble for chamber dilation. Thus, in the pressure-overloaded 
heart, geometry of the ventricle may depend on the balance 
between matrix-degrading and matrix-preserving signals.

volume overload is associated with extensive matrix 
degradation

volume overload is the predominant pathophysiologic 
condition in patients with valvular regurgitant lesions and 
results in chamber dilation and development of systolic 
dysfunction. Matrix metabolism appears to play a key role 
in remodeling of the volume-overloaded heart. In contrast 
to the increase in collagen content observed in pressure-
overloaded hearts, volume overload is associated with 
marked loss of interstitial collagen [273], associated with 
induction of MMP-2, -9, and -3 [273, 274]. The basis for 
volume overload-induced protease upregulation remains 
unknown. In experimental models of volume overload, 
a marked increase in cardiac mast cell numbers has been 
implicated in the pathogenesis of dilative remodeling [74, 
275]. As important sources of MMPs and pro-inflammatory 
cytokines, mast cells may induce degradation of extracel-
lular matrix proteins driving a dilative response and pro-
moting systolic dysfunction. Mast cell numbers are also 
increased in fibrotic conditions associated with increased 

matrix deposition [33]. whether volume overload drives 
mast cell phenotype towards a matrix-degrading direction 
remains unknown. Moreover, effects of volume overload 
on other cell types implicated in matrix remodeling (such 
as fibroblasts and macrophages) have not been systemati-
cally studied.

The fibrotic changes in the aging heart may contribute  
to the development of diastolic dysfunction

Aging is associated with cardiac fibrosis; in the absence 
of other conditions, normal aging does not induce systolic 
dysfunction but promotes matrix deposition in the cardiac 
interstitium and progressively increases ventricular stiff-
ness [276]. Descriptive studies have suggested that aging-
associated fibrosis may be due to reduced matrix degrada-
tion, rather than to increased collagen synthesis [277]. ROS 
generation, AT1 signaling, activation of TGF-β-mediated 
pathways, and induction of inflammatory chemokines 
have been implicated in the pathogenesis of age-associ-
ated cardiac fibrosis [278]. However, most of the evidence 
is derived from associative studies; investigations docu-
menting the significance of specific pathways are lacking. 
Although aging is associated with a basal increase in myo-
cardial collagen deposition, in reparative responses, senes-
cent animals exhibit suppressed collagen synthetic capacity 
and impaired scar formation [279]. The age-related defects 
in cardiac repair appear to be mediated, at least in part, 
through reduced responsiveness of senescent fibroblasts to 
growth factors [279].

Targeting cardiac fibrosis

Because fibrotic cardiac remodeling is associated with both 
systolic and diastolic dysfunction, prevention and reversal 
of cardiac fibrosis is an important goal for cardiovascular 
researchers and clinicians. Identification of therapeutic tar-
gets will require understanding of the mechanistic basis 
of the fibrotic disease; however, the effectiveness of anti-
fibrotic strategies will likely depend on the underlying eti-
ology and the severity and extent of disease. In the presence 
of pro-fibrotic pathophysiologic conditions (such as pres-
sure or volume overload), protection of the myocardium 
from fibrosis is best achieved by treating the underlying 
pathophysiologic process. For example, anti-hypertensive 
treatment, or valve surgery, would be the ideal strategies 
for myocardial protection in patients with hypertension or 
valvular disease, respectively.

whether established cardiac fibrosis is reversible 
depends on the etiology and extent of disease, the age of 
the fibrotic lesions, and the amount of protease-resistant 
cross-linked matrix. In an experimental model of fibrotic 
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interstitial cardiomyopathy due to brief repetitive ischemia/
reperfusion, discontinuation of the ischemia protocol 
resulted in reversal of fibrosis [177]. Both experimental and 
clinical studies have suggested that hypertensive fibrosis 
is reversible upon treatment with ACe inhibitors. Lisino-
pril induced regression of fibrosis in spontaneously hyper-
tensive rats with advanced fibrotic cardiomyopathy [280]. 
Moreover, in a small clinical study, 35 patients with hyper-
tension, left ventricular hypertrophy, and diastolic dysfunc-
tion had significant regression of fibrosis (assessed through 
endomyocardial biopsy) after a 6-month course of lisino-
pril. Attenuated fibrosis was associated with improved dias-
tolic function [281].

Reversibility of cardiac fibrosis has also been docu-
mented in experimental models of genetic cardiomyopa-
thy. In a mouse model of calcineurin-dependent cardio-
myopathy, fibrosis was in part reversed when calcineurin 
was turned off [282]. In a rabbit model of hypertrophic 
cardiomyopathy, statin therapy induced regression of car-
diac fibrosis and hypertrophy [283]. Moreover, AT1 block-
ade with losartan reversed fibrosis and attenuated TGF-β 
expression in a transgenic mouse model of human hyper-
trophic cardiomyopathy [284]. Clearly, established fibrotic 
lesions due to replacement of a large amount of myocar-
dium are less likely to be reversible. Regression of myo-
cardial scars due to large infarcts would require extensive 
myocardial regeneration, a major visionary goal of mod-
ern cardiovascular research. Significant regression may be 
impossible even with smaller, but established and cross-
linked, fibrotic lesions. Patients with severe aortic stenosis 
showed no reversal of myocardial fibrosis 9 months after 
aortic valve replacement [285].

Although regression of fibrosis has been documented in 
several cardiac conditions, the mechanisms responsible for 
the reversal of fibrotic disease remain unknown. Clearance 
of collagen and other matrix proteins from the fibrotic heart 
likely requires activation of proteases. whether specific sub-
populations of “anti-fibrotic” macrophages and lymphocytes 
are involved in driving the resolution of fibrotic lesions 
remains unknown. Moreover, the functional characteristics 
and molecular profile associated with a pro-regression phe-
notype in cardiac fibroblasts have not been investigated.
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