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Abstract
The expression and experience of human behavior are complex and multimodal and characterized
by individual and contextual heterogeneity and variability. Speech and spoken language
communication cues offer an important means for measuring and modeling human behavior.
Observational research and practice across a variety of domains from commerce to healthcare rely
on speech- and language-based informatics for crucial assessment and diagnostic information and
for planning and tracking response to an intervention. In this paper, we describe some of the
opportunities as well as emerging methodologies and applications of human behavioral signal
processing (BSP) technology and algorithms for quantitatively understanding and modeling
typical, atypical, and distressed human behavior with a specific focus on speech- and language-
based communicative, affective, and social behavior. We describe the three important BSP
components of acquiring behavioral data in an ecologically valid manner across laboratory to real-
world settings, extracting and analyzing behavioral cues from measured data, and developing
models offering predictive and decision-making support. We highlight both the foundational
speech and language processing building blocks as well as the novel processing and modeling
opportunities. Using examples drawn from specific real-world applications ranging from literacy
assessment and autism diagnostics to psychotherapy for addiction and marital well being, we
illustrate behavioral informatics applications of these signal processing techniques that contribute
to quantifying higher level, often subjectively described, human behavior in a domain-sensitive
fashion.
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I. Introduction
A. Human Behavior

Human behavior is complex and multifaceted. It manifests an intricate interplay among the
human mind, brain, and the body. Importantly, not only does it represent the natural
dynamics of an individual's internal neurological, cognitive, and physiological state, but also
it reflects the influence of other agents and the environment. Behavioral expressions of an
individual's actions and/or interactions hence can be widely varied depending on the
individual's state and the nature of the task engaged in, as well as the external influences and
context. More critically, behavioral expressions are in general heterogeneous across
individuals. This heterogeneity can arise from, and be attributed to, a wide range of factors
ranging from age, gender, sociocultural background, to physical and mental health status and
abilities, including possible differences due to illness, disease, or disability. Additional
variability in human behavior displays arises from the complex interplay between these and
the infinite sources of variability in the cognitive demands of tasks and activities undertaken
and variability in contextual factors and the environment, including the behavior of other
individuals. All these factors make the understanding and automatic decoding of human
behavior cues a challenging engineering problem.

1) Importance of Human Behavior Modeling and Prediction—Understanding,
describing, and influencing human behavior is central to many domains of human endeavor.
They offer a window into decoding how one is thinking and feeling. This could relate to
understanding normative (“typical”) behavior patterns of an individual engaged in a task or
activity. More often, it relates to detecting, analyzing, and modeling behavior deviation from
what is deemed typical and in factoring out the source attributable to this variability.
Consider, for example, a child engaged with a teacher in a learning activity such as reading
or a problem solving exercise. In making her formative assessment, and deciding on the next
course of action, the teacher may be interested in gauging not only whether the child is
getting the correct answer to a question but also behavioral cues of the underlying cognitive
state such as the child's confidence or certainty [1] and socio-emotional state such as
frustration, engagement, and joy in the activity [2]–[5]. Computing high level states such as
uncertainty and engagement from behavioral cues can be used within a spoken dialog
system such as for intelligent tutoring [6], [7]. We can draw similar examples for a variety
of realms. In a customer care scenario, behavioral analysis may focus on patterns reflecting
likes and dislikes of a client toward a product or service or indicators of satisfaction or lack
thereof. For example, in a call center interaction, the tone of the spoken dialog can flag an
irate customer, a useful element to detect for quality control [8]–[10]. Finally, no other
domain exemplifies the centrality of behavioral analysis and modeling more than that related
to human health and well being. In particular, research and practice in psychology and
psychiatry focus on diagnosing, managing, and treating atypical and distressed behavior by
eliciting and/or observing behavioral cues and patterns. For example, in diagnosing whether
a child has attention deficit or is on the autism spectrum, an expert often would engage the
child in a series of interactive activities, targeting relevant cognitive and socio-emotional
aspects, and observe the resulting behavior cues and codify specific patterns of interest (e.g.,
typicality of prosody, joint attention behavior) [11]. Such direct observations from an expert
often are accompanied, or even replaced, by reports of behavior by self or others (e.g., from
a parent of a child being screened for autism). In addition to these assessment and diagnostic
scenarios, behavior analysis is central to implementing interventions and measuring
treatment efficacy. In psychotherapy, the specific behavior patterns of the therapist define
the quality and success of an intervention; hence characterizing those patterns is also an
important goal of behavior analysis, e.g., [12].
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2) Multifaceted Aspects of Human Behavior—The internal human state is expressed
and revealed in behavior cues that are multimodal. Likewise, the perceived higher level
human state processes are often based on observable multimodal cues of, or about, behavior.
Many aspects of human behavior are expressed, displayed, and observable through overt
cues. These include verbal and nonverbal expressions of communicative intent and emotions
such as through vocalization, intonation, language, facial expressions, and body language.
Other relevant behavioral cues are covert. These include physiological signals such as
respiratory activity, cardiac activity, or electrodermal activity (EDA) response that can
indicate a person's emotional arousal state and neural signals of brain activity obtainable
through a variety of measurement techniques such as electroencephalography (EEG) and
functional magnetic resonance imaging that can inform us about cognitive and affective
states. Access to these overt and covert multimodal signals has significant implications for
behavior analysis and modeling in two important ways. First, access to the covert signals
can allow direct modeling of the generative processes representing the underlying behavior
of interest. In other words, they allow the capture of “mind-body” relations by allowing the
inference of the oft-latent behavioral state by observing or measuring the overt and covert
multimodal cues. We can view this as modeling the behavior production or expression.
Second, the availability of the observable overt cues allows us to model how people process
and perceive others' behavior. This notion of capturing the observed “felt-sense” of higher
level human behavior, i.e., understanding how people assess others' behavior can be viewed
as modeling the behavior perception or experience. Measuring and quantitatively modeling
both these aspects of human behavior is, however, a vastly challenging problem. Developing
engineering techniques and technologies to contribute toward solving this problem is
precisely the goal of behavioral signal processing (BSP).

Several advances in human centered signal processing and computing provide supporting
foundation for behavioral signal processing. For instance, advances in enriched speech
processing from novel models of prosody to deriving affective information from speech
have contributed to key BSP building blocks (see Section II-B3). Likewise advances in
modeling human conversation and turn taking offer a dynamic view of looking at behavioral
patterns.Notably social signal processing has emerged out of the interest of engineers in
modeling complex human social behaviors in general human–human interaction often with
potential applications geared toward various engineering designs of natural human–machine
interfaces and social analytics [13]–[15].

3) Challenge and Opportunity—There is a great deal of variety in the needs and goals
of human behavioral analysis and modeling. This, coupled with the vast heterogeneity and
variability in the possible manifestations of human behavioral patterns, makes the problem
of deriving universally useful and valid behavior constructs and methodologies immensely
challenging, if not impossible. The typical approach has hence been to develop approaches
in a domain or application specific manner both to specify the behavior constructs of interest
and to dictate the means for deriving them. The practice in the state of the art to accomplish
this has been, however, largely manual, relying often on trained experts. This paper
considers the promise, and challenges, offered by engineering techniques in facilitating
human behavior analysis and modeling. Specifically, it focuses on deriving behavioral
informatics from human speech and language.

B. Behavioral Signal Processing Preliminaries
We first offer an operational definition for BSP, both to contextualize its goals and
distinguish it from the significant human-centered signal processing foundations it builds
upon.
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1) Definition—BSP refers to techniques and computational methods that support the
measurement, analysis, and modeling of human behavior signals that are 1) manifested in
both overt and covert multimodal cues (“expression”); and 2) processed and used by humans
explicitly or implicitly (“experience” and “judgment”). The central goal of BSP is to inform
human assessment and decision making; hence the outcome of BSP is referred to as
behavioral informatics. Relatedly, BSP can also serve as an enabler of autonomous and
hybrid decision-making systems including empowering advanced human–machine
interfaces.

2) Facets of BSP—The three facets or ingredients of BSP are as follows.

a. Acquisition of rich and ecologically valid data. This includes behavior data sensing,
as well as the measurement of the context/environment using multimodal
techniques captured with audio, video, physiological, and other sensor
measurements in both controlled and natural free-living environments.

b. Analysis focused on deriving signal descriptors informing or indicating aspects of
“who, what, when, how, where, why” from the multimodal measurements.

c. Modeling which involves mapping behavioral constructs from the derived signal
descriptors. These behavioral constructs include both high-level descriptions
specified and desired by domain experts as well as quantitative descriptive and
predictive models that can serve as tools of scientific discovery and enable novel
assessment and intervention possibilities from a variety of perspectives.

3) Technical Challenges—Given the wide variety of behavioral analysis goals and
requirements across domains, BSP needs to handle varying types of abstraction in data and
descriptions. This process faces a number of challenges, notably in the following terms.

a. Heterogeneity and variability in how data are generated and used. There are
inherent challenges in the nature of how human behavioral data are generated and
expressed across individuals and context.

b. Uncertainty and incomplete nature of observations. Due to the latent nature of the
behavioral state, any specific measurement typically affords only partial
observability of the underlying state. Importantly, many of the cues that are relied
upon for behavioral state estimation and tracking often are also secondary to some
other function— physiological, cognitive, or socio-emotional. For instance, vocal
cues of verbal communication also offer a window into a person's physiological
state (e.g., if intoxicated), cognitive (e.g., if confused), or emotional (e.g., if
aroused). Moreover, the observations represent complex nonlinear effects of more
than one underlying factor and, together with imperfections in sensing the overtly
or covertly available cues, lead to uncertainty and noise in the data available for
behavioral modeling.

c. Subjectivity in human descriptions of human behavior. There is inherent
subjectivity and variability in how humans observe, process, interpret, and respond
to human behavioral cues. This process can be explicit (such as in behavioral
annotation and assessment where experts map behavioral data into behavioral
representations of interest) or implicit (such as is prevalent in human actions and
interactions of daily life). Capturing this inherent subjectivity, reflecting the
diversity in the human perception and processing of behavioral cues, within the
computational representations and models of behavior, is a significant engineering
challenge.
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The emerging approaches to handle these challenges are a combination of both human-
centered methods, which focus solutions directly on domain-specific needs, and technology-
centered methods, which aim to design techniques that are broadly applicable across
applications. One of the key hallmarks of the former is the centrality of the human (from
experts to naive observers and crowds) in the processing loop in BSP, wherein the
behavioral representations, models, and outcomes are directly informed, and used, by
humans. The latter represents and builds upon the tremendous technological advances being
made in sensing, signal processing, and machine learning, especially in acquiring and
analyzing vast amounts of human behavioral data. These are further elaborated below.

C. BSP and Human in the Loop
A central aspect of behavioral analysis is the key role played by the human expert. Notably
in observational approaches, guided by expert-defined behavioral representations, humans
are relied upon to derive behavioral constructs using observed data. The key point here is
that the analysis and modeling are codified by the human “annotator.” For instance, consider
a scenario in which a teacher is formally assessing a child's abilities in learning to read
(formative assessment). This involves audiovisual observation of the child to measure
accuracy and fluency and also to gauge how certain and confident the child is in the task.
Likewise, research and practice in psychology and psychiatry that is focused on diagnosing,
managing, and treating atypical and distressed behavior often relies on expert observations
of behavior interactions (Fig. 1). To capture this centrality of humans in behavioral
modeling, BSP follows a two-pronged approach. On the one hand, it attempts to emulate the
decision making of humans to learn signal features and machine learning techniques
relevant to human processing of behavioral information. This often entails manually
mapping audiovisual observations of verbal and nonverbal cues of social and affective
communication, critically manifested in speech, spoken language, and gestures, into
behavioral descriptions that the expert defines and desires, a process referred to as behavior
coding. On the other hand, the outcomes of machine processing and learning of behavioral
cues are fed back to the human expert both to refine the derived representations and to
augment their analytical capabilities. This human-in-the-loop notion of BSP is illustrated in
Fig. 2. In sum, this exemplifies a key characteristic of BSP to support, rather than supplant,
human analysis and decision making.

Technology and computing advances can offer tremendous benefits to the human expert
related to observing, analyzing, and modeling human behavior. Integral to interpretation of
such information in cognitively diverse and emotionally rich interactions is the development
of behavior-centric computational models that encompass the cognitive, social, affective,
and communicative state of the interlocutors reflected in their speech and spoken language.
Such capability can augment the relevant information made available to the experts,
strengthening their ability not only to take appropriate action and to intervene appropriately
but also offering tools of scientific discovery.

BSP builds upon tremendous advances in many realms of signal processing that offer
foundational capability to measure, analyze, track, and model human behavior. These
include the ability to acquire and diarize audio and video streams to automatically segment
aspects of who spoke when and is doing what, performing speech recognition for
determining what was spoken, visual activity recognition for estimating head pose, face/
hand gestures and body posture, and physiological signal processing. In the next sections,
we will describe the technology and challenges associated with the acquisition, analysis, and
modeling aspects of BSP with a focus on speech and language cues.
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II. Aspects of Behavioral Signal Processing
In this section, we review the principles and practice of how to acquire, process, and model
behavioral data. First, we briefly review human-expert-based practice and highlight some of
the associated challenges, especially as they relate to technology development. Following
that, we describe some of the engineering building blocks of BSP with speech and language.

A. Human-Centered Behavioral Analysis and Modeling
The state of the art in behavioral sciences is to rely on measurements either elicited through
an appropriately designed instrument of self-report or through observation. The resulting
data are codified and analyzed to test hypotheses, devise diagnostics, or plan and manage
treatment. Key elements that need to be underscored in any technology design to facilitate
these processes are discussed below.

1) Ecologically Valid Measurements in the Laboratory Versus the Real World
—The notions of ecological validity and representative design have been of great interest to
the field of psychology since the mid-twentieth century. Initially, the term representative
design was used to denote that the conditions of an experiment were representative of the
real world [16]. For instance, the behavior of the interlocutors during a clinical observation
represented (statistically) the way that they would mostly behave.

“Generalizability of results concerning… the variables involved [in the experiment]
must remain limited unless the range, but better also the distribution… of each
variable, has been made representative of a carefully defined set of conditions”
[17].

Ecological validity, on the other hand, was used “to indicate the degree of correlation
between a proximal (e.g., retinal) cue and the distal (e.g., object) variable to which it is
related” [16], [17]. This is a very important aspect to consider in BSP: Are explicitly or
implicitly expressed cues (proximal) actually correlated with the subject's intent (distal), be
it conscious or subconscious? Given that the experts are observing, and the signal processing
algorithms are sensing, only the expressed cues, it is vital that our scenarios of study have
very high “ecological validity” in the original sense of the word. Fig. 3 shows that the
expressed cues (be it in the audiovisual or physiological streams) are the only observable
variables in the BSP domain by both the human experts and machine systems.

Over the years, the term ecological validity has been adapted to infer that the experiment
approximates the real-life situation that the experts are trying to study, and it is in such a
way that we will be using this term. This in a sense assumes both “representative design”
and “ecological validity” in the original sense of the words. Efforts are made in ensuring
representative conditions and the correlation of proximal and distal cues in psychological
study designs and, additionally, such a correlation can be further established in the analysis
stages. The validity of any study's conclusions is highly correlated with the ecological
validity of the experiment (despite the independence of the two).

2) Subjectivity, Annotation, and “Baselines”—Observational practice is based on
subjective assessments of events, expressions, and behaviors. The subjectivity of
quantitatively measuring these behaviors is a major practical issue in content analysis. As
Neuendorf [18] states “without the establishment of reliability, content analysis measures
are useless.” Establishing reliability of the measures also allows for distribution of the
coding task in a more efficient way.

Ickes [19] also identifies distinct categories of subjective judgments, ranging from
personality traits, interlocutors' judgments of each other, perceived affect, and empathic
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accuracy, i.e., the ability to gauge the specific content of another person's thoughts and
feelings. As the complexity of subjective judgments increases, the quality and confidence in
subjective judgments tend to decrease. Expert or trained annotators strive to achieve
consistency. The process, however, is challenged by cost and scalability issues [20].

Emerging human computation (coding) approaches such as those based on crowd sourcing
[21], [22] alongside novel modeling techniques to accurately measure coder-specific, or
even event-specific, reliability metrics can be instrumental toward better, cost-effective, and
most importantly rapid coding. Furthermore, studies have shown that the promise of using
“naive [coders] has both theoretical and practical advantages for researchers studying
emotional expression” in the field of psychology [23]. Baucom et al. [24] in addition point
to cases where the nonexpert behavior annotations can even lead to annotations superior to
those of experts.

Interannotator reliability can be measured in many different ways, e.g., using percentage
agreement, Holsti's method [25], Scott's π [26], Cohen's κ [27], Fleiss' κf [28], and
Krippendorff's α [29]. The kappa score, for example, is a chance-corrected percentage
agreement score, defined as

(1)

In our experience, an agreement of κ = 0.7 is considered acceptable in psychology studies,
given the subjectivity of human events. For instance, κ = 0.7 is the upper bound among the
expert generated rigorous codings in our data sets in Section III-A and D.

In BSP, we often find ourselves confronted with the paradox that BSP algorithms must
imitate a reference transcription (the human consensus coding), but must also perform
consistently, which quite frequently means that the BSP algorithms will agree with the
consensus transcription more reliably than human annotators agree with one another. This
can be addressed in some cases by improving interannotator agreement through discussion
sessions where coders will discuss all disagreeing ratings until they reach consensus,
although this is unusual because it is too cost inefficient. Snyder et al. [30] provide in-depth
discussion on evidence-based approaches, especially relevant to distressed couples but
which generalizes at a certain extent to other BSP domains. Considering the inherent
subjective nature of behavioral judgments, simple plurality-based techniques such as
majority voting may not adequately capture the diversity in the natural characterization of
certain behavioral constructs requiring more sophisticated evaluator-dependent modeling
techniques [31], [32].

3) Self Versus Observational Assessment—Self-assessment is a useful and widely
adopted approach in many fields such as healthcare and education. In many cases, e.g., in
education, the self-assessed metrics are quite reliable [33]. In other domains, such as mental
health, that is not always the case. For instance, in a study of distressed couples [34] the
“objective observers' inferences” of aggressiveness and feelings were significantly higher
than both the self-assessment of the husbands and the nonobjective assessment of the wives.
This points to the issue that self-assessments are biased, especially in nontypical/problematic
cases, which are the ones of greatest interest. Another issue with self-assessment is the
inherently summative nature of annotation. Snyder et al. [30, p. 299] discusses in depth
advantages and disadvantages of selfevaluation. Of course, self-assessment elicited within
the context of a dynamically evolving activity may interfere with that very activity although
novel approaches such as ecological momentary assessment (EMA) attempt to minimize
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recall bias and maximize ecological validity [35]. In summary, self-assessment offers access
to reference information from an individual's generative perspective, conceptually distinct
from the perspective of an interlocutor and/or an external observer of the behavioral
expression. While some modeling schemes can approximate them interchangeably in
deriving informatics, BSP methods can, and should, conceptually distinguish in how these
different reference perspectives are used in the modeling.

4) Privacy and Ethical Issues—Privacy and ethical issues in behavioral monitoring of
human interactions is another aspect that is of central concern and consideration in BSP. For
many existing corpora, the ethical imperative may require only that data access be limited to
people authorized by an Institutional Review Board and only after appropriate training to
handle human subjects data. Regardless, however, the underlying concerns span a range of
legal issues at different levels of federal, state, and local laws and professional standards as
well as ethical issues. We need to respect the autonomy of all participants in a behavioral
study. We also need to respect the autonomy of the group to avoid perturbing the balance of
group dynamics, except that in a very small number of cases precisely delineated by federal
and local statutes, our Hippocratic reserve may be countermanded by a required
intervention, e.g., to stop apparent child abuse or directly observable bullying. Margolin et
al. [36] present an in-depth analysis of the privacy and ethical issues in observational studies
of behavior with a focus on couple and family research, especially as those relate to
computer-assisted research. An excellent summary of challenges and possible approaches to
them can be found in a recent National Academies report on computer science research in
healthcare informatics [37].

B. The Three Basic Technology Steps in BSP: Acquisition, Feature Engineering, and
Modeling

Technology promises an effective way for collecting behavioral data and offers techniques
and tools for their analysis and modeling in improving process efficiency and economy.
More importantly, the translation of the research conclusions to the practitioners, especially
challenging in the reliable and valid application of observational methods in everyday
practice [30], can be facilitated by BSP. Speech and language are central to measuring,
analyzing, tracking, and modeling human behavior.

1) Enriched Speech and Spoken Language Processing Is a Key BSP
Ingredient—The human speech stream is a key information source for behavioral
modeling since it offers critical information about not only communicative intent but also
speaking style, language/dialect, identity, emotions, attitude, age, gender, and personality.
Since such information in the speech signal resides at multiple levels, with complex
interplay across these levels, speech understanding by the machine requires utilization of
many diverse knowledge sources: spectral shape/intensity, type of articulation, pitch accent,
duration, phones, syllabic features, words, part of speech, prosodic events, disfluencies, and
linguistic constructs such as syntactic categories and discourse states. Recent advances
include methods for robustly estimating voice activity detection, various aspects of speech
prosody such as utterance boundary, pitch accent, lexical prominence/stress, speech rate, and
emotions, all of which not only provide useful metalinguistic building blocks for enriching
vocally expressed intent but can potentially directly inform expert-desired higher level
behavior constructs.

2) BSP Acquisition Approaches—Multimodal sensing of human behavior has gained
significant engineering interest in recent years, raising research challenges in fields such as
signal processing [38], computer vision [39], robotics [40], speech recognition [41], and
mobile sensing [42]. Since human behavior observations are desired in a variety of settings,
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from constrained structured ones to unconstrained unstructured environments, a wide range
of acquisition approaches have been proposed to suit the specific application needs. The
sensing methodologies include instrumented environments as well as instrumented people
that are being observed. On the one extreme, careful constrained laboratory studies of
human behavior allow for sophisticated instrumentation of both the environment (e.g.,
employing arrays of cameras and microphones) and the people (e.g., use of multimodal
wired psychophysiological sensors such as electrocardiography and
electroencephalography). Examples of these settings include experimental smart rooms that
have been used to monitor meetings [39], [43]–[45]. Real-world behavior observation
environments, such as homes, schools, clinics, and urban settings, are often more
constrained, limiting the nature of sensing possible due to both technical and human factors.
For instance, in observing distressed couple interactions, the norm is for the communication
to take place while the couple is seated and undisturbed by external influences; thus fairly
rich instrumented environments equipped with arrays of microphones (and other sensors) for
sensing vocal and gestural behavior can be employed [46]. On the other hand, a clinical
environment for observing an interaction between a doctor and a patient tends to be more
constrained, allowing only limited access to audio and video observation from far field,
often under nonideal recording conditions. For example, in a study of a diagnostic
interaction for autism between a child and a psychologist in a clinic environment, only far-
field microphones and cameras mounted discreetly in the room could be employed [47].
Other environments such as homes and schools offer different challenges including
robustness issues, collecting the right data at the right time, and contending with energy
efficiency and data management issues. Many of these technical challenges are yet to be
fully tackled.

People can be instrumented to measure certain other aspects of behavior, although these are
not possible under all conditions (where their intrusive nature is a deterrent) and with all
people (e.g., children, especially those with sensory issues such as in autism). Advances in
body sensing allow for measuring movement (using microaccelerometers) and for
psychophysiological (electrodermal activity, blood oxygenation, respiratory and cardiac
activity) and neural measurements (electroencephalography). While some of these
measurements can be deemed intrusive and are possible only in laboratory settings, rapid
miniaturization of sensors, cheap storage, and wireless technologies allow some of these
measurements to be possible in real-life conditions as they naturally occur. One such system
that has been used in a wide variety of behavioral audio recordings in natural real-life
conditions, such as parent–child recordings, is through chest-mounted (in clothing) audio
recorders, e.g., the LENA audio system [48]. A similar system for video easily usable in the
real world for behavioral observations is the first person vision device being developed at
Carnegie Mellon University (CMU, Pittsburgh, PA) which allows for gaze estimation [49],
an important piece of evidence for determining joint attention behavior. A number of
sensing systems have been proposed and developed for measuring physical movement
(using accelerometry) and physiological state. For example, the wrist-worn iCalm sensors
proposed at the Massachusetts Institute of Technology (MIT, Cambridge) allow for
monitoring and communicating autonomic response such as electrodermal activity (EDA)
along with heart rate and heart rate variability as well as movement and posture changes
through three-axis accelerometry [50]. A recent study [51] has used such sensor information
in conjunction with audiovideo recording of autistic children interacting with an embodied
conversational agent [52] to demonstrate a complex interplay between the observed
cognitive behavior (in terms of verbal response latency) and the arousal state (in terms of
EDA measures). Other work has used such body sensing and computing systems with
mobile technologies to measure behavior during free living activities. For example, the
KNOWME system [53] uses a suite of multimodal sensors [42] to concurrently measure
physical activity using accelerometry and physiological activity (electrocardiography, pulse
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oximetry) targeting metabolic health behavior for obesity applications [54], enabling
appropriate interventions to encourage physical activity such as based on text messages [55].
In sum, the possibility of instrumenting people allows for behavior measurements that can
support and complement audiovideo recordings of interactions in real-world conditions.

Finally, advances in embodied conversational agents [56] and virtual human technologies
allow for yet another source of eliciting and observing behavior. A wide number of such
systems have been used successfully to collect a range of behavioral data including from
children expressing a range of natural dialog behaviors while engaged in cognitive (problem
solving) activities [1], [5], [57], [58], including children with autism [52], and in public
domains such as museums [59]. Virtual environments also allow for investigating affective
behavior with psychophysiological evidence [60]. These have allowed for novel training
tools such as training a clinician for interacting with a (virtual) distressed patient and a
soldier for negotiating with civilians in challenging settings [61]. These systems strive to
serve as an ancillary or surrogate to human-based interactions and allow for systematic
elicitation and easier logging of behavior details.

3) BSP Feature Engineering and Modeling From Speech and Language—There
are several levels of basic audio and speech signal processing that are carried out to extract
the rich information from the recorded multimodal streams.

a) Diarization: The first step after multimodal sensing is the ability to diarize the
audiovisual streams to automatically detect the participant's regions of activity (determining
“who is talking when”). This by itself is a very significant contribution to domain experts
allowing them, for instance, quantitative turn-taking analysis and easier transcription. There
are several approaches to speaker diarization. They can be broadly separated by their use of
the modalities: audio diarization, audiovisual diarization, and diarization through tracking.

In audio diarization, the effort is to distinguish among participants of an interaction by
employing only their acoustic cues. A good review of this work can be found in [62]. Early
efforts in audio diarization included broadcast news tasks that are characterized by mostly
read speech, long speaking turns, and high-quality audio acquisition, most often from close-
talking microphones. Subsequent efforts in conversational speech diarization, usually of
multiperson meetings [43], [63], faced still further challenges. The spontaneous nature of
meeting interactions results in faster turn taking and more overlaps, and is often
accompanied by decreased audio quality due to far-field acquisition. BSP interactions
exhibit all the complications of spontaneous interactions in meetings with the challenges
compounded by the varied expressive and emotional nature of the interaction including
behaviorally salient events that are expressed with subtle acoustic cues.

Audiovisual diarization is less common and is based on the principle that the audio and
visual channels are correlated [64]. Due to the complexity of the signals we are dealing with
in the BSP domain, the potential contribution of this technique is yet to be determined.

Diarization through tracking can employ both the acoustic and visual modalities in
localizing the participants (with granularity constraints depending on the physical setup).
This can happen through time-difference-of-arrival (TDOA) information from the speakers
to the microphone array(s) and correlation of that information with the nearest detected
participant according to the visual modality [65]–[69]. Depending on the BSP application
domain, a combination of the above techniques can be adopted.

b) Transcription: Having established the speaking turns, automatic speech recognition
(ASR) is the next challenge. Speech recognition research stretches back to the 1950s, and
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there is a very large body of research and literature in the field (some of the state-of-the-art
methods are represented by articles in this issue of the Proceedings of the IEEE). An
excellent historical and scientific look at the field can be found in [70]. State-of-the-art
speech recognizers work through examples of previously recorded spoken signals. These
serve as a basis for training acoustic models and language models and assume a certain
feature extraction technique. These three components are also the major challenges of ASR:
robust features that can capture the lexical content but are as much as possible independent
of acoustic conditions, speaker identity, emotional content, etc.; acoustic models that capture
the acoustic variability in representation of lexically equivalent units; and language models
that capture the entropy of language. Despite the great advances in ASR, automated
transcripts in the challenging conditions of BSP scenarios, even with the best of recognizers,
are far from accurate (we typically see error rates with a 30% WER at the lowest bound in
tuned state-of-the-art systems). This is due to the formidable challenges brought forth by
BSP domains in all three directions: far-field acquisition reduces the discriminative abilities
of the acoustic features; speaking styles (emotional, disfluent, and technologically unaware
participants) increase acoustic variability for the same content and even challenge the
acquisition due to large dynamic ranges; and the high degree of emotion and spontaneity
increase the entropy of the human expression. The traditional (one best) transcription task
though may not be always necessary in the lexical annotation of these interactions.
Probabilistic transcriptions such as those contained in an output lattice or a tophypotheses
list can provide useful information despite the increased noise. Examples of using such ASR
lattices for behavioral analysis have been shown to be promising even under high word error
rates [71]. In sum, data from BSP domains offer a rich set of opportunities to advance robust
ASR research and, in turn, offer a means for useful behavioral informatics.

c) Prosody features—Phrasing and prominence: There is a great deal of information in
speech, both linguistic and paralinguistic, that is conveyed in terms of rhythm, intonation,
and lexical stress, collectively referred to as prosody. These are typically characterized by
one or more of the following: 1) intensity, duration, and fundamental frequency to impart
emphasis to certain syllables or words; 2) timing cues, which refer to subtle variations in
speech rate, length of syllable nuclei, insertion of pauses, and hesitations that serve to
identify punctuation, syntactic boundaries, and separate linguistic and psycholinguistic
“phrases” within utterances; and 3) modulation of intonation patterns that reflect different
types of speech or dialog acts, as well as the speaker's intent and emotional state. For
example, duration and intonation offer the listener a cue to the end of the phrase and can
also signal effects such as continuation and questioning. Capturing these key details from
the spoken interactions can further enrich and stratify the behavior analysis. A number of
methods for capturing key, basic ingredients of prosody from speech acoustic features have
been proposed, along with methods to enhance the modeling with a variety of other
information sources (e.g., lexical, syntactic, and discourse information). Some highlights are
provided below.

Robust pitch processing: Characterization of pitch (f0) excursions is an integral part of
prosody modeling. There are numerous schemes for robustly estimating pitch broadly
categorized as event based (that estimate the pitch period by locating the instant “event”—at
which the glottis closes, such as using the wavelet transform [72], [73]) or nonevent based
(which estimate pitch period by a direct approach such as the autocorrelation or cepstrum
method, e.g., [74] and [75]). Given that information is encoded in the f0 signal along
multiple time scales, the use of multiresolution signal processing schemes such as wavelet
methods are attractive for deriving pitch features. Often an intermediate parametric f0
trajectory stylization is also done. This includes approaches such as piecewise linear
stylization [76], polynomial-based stylization [77], and perception inspired approaches [78].
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The pitch features, or their parametric functions, find wide use in behavioral analysis such as
in the study of vocal entrainment in couples (Section III-A) and atypical prosody in autism
(Section III-C).

Speech rate estimation: Speech rate variability carries information critical for speech
understanding. When phonetic transcription is available (through manual or automatic
means), speech rate is usually estimated as the number of linguistic units (phones, syllables,
words, etc.) per unit time by first aligning the speech to the text (symbol) sequence, typically
with an automatic speech recognizer [79]. Speech rate information can also be directly
estimated from the speech signal (without requiring any automatic speech transcription).
Techniques for such estimation include those based on spectral subband correlation [80] and
those enhanced by including temporal correlation and the use of prominent spectral
subbands for improving the signal correlation essential for syllable detection [81]. Speech
rate modulations between the interlocutors, in addition to serving as useful features for
classifying behavioral states, can shed light into dynamic interaction processes such as
entrainment (see Section III-A3d).

Word prominence estimation: In natural conversation, speakers make some words and
phrases more prominent than others. For instance, pitch accented words are perceptually
more salient to the listener and are presumably employed at least in part to draw the
listener's attention to informationally salient words; automatic determination of this
information is possible [82]. Speech prominence can be detected based on various acoustic
features such as spectral intensity, pitch, and speech rate that are directly extracted from
speech without requiring explicit linguistic or phonetic knowledge [83]. These automatically
derived acoustics-based measures can be especially useful in offering insights about
behavioral processes.

Utterance boundary detection: Utterance boundary information is an essential first step in
several behavioral analysis setups. For instance, in understanding the mutual influence of a
clinician and a patient in a therapeutic interaction (see Section III for case study examples),
considering utterance level analysis units is often found to provide meaningful insights. In
addition to using lexical information to detect utterance boundaries [84], acoustic prosodic
features can be used directly in utterance boundary detection as well [85], [86].

Combining linguistic information with acoustic features for prosody modeling: Speech
acoustic features can be advantageously combined with lexical, syntactic, and discourse
information for reliably characterizing prosody such as in terms of symbolic and parametric
labeling standards like tones and break indices (ToBI): examples include decision tree
methods [87], [88], maximum– likelihood (ML) classification [89], maximum a posteriori
(MAP) classification [90], [91], and maximum entropy method [92]. For example, the
maximum entropy discriminative model showed that the coupled model with both acoustic
and syntactic information results in accuracies of 86.0% and 93.1% on pitch accent and
boundary tone estimation with the Boston University Radio News Corpus (BU-RNC). These
results are state of the art and are comparable to human performance on these tasks and can
be used as a starting point to analyze the behavioral interactions in the domains illustrated in
this paper. A major open computational challenge is achieving robustness of these
techniques in handling the natural spontaneous speech of the target interaction settings that
may be atypical, distressed, or reflect effects of other behavioral states.

d) Dialog act modeling: Dialog acts [93] are labels that are used to represent surface level
communicative acts in a conversation or dialog. Several elements of behavior coding,
including diagnostic instruments such as the autism diagnostic observation schedule
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(ADOS) for autism (Section III-C) and therapeutic settings such as motivational
interviewing (Section III-D), can benefit from quantitative dialog act characterization. State-
of-the-art dialog act taggers typically combine the lexical and prosodic features in a hidden
Markov model (HMM) framework with a Markovian discourse model [94]–[96] or use a
discriminative framework such as the one that exploits lexical, syntactic, and prosodic cues
in a maximum entropy framework [97], again with dialog history captured with an Nth-
order Markov model. The performance of over 70% to detect a small set of the most
frequent dialog acts in conversational discourse (switchboard corpus) offers a good starting
point as an intermediate representation for downstream behavior analysis and modeling. For
example, in exploring the efficacy and adherence to the motivational-interviewing-based
behavioral therapy, dialog-act-based features offer a means to verify desirable therapy
characteristics such as reflection by the therapist [98]; more details are offered in Section
III-D.

e) Interaction modeling: A key aspect in understanding social and communicative behavior
lies in illuminating the details of the interaction between the agents in the scene, for
example, child–parent, patient–therapist, husband–wife, customer–provider, etc. Details of
the dynamics of the social communicative and affective cue exchange are critical in creating
the behavior map, notably in the study of various mental distress and wellbeing conditions.
This includes investigation at several levels including turn taking (e.g., cooperative and
disruptive interruption) and mutual coordination (aka entrainment, synchrony) in timing,
lexical choices, intonation, and affective patterns.

Significant information regarding the interaction comes from tracking and modeling
interlocutor dynamics. Information such as speaker activity and interruption patterns,
utterance length duration, and pose of the participants can all inform the understanding of
the underlying behavioral processes. For example, gaze can have an impact in the way an
argument develops toward or away from recovery in a distressed couple interaction.
Likewise, patterns of similarity in pitch and energy can point to more positively valenced
affective dynamics [99] or improved dialog coordination and task success [100]. To model
interlocutor dynamics, a broad range of techniques are needed to capture the diverse aspects
of behavior displays such as the various verbal and nonverbal cues of social communication
and affect, many of which can be extracted from audio as explained earlier. Modeling such
tracked details resides both within and across turns of interaction and across the
interlocutors. Computational dialog models, such as using Markov chains or Bayesian nets,
have been used to capture this information and used for enhancing speech recognition [96]
and dialog act modeling [97]; similar approaches can be useful in understanding behavior
state dynamics.

f) Affect/attitude modeling and recognition from vocal behavior: Affective aspects can
be detected from expressed vocal cues using a comprehensive multimodal approach. State-
of-the-art methods typically combine phonemic, prosodic, lexical, and discourse features in
a variety of ways for affect modeling from speech, such as done, for example, in the
detection of user frustration in spontaneous call center interactions [10]. A comprehensive
overview of the problem and approaches is given in [101] and a more recent overview of the
state of the art based on the first Interspeech Emotion Challenge in [102]. Research has also
shown how spoken language information can be combined with visual information for
enhancing emotion recognition [103]–[106]. These methods together have been useful for
detecting and classifying categorical representations of expressed affect and attitudes (e.g.,
happy, sad, angry, or domain-specific constructs such as frustration, engagement, politeness
[5]). Since categorical descriptions of expressed emotions may not be appropriate in all
modeling settings, yet another computational avenue has considered noncategorical
(dimensional) representations. The popularly used ones are the three continuous-valued
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emotion primitives: 1) valence, describing the negative versus positive nature of an emotion;
2) activation, describing the excitation on a scale from calm to excited; and 3) dominance,
describing the appearance of the person on a scale from submissive or weak to dominant or
strong. A variety of speech features have been mapped into these representations [107] using
both generative and discriminative machine learning approaches.

Finally, to deal with real-life nonprototypical, often blended and ambiguous, displays of
emotions, which are often not well described by a single semantic label [108], a new
computational framework has been recently introduced. It quantifies emotional content
through “emotion profiles” by providing multiple probabilistic class labels, rather than
relying on just raw acoustic features or categorical hard labels [109]–[111]. Such a
computational approach, illustrated in Fig. 4, is particularly suited for capturing and further
stratifying in detail the heterogeneous, nonprototypical affective patterns expected in these
complex behavioral analysis settings particularly when involving distressed or atypical
interactions.

Features for emotion detection—Role of F0 and other speech features: The role of F0 in
the encoding and perception of emotion information in speech has been widely studied
[112]–[114]. The role of F0 in understanding higher level behavior processes in human
interaction has also been exemplified in the study of vocal entrainment such as in distressed
couple interactions [99]. Many studies have proposed the use of features derived from the
fundamental frequency contour as one of the key information sources for automatic emotion
recognition [115]. A common approach is to extract as many derived features as possible
and then use feature selection techniques to find a reduced subset that maximizes the
performance [116].Some of the most common selected F0 features are the mean, range,
minimum, maximum, and standard deviation statistics from the F0 utterance contour [117].

F0 patterns at different segmental and linguistic levels (e.g., phoneme, word, part of speech)
offer distinct insights into expressed emotions [10], [118], [119]. For example, it was
observed that F0 mean significantly differs for angry, happy, sad, and neutral speech and
across different vowels. Bänziger and Scherer [120] have suggested that the fundamental
frequency is mainly affected by the arousal level of the utterance. They analyzed changes in
the F0 contour in terms of the degree of activation in the sentences. They also analyzed the
change of the F0 contour in terms of emotional categories. However, they did not find
evidence for the qualitative changes in the F0 contour among different emotions. These
observations are consistent with the confusion between emotional categories often observed
in emotion recognition experiments between certain categories such as between happiness
and anger and between sadness and neutral state, which have similar activation levels but
differ in the valence domain when only pitch features are used [119]. As suggested by Ladd
et al. [121], voice quality features may provide information to discriminate in the valence
domain.

In addition to F0-based features, a comprehensive set of speech-based features [the so-called
low-level descriptors (LLDs) ] are now commonly used in emotion research, as summarized
in [116] and made available in toolkits such as openSMILE [122]. These include prosodic
LLDs such as voice activity, speaking rate, and intensity features, spectrum-based LLDs
such as Mel-frequency cepstral coefficients (MFCCs) and log Mel-frequency bands (MFBs),
and voice quality LLDs such as jitter and shimmer. Modeling and recognition experiments
often adopt some form of feature selection and feature reduction to obtain the most useful
set of features from this full range of generated features.

Role of spoken language features: The role of emotional information carried by words has
been well established and codified in terms of resources such as the dictionary of affect
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[123] and the affective norms for English words (ANEW) [124] that map words into
affective ratings (activation, valence, dominance). These manually created resources have
been at the heart of domain-independent approaches to affective modeling, but they fail to
provide good coverage for computing emotions in real-life spoken language data
applications. Approaches to address this issue use computational methods to expand an
already existing lexicon or create a new (often, domain-adapted) lexicon. Malandrakis et al.
[125] recently proposed an approach to creation of an affective lexicon where, starting from
a small set of manually annotated seed words, continuous valence ratings for new words are
estimated using semantic similarity scores and a kernel model. Word level scores are
combined to produce sentence-level scores via simple linear and nonlinear fusion.
Evaluation on spoken language transcripts in estimating behaviors such as politeness and
frustration was found to be promising.

Domain-dependent methods, on the other hand, attempt to learn the affective relevance of
words and word sequences in the context of a specific application or interaction setting. Lee
et al. [126], [127] proposed the notion of emotional salience, i.e., mutual information
between a specific word and an emotion class, to identify emotional words in a speech
utterance for detecting negative emotion [10]. By adding language information to the
acoustic features, they reported a relative improvement of 46% in a valence detection task
on call center spoken dialogs. This idea has since been extended to calculate the mutual
information between word pairs and emotion classes as well as the use of latent semantic
analysis (LSA)-based feature extraction to obtain lexical information for emotion
recognition. Encouraging results in detecting politeness and frustration in a conversational
dialog task have been reported [3], [5].

Discourse context information can also be used to predict user emotions. Several researchers
have attempted to include discourse related information to improve emotion classification.
Discourse categories, rejection, repetition, rephrase, ask-start over, and none of the above,
were used in [10] to improve their negative/nonnegative emotion classification task.
Liscombe et al. [128] have considered, in addition to discourse context, features related to
changes in prosodic and lexical features between current user turn and previous user turn.
Best results in terms of emotion classification accuracy were obtained when they combined
prosodic, lexical, and contextual information. In sum, these studies point to the benefit of
combining language and speech features within BSP.

Emotion recognition methods: A number of modeling approaches have been proposed
depending on the representations being computed. For categorical recognition, typically at
the utterance level, both generative methods [such as through HMMs or just Gaussian
mixture models (GMMs)] and discriminative approaches [such as support vector machines
(SVMs) and logistic regression (LR) schemes] have been found to be useful. Likewise,
estimation of continuous-valued dimensional estimates such as activation and valence [107]
have employed methods such as rule-based fuzzy logic methods and support vector
regression.

Several variants and extensions to these methods exist, both in improving the richness and
robustness of representations and their computation. For example, results have consistently
shown that combining multiple classifiers can be advantageous [102]. Others have addressed
the problem of dealing with real-life expressions of emotions, which can be ambiguous and
blended. Lee et al. [129], [130] introduced a hierarchical computational structure that maps
an input speech utterance into one of the multiple emotion classes through subsequent layers
of binary classifications. The key idea is that the levels in the tree are designed to solve the
easiest classification tasks first, allowing the mitigation of error propagation. Their results,
which yielded the best results in the classification of the 2009 Emotion challenge on
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classification, were found to be effective across multiple databases. One of the early steps in
such a hierarchy could be the basic discrimination between emotional and nonemotional
speech, based on the assumption that emotional speech productions are variants of the
nonemotional counterparts in the (measurable) feature space. Busso et al. [131] showed that
instead of training individual emotional models, building a single, neutral speech model and
using it for emotion evaluation either in the categorical approach or in the dimensional
approach can be advantageous. This method benefits from the robust modeling of neutral,
nonemotional speech due to the availability of large amounts of such speech data.

Another emerging computational trend is a set of advances in modeling the dynamics of
emotions [111], [132]– [135]. An individual's affective state variables can be seen as
continuously evolving over time during an interaction, manifested, at least partially, in
expressive communication cues characterized by the continuous interplay of speech with
other multimodal information, such as facial and bodily gestures. Wollmer et al. [132], [133]
report continuous estimation of valence and activation values from emotional speech using
support vector regression and long–short term memory (LSTM) for regression. Metallinou
et al. [135] report a supervised, GMM-based methodology to continuously track an
underlying emotional state using body language (detailed and intuitive descriptions of each
participant's body movements, posture, and behavior toward his interlocutor) and speech
information. Promising results were reported for tracking trends of participants' activation
and dominance values, which outperform other regression-based approaches used in the
literature. The method also offers a way to shed light into the way expressive body language
is modulated by underlying emotional states in the context of dyadic interactions. While all
these efforts are promising, open questions and challenges remain in terms of effectively
annotating and evaluating continuous changes in emotions, as well as capturing context
effectively, in improving the modeling.

In summary, the advances in modeling and tracking emotions expressed in speech and
spoken language (and associated nonverbal cues) are foundational for capturing and further
stratifying in detail the heterogeneous, nonprototypical affective patterns expected in the
complex behavioral analysis settings, particularly when involving distressed or atypical
interactions.

g) Speaker traits: Identity, age, gender, personality: Many aspects of speakers' traits such
as their identity, age, gender and personality can be gleaned from their speech and language.
The state of the art in this domain is well reviewed in a recent article by Schuller et al. [136].
These problems are typically posed as a pattern recognition problem using a range of speech
segmental and prosodic features, voice quality features, and language information, much
akin to what was detailed in the case of emotion recognition.

III. Bsp from Speech and Language Information: Case Studies
In this section, we describe several case studies, each exemplifying a specific type of spoken
interaction and with distinct goals for behavioral analysis. One of the critical aspects of
behavioral analysis is the integral role played by human experts in how the behaviors of
interest are elicited, analyzed, and used. There is a wide range of interaction types and
associated application possibilities along these dimensions. Hence, BSP techniques need to
be cognizant of, and incorporate, these diverse types of interactions, each with distinct
characteristics, purpose, and types of agents that are involved. To illustrate this diversity in
the behavioral analysis scenarios, we describe specific case studies that help to highlight
both the commonalities as well as the differences in the computational approaches. In
particular, in this paper we focus on speech and spoken language as the key interaction
modality and informatics source.
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Since in BSP the role of the human expert is critical, we categorize interactions based on
whether human experts are actively involved in the behavioral elicitation or just observing
either being copresent or not, whether they are performing explicit (online) behavior
monitoring and analysis, and whether they are also involved in any active behavior
modification (such as in therapeutic settings). In scenarios where experts are not copresent
during the interaction, they can perform online (e.g., observing a focus group from behind
the scenes) or offline behavior analysis (e.g., analyzing recordings).

The humans being observed can be individuals, dyads, small groups (typically defined by
social scientists to be a group large enough to sustain more than one simultaneous
conversation), or large groups (too large to be united in a single conversation). The
examples chosen for this paper rely on speech and spoken language as the primary
behavioral cue and are restricted to case studies with focus on individual level behaviors.
Table 1 summarizes the applications considered in this paper in the context of BSP.

A. Example Case Study: Behavior Modeling of Distressed Couples
Herein, we give an overview of a computational study of couples therapy, where distressed
couple behavior is analyzed.

Understanding the behavior of the individual spouse and the dynamics of the dyad is a
critical step toward aiding distressed couples. The state of the art in couple and family
therapy—based on human expert monitoring and intervention—can be expensive and time
consuming.Additionally, it suffers from reliability issues and the fundamental limitations of
humans in being fully cognizant of multistream, multirate observational information.
Finally, it is scalable only to the degree of available experts at the time. BSP tools can
support the experts in this process.

The joint human–machine observational and interpretative process in dyadic interactions, as
depicted in Fig. 2, promises tremendous benefits to the experts and the patients. Integral to
interpretation of such information in emotionally rich, multiperson interactions is the
development of behavior-centric computational models that encompass the social, affective,
and communicative state of the interlocutors. Such capability can augment the relevant
information presented to the experts, strengthening their ability to take appropriate action
and to intervene appropriately. BSP's goal is to enable such capability.

1) Behavioral Analysis by Experts in Psychology Research and Practice—
Psychology practitioners and experts observe specific low-level behaviors as indicators of
mid- and high-level behaviors such as approach avoidance or mutual blame. For example,
experts consider the partners' arousal level, which is reflected in speech (e.g., fundamental
frequency and energy [137]), overall body movement [138], and, when available,
physiological metrics (e.g., heart rate, galvanic skin response [139]). Likewise, the
practitioners carefully analyze the valence level of the partners by observing their facial
expressions [140], [141] and the interactional verbal content [142], [143]. Behavioral
dominance is also studied, which is frequently broken down into two different aspects: 1)
power processes; and 2) power outcomes [144]. Power processes involve what people do to
get their way and are usually studied with linguistics, both in terms of verbal content
(hedges as low power [145], [146]) and verbal behavior (successful interruptions as high
power but not including backchannel interruptions [147]). Power outcomes have to do with
attaining what you want and are studied by assessing the degree to which you can get your
spouse to become like yourself or to approach a position you are advocating for the spouse,
which could either take the form of changing the spouse's mind or getting the spouse to
behave as you want. Other important low-level behaviors are approach tendencies (e.g.,
touch frequency and duration, facial and body orientation, forward lean, frequency and
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duration of eye contact, and frequency of nonnervous gestures and backchannel nods) and
avoidance tendencies (e.g., changing the topic, disagreement, questioning the other spouse's
reasoning) [148]–[150]. These low-level behaviors, as a whole, point to the need for a
multimodal approach toward addressing this behavioral monitoring and understanding from
a signal processing point of view.

2) A Longitudinal Couples Therapy Case Study—Psychologists depend critically on
perceptual judgments made by themselves or other experts to provide appropriate
communicative strategy suggestions. To better understand distressed married couples, data
were collected as part of a longitudinal study at the University of California, Los Angeles
and the University of Washington, Seattle. The resulting corpus consists of audiovideo
recordings of couples (wife and husband) during real problem-solving dyadic interactions.
For this study [151], 134 seriously and chronically distressed married couples received
couples therapy for one year. Participants ranged from 22 to 72 years old, with a median age
of 43 years (SD = 8.8) for men and a median age of 42 years (SD = 8.7) for women. They
were, on average, college educated (median level of education for both men and women was
17 years, SD = 3.2). The sample was largely Caucasian (77%), with 8% African American,
5% Asian or Pacific Islander, 5% Latino/Latina, 1% Native American, and 4% other.
Couples were married an average 10.0 years (SD = 7.7). As part of the study, the couples
participated in sessions where they discussed a problem in their relationship with no
therapist or research staff present. The couple talked for ten minutes about the wife's chosen
topic and ten minutes about the husband's chosen topic; these sessions were analyzed
separately.

The data have been richly coded by psychology experts with two coding manuals that were
designed specifically to capture relevant high-level behaviors during problem-solving
couples' interactions: the social support interaction rating system (SSIRS) [152] and the
couples interaction rating system 2 (CIRS2) [153]; in total, there are 33 behavioral codes.
Both coding manuals were designed to have evaluators watch the entire session, and provide
session-level ratings of each spouse's overall behavior on an integer scale from 1 to 9;
utterance- and turn-level ratings were not obtained. Three or four student evaluators coded
each session, producing one set of 33 codes for each spouse. All evaluators underwent a
training period to give them a sense for what was “typical” behavior and to help standardize
the coding process. The coding is a laborious, expensive, time consuming, and subjective
process. Studies such as this are not easily scalable without automated ways of both
preparing the data and gauging these metrics. Some of the challenges posed by the manual
coding methods include subjective annotation, summative assessment, unknown degree of
correlation of the distal and proximal expressions, and what modalities those manifest
themselves into.

3) Signal Processing Analysis—For our BSP analysis, we use the couples data from
three recordings: before the therapy sessions began, 26 weeks into therapy, and two years
after the therapy sessions finished. In total, we have 96 h of data across 574 sessions and we
employed 372 of these based on the quality of automated segmentation of the audio.

The audiovideo data consist of a split-screen video (analog NTSC) and a single channel of
far-field audio. Since the data were originally only intended for manual coding, the
recording conditions were not ideal for automatic analysis; the video angles, microphone
placement, and background noise varied across couples and across time periods. We also
have access to word transcriptions, in which the speaker was labeled as well (husband/wife).
The transcripts lack detailed annotations such as timing and speech overlap indications.
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We illustrate three simple speech and language processing applications of behavioral coding
using this corpus. For that purpose, we focus mostly on classifying a single behavioral code,
namely the level of “blame”1 expressed from one spouse to the other (the distribution of this
and a few other codes of interest for this domain and data are in Fig. 5). Based on this goal,
we partitioned the data into two classes: high blame and low blame. The high-blame
partition consisted of 70 sessions (approximately 20% of the 372 sessions) with the highest
average blame score for the wife and 70 sessions with the highest average blame score for
the husband. The low-blame partitions consisted of 140 sessions with the lowest average
blame score: 70 for the wife and 70 for the husband. The blame scores for the two classes
ranged from 1.0 to 1.5 for low blame and from 5.0 to 9.0 for high blame, so they were
separable to the human evaluators, as shown at the top row of Fig. 5. The experiments are
based on a leave-one-out cross validation.

a) Acoustic classification: Vocal cues have been shown to be informationally relevant in
the context of marital interactions [154], [155]. To capture the vocal cues we use a range of
acoustic low-level descriptors (LLDs) extracted across each session, some of which were
described in the earlier section on feature engineering (Section II-B3). For further details of
the LLDs, we refer the readers to [156], [157] and related work in emotion recognition [10],
[107], [116], as well as our past voice activity detection (VAD) work [158]. Based on the
LLDs, we employed an overgenerative approach to produce session-wide acoustic features
based on a range of functionals of the LLDs (Table 2) across five different signal scenarios
and at six different temporal granularities. The five different signal scenarios are: whole
session with rated partner (two cases), other partner (two cases), and both partners (one
case).

The six temporal granularities included one set of global features, in which functionals were
computed across the entire session (for each LLD and speaker region), and five sets of
hierarchical features based on [159]. The five hierarchical feature sets were computed by
first splitting the LLD/speaker region into disjoint windows of durations: 0.1, 0.5, 1, 5, and
10 s. We then computed the 14 functionals listed in Table 2 for each of these windows,
producing 14 vectors of functional values for the entire session. Finally, we generated the
hierarchical features by computing the six “basic” functionals (Table 2) across each of these
vectors. Because of the windowing technique used, these hierarchical features should
capture some of the moment-to-moment changes that occur within the interaction.

After removing static features with zero standard deviation, there were about 53 100 features
at each cross-validation fold. For the straightforward acoustic classification task, we
employed an SVM using LIBSVM [160]. Since there were orders of magnitude more
features (50 000+) than instances (280), we used a linear kernel. All features were z-
normalized by subtracting the mean value in the training data and dividing by the standard
deviation. Results (Table 3) show that critical information about higher level behavior can
be discerned from acoustic vocal features.

b) Lexical classification: Lexical content of the interaction is yet another source of
information about the couples' behavior [162], [163] and codified in the SSIRS and CIRS2
rating systems. From a natural language processing view, one of the simplest lexical
classifiers is that derived from the ML criterion. However, given the noisy audio of
spontaneous speech, the automatic transcription can be extremely challenging (with
unadapted models, typical WER > 80%). In addition, the training set available in this case
study for an ML classifier is small and hence significant data smoothing is needed. This can

1A fictitious and exaggerated example of blame would be “it's your fault I cannot sleep at night.”
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be achieved through the use of a universal background model (UBM), here denoted by B,
where the probability of a transcript T given a class Ci

(2)

where wi is the ith word in the transcript T = ,w1…wl and λ is a smoothing weight. The
equations above are given in their unigram format for simplicity. Results in Tables 4 and 5
show that this simple interpolation method aids in achieving significant accuracy.

To contend with the noisy automatically derived transcripts, one approach is to operate on
the ASR lattices, as illustrated in Fig. 6. The process there is to train the system as
previously but to score lattices rather than one-best transcriptions. Practically, the process
can be done through two competing two-pass ASR decoders where the first pass (pruning) is
done with the same language model and the second pass is done with the two competing
language models.

Results in Table 5 show that despite the high WER the system can still result in promising
accuracy, while as we can see from Table 4, there are significant gains to be obtained from
using an optimized ASR that can result in a more accurate lattice generation.

Lexical significance: Importantly, the language modeling, in collaboration with the domain
experts, allows us to examine whether specific words offer insights into specific behavioral
codes and whether those are couple specific or generalize broadly. For instance, Table 6
shows that specific words can carry notable insights toward the behavioral codes. For
example, the word YOU, which appeared 59 times, had the most contribution toward
characterizing “blame” while the filler word UM (23 times) scored as the least blaming
unigram. Such quantitative analysis enables us to flag and identify important terms that can
be followed up with further detailed experimental and psychological inquiry.

c) Fusion of acoustic and lexical classifiers: The acoustic and lexical information streams,
although significantly dependent on each other, also convey complementary information to
human observers. This has also been shown in a range of domains such as emotion
recognition [10] and with a range of complementary modalities such as in interaction
dynamics [45], [69]. In our BSP example, based on the different temporal feature rates of
the two classifiers, we decided to fuse the two information streams at the classifier-score
level due to the simplicity of such a fusion system.

We again used LIBSVM's SVM for the fusion classifier and z-normalized the fusion
features, so they were on a comparable scale. Three pairs of classifier combinations are
considered: fusing the static acoustic and ASR-derived lexical classifiers, fusing the static
acoustic and oracle lexical classifiers, and fusing the two lexical classifiers; the fusion
results confirmed the benefit of combining these information streams. More details can be
found in [156].

d) Classification based on user dynamics: In addition to using individual-specific features
for quantifying the behavior of each person, features capturing the mutual influence of the
interacting dyad can be considered for behavior modeling. This includes measures such as
entrainment and interaction synchrony [164] between the interlocutors to analyze the quality
of their interaction. An excellent summary of entrainment in spoken language
communication was presented by Hirshberg [165]. Several previous studies have considered
entrainment by using various behavioral cues; for example, McGarva investigated the
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mutual entrainment in vocal activity rhymes [166], Nenkova analyzed the high-frequency
word usage entrainment [167], Richardson analyzed the entrainment of body movements
[168], Pardo showed the phonetic convergence in conversation settings [169], and Edlund et
al. [170] investigated the correlation of gap and pause durations in interactions. In the
context of modeling couple behavioral dynamics [99], we have shown that we can analyze
the prosodic entrainment phenomenon and investigate the role of these measures in
describing behavioral aspects where they have been implicated in theoretical models in
psychology, such as the overall husband's or wife's positive or negative affect/attitude during
interactions.

This work is based on stylizing pitch in a piecewise linear manner (Y = αX + B) computed
every 100 ms with 50-ms overlap. The slope (α) and intercept (B) were calculated using the
method of least squares. Hence, we have two parameters for every 100 ms to describe the
evolution of prosodic cues instead of 100 raw values. The results illustrated focus only on
the slope, which encodes information describing the intonation and the rise or fall of energy
values. We hypothesize that changes of pitch slope values across time capture aspects of
speaking style, and the covariation of this parameter between speakers can help us identify
prosodic entrainment.

Stylizing the pitch and energy contours generated two 1-D feature vectors consisting of
several frames of α's for pitch and energy, respectively, at every automatically aligned
speaker turn. Prosodic entrainment was then computed based on three main methods: square
of Pearson correlation, mutual information, and mean of spectral coherence across turn on
this sequence of α's to estimate the level of synchronization. Results showed that these
measures can explain positive versus negative interaction behavior differences [99]. Using a
Markov chain model (similar to an n-gram model) built using quantized values of the α
coefficients, significant accuracy was demonstrated in the classification task (Table 7). More
recent work that has focused on devising direct similarity measures between the vocal
feature spaces using principal component analyses has demonstrated further robust results in
characterizing the latent vocal behavior similarity and its application in prediction of higher
level behavior [171], [172] and in informing outcome-related behaviors [173].

This section highlighted the potential use of speech and language processing techniques in
understanding distressed dyadic interactions using acoustic, lexical, and cross-interlocutor
dynamics information. Considerable future work is needed in developing new algorithmic
techniques for joint modeling of speech with visual and physiological information,
understanding salient aspects of feature streams that contribute to specific behavior
perception, and developing tools that can jointly leverage human and machine expertise.

B. Example Case Study: Literacy Assessment
Computational speech processing tools offer promising ways for assisting teachers in
assessing components of emerging literacy skills and reading skills [174] and in offering
innovative automated tutoring support [175], [176]. While much work in this area has
targeted specific important (sub)components such as detecting mispronunciations or
computing other important cues such as speech rate and emotions, research has shown that
these by themselves do not provide a complete picture, i.e., as an expert teacher would
desire and implement. To compute such high-level “holistic” assessments that offer
interpretive richness, a variety of behavioral and contextual cues used by teachers needs to
be gathered and analyzed [177].

What makes the problem interesting and challenging are the multiple sources of variability
beyond the cognitive learning differences, such as due to variability in language and
socioeconomic backgrounds of the children as well as the expertise levels and backgrounds
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of the teachers themselves. BSP offers a way for computing objective features from the
observed task performance (e.g., children reading aloud) and creating predictive models that
can effectively capture how a set of teachers would evaluate given such data. This example
scenario where BSP is used to compute expert judgments of behavior without actual active
interaction with the subjects being modeled comes from the Technology-Based Assessment
of Language and Literacy (TBALL) project focused on assessing the English literacy skills
of young children in early education from multilingual backgrounds [174].

To acquire ecologically valid speech data, assessments were obtained from children from
native English- and Spanish-speaking households in actual elementary schools in California
using a close-talking microphone [178]. To facilitate consistent and robust speech data
acquisition by taking advantage of the structured nature of the activity, behavior elicitation
in this work used a child–computer interface to implement age-appropriate reading tasks
used to test children in kindergarten to second grade. Since one of the key aspects of BSP is
to emulate human expert processing, the study employed diverse human evaluators who
rated the children on their overall reading ability based on the audio recordings [179].
Speech signal features inspired by, and correlated with, cues human evaluators stated they
used were derived: measures related to pronunciation correctness, speaking rate, and fluency
(and disfluency). The pronunciation correctness scores were based on two common
pronunciation verification methods: 1) forced alignment with a dictionary of acceptable and
foreseeable unacceptable pronunciations of the target word; and 2) goodness of
pronunciation (GOP) scoring. The fluency scores were based on constrained ASR using
disfluency-specialized grammars, which were designed to detect partial word instantiations
of the target word. Finally, the speaking rate scores were based on forced alignment and
captured relevant timing information, such as the speech start time (relative to when the
word was first displayed on the monitor) and the average speaking rate in units of syllables/s
and phones/s.

Simple linear regression techniques with these task-related features automatically predicted
individual evaluators' high-level behavior scores with a mean Pearson correlation coefficient
of 0.828 and average evaluator's scores with correlation 0.946, both exceeding the mean
interevaluator agreement statistics [179]. These results are further improved (correlation
coefficient of 0.952) by exploiting actual patterns of evaluation. It was observed that the
evaluators' level of agreement significantly varies, depending on the child being judged (Fig.
7): the children for whom the evaluators were more confident in rating are weighted higher
in the model [180].

To follow up on the hypothesis that the overall assessment would need to incorporate cues
beyond those that are task related, further modeling focused on creating a Bayesian network
student model to automate reading assessments of a diverse group of children just as a
conscientious teacher would, incorporating cues not just based on expert knowledge of
pronunciation variants and their cognitive or phonological sources but also prior knowledge
of the student and the test itself. In the spirit of BSP (Fig. 2) human-in-the-loop processing,
the model incorporates expert knowledge in terms of a hypothesized structure of conditional
dependencies and automation to refine the Bayes net in eliminating unnecessary arcs. This
model with a more comprehensive accounting of novel behavioral features was shown not
only to outperform a task-only-based (pronunciation scoring) scheme but it also exhibits the
same biases along demographic lines as human listeners (e.g., gender effects). Results also
showed that the computational algorithm did not choose to exclude very many of the
hypothesized (human-knowledge-based) arcs to improve predictive performance. BSP in
this case study underscores the promise of emulating expert-like behavior in complex task
settings involving subjective judgments and offering computational methods with
interpretive capability.
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BSP can also enable the design of computer systems that can adapt learning interventions
(tutoring) based on a learner's perceived state [181]. To achieve these capabilities, BSP
advances for computing learning-specific behaviors is essential [182]. Promising progress
has been made recently. Yildirim et al. [5] have shown that states such as “frustration” and
“politeness” can be automatically discerned from a child's speech cues elicited in
spontaneous dialog interactions with computer characters [57]. Their experimental results
showed that lexical information has more discriminative power than acoustic and contextual
cues for detection of politeness, whereas context and acoustic features perform best for
frustration detection. Furthermore, the fusion of acoustic, lexical, and contextual information
provided significantly better classification results than using any single information source.
In other work, Litman and Forbes-Riley [176] showed that the use of speech and language
features for predicting student emotions in human–computer tutoring dialogs improved the
accuracy of the system. Likewise, Zhang et al. [4] have reported promising results in the
combined use of acoustic, spectral, and language information for detecting confidence,
puzzlement, and hesitation in their child– machine dialog task. More recent work has shown
that such speech and language information can be advantageously combined with visual
gestures of interaction such as the movement of the head and facial expressions [1]. Such
ability to map higher level behavior from speech and spoken language cues opens up new
conversational interface design for educational applications [183].

C. Example Case Study: Behavior Modeling in Autism Diagnosis
Interaction-based behavioral diagnostic settings offer an important venue for BSP. In
particular, in these scenarios, the expert performing the diagnosis is often also engaged in
eliciting the behavior of interest. BSP hence considers not only just mapping the observed
behavior of the target individual into categories desired (and deemed useful) by the expert
but also understanding the experts' strategies for the elicitation of desirable patient behavior
in the diagnostic interaction process. Here we use the domain of autism to illustrate some of
these BSP dimensions and possibilities. Emerging research in this realm includes [47],
[184], and [185].

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by a triad
of core deficits, including impaired social behaviors, communication, and restricted/
repetitive behaviors [186]. Recent studies indicate that as many as 1 in 110 children are
diagnosed with ASD [187]. ASD is considered a “spectrum” disorder because symptom
severity in each of the core domains can vary widely. Studies have shown that early
diagnosis and intensive early intervention can lead to improved social and communication
skills in autistic children [188]. The ADOS is one of the most widely used clinical research
instruments for the assessment and diagnosis of ASD and is suitable for individuals of
varying ages and verbal abilities [11], [189]. The semistructured 30–60-min interaction
provides a trained psychologist with behavioral evidence that can be evaluated along
dimensions important in diagnosing autism, e.g., atypical prosody, social interaction,
narrative construction. The psychologist is both an active interlocutor who is engaged in
eliciting specific responses from the child following the underlying protocol and a judge
who simultaneously evaluates the child in accordance with the diagnostic criteria. Not only
are BSP techniques useful in stratifying behavioral details of potential use to the experts
beyond the categorical ratings that the expert gives, but they can also shed details on the
nature of the interaction between the expert examiner and the child, potentially to inform
what led to specific diagnoses and specific areas and strategies for intervention.

BSP can assist with this process in a number of ways. On the acquisition side, audiovideo
sensors can capture details of the child–clinician interaction in a consistent fashion, while
analyses and modeling can quantify behavior patterns therein, including illuminating
difficult to observe fine details such as dynamic variability in durations, intonation, voice

Narayanan and Georgiou Page 23

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2013 September 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



quality, instances and types of nonverbal cues, etc. Critically, BSP also allows modeling
interaction dynamics and its role in the diagnostic process, as well as in creating analytical
capabilities for looking at fine patterning across communication modalities and over time.

The case study considered here illustrating the potential of BSP in autism is based on a
corpus of real, spontaneous child–psychologist interactions recorded in a clinical
environment in the context of administering ADOS. The collection of the USC CARE
ADOS corpus [47] in itself highlights behavioral data gathering in a clinical space, using a
portable smart-room solution with multiple far-field audiovideo sensors to unobtrusively
record the interaction and to maximize the ecological validity of the experiments. Unlike
laboratory environments that can be instrumented more flexibly, sensing behavior in a
multiuse clinical space has to consider several factors for maintaining ecological validity by
minimizing intrusions and potential distractions to the subjects. For example, only far-field
microphones and discreetly mounted wall and ceiling cameras were used. In addition to
audio-video recording of the interactions, the data comprise behavioral codes assigned by
the administering psychologists as well as the final ADOS diagnosis outcome.

BSP also offers several analytical possibilities. As an example, consider one of the key
behavior characterizations in ADOS: atypical prosody, which includes any of the following:
slow, rapid, jerky and irregular in rhythm, odd intonation or inappropriate pitch and stress,
markedly flat and toneless, or consistently abnormal volume [11]. This is codified on an
integer scale from 0 to 2 with 0 designating appropriate prosody, 1 signifying slight
deviations from typicality, and 2 used to report “clearly abnormal prosody.” While there is
ample documentation of the presence of atypical and impaired prosody in ASD, a precise
characterization of the specific details of the nature of the impairment is still lacking [190].
Furthermore, what contextual factors, if any, can best explain the observed patterns is still
unclear. A more stratified and objective analysis of the speech properties can help toward a
better understanding of the nature of the prosodic deficits, a possibility afforded by BSP:
quantitative analysis of the speech signal can shed light on how prosody is expressed and
processed by the interlocutors and also model the mutual influence of the interlocutors on
prosody.

Speech acoustic features that have been implicated in characterizing atypical prosody
include pitch slope, breathiness, and nasality [191], [192], although very few studies have
analyzed spontaneous natural speech samples. Using the spontaneous spoken interactions of
the USC CARE ADOS corpus, Bone et al. [184] have attempted a preliminary
computational analysis of prosody in natural interactions. For increasing a perceived
typicality, children's prosodic features that suggest “monotonic” speech included variable
volume, atypical voice quality, and slower rate of speech, and all correlated with overall
diagnostic ratings. More interestingly, results showed that the interacting psychologist's
speech features reflect their perception of a child's atypical behavior, e.g., the psychologist's
pitch slope and jitter are increasingly variable and their speech rate generally decreases.
Importantly, models demonstrated that the psychologist's own speech cues successfully
predicted their ratings, suggesting their attunement to the child's behavioral cues. This
finding underscores the capability afforded by BSP to offer new insights to the experts.

BSP technologies also offer novel ways for behavior elicitation such as through the use of
embodied conversational agents (ECAs) [52]. Mower et al. [193] showed that interactions
involving children with autism and their parent involving an ECA partner was natural, and
elicited communication data similar to that in interactions just between the child and his
parent. Such data have enabled further studies relating speech patterns to predicting social
cues such as laughter [194]. One of the key aspects of social interaction in autism is the
decreased expression of “shared enjoyment.” Analysis of laughter offers an objective insight
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into this behavior; it is also known that voiced laughter conveys positive affect while
unvoiced laughter functions as a social facilitator. Analysis of speech areas proximal to
laughter (“social zones”), 2–10 s preceding and following the laughter event (Fig. 8),
showed that acoustic patterns of social zones are indicative of a type of shared enjoyment.
Results also showed how BSP afforded a way to quantify the difference in the ways children
engaged in social interactions.

D. Example Case Study: Behavior Modeling in Psychotherapy for Addiction
In this section, we describe a case study of psychotherapy to illustrate BSP possibilities.
Specifically, we consider motivational interviewing (MI), a goal-oriented psychotherapy,
employed in cases such as addiction and overweight issues, which helps patients explore and
resolve their ambivalence about the problem at hand in a dialog setting [12]. MI focuses on
eliciting and enhancing the intrinsic motivation for change by exploring and resolving client
ambivalence through a dyadic spoken dialog between the patient and the therapist. These
interactions represent a case where the therapist follows a specific protocol for actively
eliciting and influencing specific behavior changes in the patient. Modeling this mutual
influence and identifying successful therapy strategies is a challenging BSP opportunity.

The state of the art uses often tedious manual behavioral coding to assess a patient's
behavior patterns as well as the counselor's therapy proficiency, as specified by standard
methods such as motivational interview skills coding (MISC) [195]. At the most basic level,
speech and language processing can facilitate automated turn and utterance segmentation as
well as diarization and transcription of the dialog, all key ingredients of the MISC coding
since behavioral codes are assigned at the utterance level (and also at the overall session
level). The next level of possible BSP is to derive the mapping of desired utterance behavior
codes from speech and language cues. For example, on the therapist side, some of the
desired codes include marking questions (and whether those are open or closed),
affirmation, facilitation, and others, totaling 20 overall. Likewise on the client side, the five
desired utterance-level codes include reason (subcodes: desire, ability, need), taking steps,
other, commitment, and follow/neutral. This step of mapping is similar to dialog act tagging
described earlier (Section II-B3d) and can be accomplished by invoking lexical, acoustic-
prosodic, syntactic, and discourse information following the state of the art in dialog act
tagging [97]. In addition, these codes are enriched with markers that signal “target behavior
change” either toward or away from the therapeutic goals, with a positive (+) or negative
(—) valence, respectively. Spoken language representing tendency toward making a change,
the so-called “change talk,” is considered to lead to positive outcomes. The learning of these
specific enrichment labels is guided by the domain expert, and automating the process
represents an apt example of the human-in-the-loop learning aspect of BSP.

Beyond assisting in behavioral coding, BSP can also offer novel tools for discovery. For
example, one of the desired aspects of any therapy, a human-centered and human-based
process is in gauging the quality and efficacy of the therapy. This can illuminate why, when,
and how certain strategies of therapy lead to successful outcomes, and how in turn these can
be used to inform training and effective implementation [196]. In a recent case study, Can et
al. [197] have examined a BSP approach to assessing the quality of MI on a particular aspect
of the counselor behavior, “reflections,” believed to be a critical indicator of therapy quality.
Reflections are nontrivial therapist behaviors, and are supposed to “capture and return” to
the patient something that they had said. This process is, however, challenging because it
requires modeling and using complex contextual knowledge that the expert invokes.
Computing reflections is further complicated by the fact that, even though therapists may
use prototypical surface linguistic forms (well captured by N-gram features [197]), there is a
large range of variability in the spoken language forms. BSP can provide insights into how
such behavioral modulations unfold, including details of individual specific communication
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styles. An example is the idiosyncratic use of discourse markers or phrases such as “yeah”
and “it sounds like” or specific intonational patterns. Critically, BSP also offers means for
capturing long-term dependencies across various aspects of the dialog. For example, the
dynamics of the mutual influence of the interacting agents on the behavior of one another,
both causally and noncausally in time, can be modeled using statistical graphical models.
Can et al. [197] tagged reflection instances in a maximum entropy Markov modeling
framework using several linguistic features with rich contextual information obtained from
the transcripts of the entire dialog obtaining an F-score of over 80%. For instance, the model
showed that the confirmatory discourse markers of the patient's response to a therapist's
reflection carries useful information in detecting it, an aspect that was not considered in the
MISC system but one that was revealed by BSP. Moreover, in general, the modeling showed
that reflections are not mere repetitions or rephrasing of the patient utterances. Superior
detection of reflections was obtained with the maximum entropy Markov model that had
access to contextual N-grams compared to using HMMs that did not have them. Overall, this
work illustrates how domain (psychology) inspired knowledge, noted below parenthetically
as given in the MI manual, can be translated into computational modeling goals: the
speaking style of the counselor (“summarize,” “listen reflectively,” “be collaborative and
nonjudgmental”), the response of the client (“confirmation”), the content of the counselor
response in relation to prior client talk (“capture and return”), and the dialog flow (“in
response to previous client statement”).

This case study, even if preliminary, has raised research questions of fundamental interest
about the MI therapy process. First, it points to the importance of communication style as
much as content in marking a behavior construct such as reflection. Second, it raises
questions about how local or globally distributed are specific behavior patterns in defining
the overall dynamics of therapy. For example, results of [198] in modeling an observer's
perception of an MI therapist's empathy in an interaction (yet another key behavioral marker
of the quality of the therapy) were explained by a few isolated salient utterances in the entire
session. Potential approaches to addressing some of these challenges are considered in the
next section.

IV. Summary of Bsp Challenges and Possible Future Directions
A. Behavioral Data Acquisition

While sensing and signal acquisition advances have opened up new ways of observing
human behavior in their natural occurrences and in offering details hitherto not accessible,
challenges abound. The foremost of these relates to ensuring representative conditions and
the ecological validity of the measurement process and the verity of the observations in
relation to the behavior of interest. The former has to be achieved by designing minimally
intrusive sensing systems that work within the constraints of the domain. For example, in a
clinical observation of a child's interaction with a psychologist engaged in a diagnosis or
intervention for attention disorder or autism diagnosis, the placement of microphones and
cameras in the environment should be done in a way that offers minimum distraction to the
child and the clinical process [47]. In addition to instrumented environments, novel
measurement schemes exploiting wireless mobile technologies allow measuring, and
communicating in real time, behavior data in real-world settings by directly instrumenting
people. For example, using a low-cost mobile-phone-based wireless body area network with
multimodal sensors such as tri-axial accelerometers, electrocardiography sensors, a blood
oxygen saturation sensor, Global Positioning System (GPS) location sensor, as well as
audiovideo data, the USC KNOWME system tracks physical and physiological behavior
related to metabolic health allowing for realtime monitoring and intervention [53], [199].

Narayanan and Georgiou Page 26

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2013 September 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



There are a number of technical challenges in implementing multimodal signal capture in
unconstrained real-world settings. These include technical constraints such as energy
efficiency especially in mobile scenarios, sensor placement and reliability, multimodal data
synchrony, noise in the acquisition environment (e.g., home, schools, urban outdoors), and
interference in transmission channels. Other challenges include data security, data validity
assurance, and “big data” issues such as storage and processing (e.g., continuous collection
of multimodal behavior could lead to vast amounts of data to handle). With regard to speech
and language data, this signifies developing means for robustly acquiring these data in the
various environments (outdoor/indoor, controlled/unstructured, etc.) where the interactions
occur with all the appropriate contextual information for allowing meaningful processing,
online or offline.

An alternative approach to data acquisition for human communication-centric studies of
behavior is the use of simulated conditions and actors to enable systematic exploration of
specific characteristics not accessible using only observations of natural behavior. For
example, to support studies of affective behavior, researchers have argued that good quality
acted databases can be recorded when suitable acting methodologies are used to elicit
emotional realizations from experienced actors engaged in dialogs rather than monologues
in a goal-oriented approach [200]–[202]. Unlike most naturalistic behavior data from
clinical studies or commercial applications, these acted corpora can be freely shared with the
research community to help accelerate technology development. Examples include the
Interactive Emotional Dyadic Motion Capture (IEMOCAP) database, which contains
approximately 12 h of audiovisual data from five mixed gender pairs of actors interacting
with each other in scenarios that encourage emotional expression [203]. Future challenges in
behavioral data collection include making available large corpora from across a variety of
real domains as well as in supporting specific controlled laboratory studies to afford the
scientific community targeted and easily shareable data sets.

B. Behavioral Analysis and Modeling
1) Representations—One of the major challenges in behavioral computing is specifying
representations for computing. Given the complexity of human behavior in its expression
and its perception, there are many degrees of freedom that vary at different time scales and
different interpersonal contexts and across different cultures. Consequently, attempts to
describe human behavior are varied, and not clear cut, and tend to be gradual, subjective,
and approximate. Deriving suitable descriptions that capture the behavior of interest is a
problem with many open challenges. Consider, for example, describing affective behavior
(Section II-B3f). Depending on the analysis needs, approaches have focused on computing
discrete categorical representations (e.g., happy, sad, engaged) or dimensional
representations (e.g., valence or arousal degree). Furthermore, these representations can be
based on natural language descriptions or can be numerical (e.g., on a Likert scale). Since
language-based descriptions of behavior constitute a key representation approach, the study
of natural human behavior warrants closer attention to how everyday people understand and
describe emotions with natural language, as exemplified by Kazemzadeh et al. [204] in their
study of emotions. Typical behavioral analysis schemes tend to adopt one or more of these
descriptions; often such descriptions tend to be correlated as well: Methods to understand
their interrelations and translating between them are still open research questions both from
a scientific and computational perspective despite significant advances. Beyond discrete
descriptions that offer a summative view (e.g., Did an utterance convey happiness? Or was
that interaction negatively valenced?), current trends attempt to capture continuous
variations over time [106], [133]–[135]. Modeling the dynamics of behavior evolution is
still a largely poorly understood domain and requires new research.
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Given the human-centered nature of behavior modeling, a majority of representations used
for computing are either based on a generative perspective on how behaviors are expressed
by humans or on a processing perspective based on how behaviors are perceived and
described by (other observing) humans. The generative perspective is challenged by the lack
of complete knowledge of the underlying behavior production mechanisms and by the
inherent challenges posed by the multiple simultaneous roles that speech and language (and
other signals) play in encoding linguistic and paralinguistic information that offer critical
behavioral cues. The human speech signal carries rich information about a variety of
linguistic and paralinguistic phenomena encoding intent and emotions, while manifesting a
complex interplay between these phenomena; together with the vast contextual and
individual variability, this often makes it a challenging problem for robustly inferring a
target behavioral construct from speech observations. The processing perspective is
challenged by the inherent subjectivity and diversity in human judgment of human behavior.
Computational models of behavior within this framework rely on human-derived
annotations, a process that is informed by the domain experts and employs variedly the
wisdom of experts, trained annotators, or naive raters, including exploiting various crowd
sourcing mechanisms that have become recently popular. The annotation process is wrought
with challenges especially in handling abstract behavior. While expert-based approaches
strive to achieve consistency, they are often tedious and not scalable; on the other hand,
crowd-based approaches suffer from ensuring reliability in deriving the desired
representations. Moreover, current approaches largely use simple plurality (such as majority
voting) for fusing annotations, but these fail to capture the useful variability inherent in
multiple perspectives [31], [32]. Novel computational methods that understand and
effectively exploit the diversity of expert ensembles are needed. In particular, these methods
also underscore the importance of directly modeling the annotator (the observer) whose
judgments often serve as an important ingredient in BSP models.

2) Features—Another key BSP challenge relates to feature engineering in determining the
feature-behavior correspondence. Researchers typically take an “exhaustive” approach of
generating many possible segmental and suprasegmental speech features, representing both
articulation and source properties, along with linguistic features derived from text
transcripts, to find the feature subset that best explains a desired behavioral representation.
Some of these features are rationalized based on well-understood theoretical and empirical
studies in psychology and linguistics, while others are based on a data-driven exploration of
the potential explanatory capacity of features. This is particularly the case in working with
human-perception-based representations, which are often at a longer temporal scale
(utterance or interaction session level). One of the open research challenges herein lies in not
just finding the best set of features to predict the human derived representations, through
appropriate feature selection methods, but to find those that are interpretable and meaningful
to the expert. In particular, it has been shown in perceptual studies that not all portions of the
data are equally relevant to the overall behavior judgment [205]. Methods such as those
based on multiple instance learning (MIL) offer a promising computational avenue to seek
feature representations that are salient with respect to a behavior description [206], [207].
Other knowledge-based approaches, such as those based on neuroscientific evidence of
phenomena such as human attentional processes which have been successfully applied to
machine audition and vision [208]–[210], offer yet another potential avenue for seeking
salient features explaining higher level behavioral constructs. Additionally, combining such
knowledge-based approaches with data-driven approaches such as multiple instance learning
is also a promising research direction.

Another BSP research direction relates to feature dimensionality. The overgenerative
approach for deriving speech and language features often results in thousands of features
raising both relevance and computing challenges. The feature descriptors related to a
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specific behavior construct are often hypothesized to be in a lower dimensional space, and
novel schemes based on sparse representations, low manifold embedding, and other
exemplar-based approaches are worth further research in the BSP context. Robustness is yet
another BSP challenge, which may arise due to uncertainty in feature computation (e.g.,
voice quality measures using inverse filtering) or missing features due to inherent signal
characteristics (interplay between features) or due to measurement or channel errors.
Devising approaches to investigate feature sensitivity to specific behavior characterization is
also a potential future direction.

Speech and language provide an important, but still a limited, window into higher level
behavioral processes. Visual nonverbal cues offer both complementary and redundant
information [211], and their joint modeling with speech derived features has been shown to
yield both improved classification accuracy and robustness across a variety of behavioral
analysis tasks from emotion recognition [103], [104] to predicting behavioral constructs
such as approach avoidance [46], [212]. The knowledge about how multimodal encoding of
behavioral information across the verbal and nonverbal channels unfolds dynamically while
tracking real-life behavior patterns is limited, especially in the context of distressed and
atypical behavior conditions such as those illustrated in Section III-A, pointing to yet
another area that needs future research. Important BSP research in this regard should focus
on context modeling in capturing the relation across feature (and representation) streams and
across time [106].

3) Modeling—There are a number of modeling challenges arising, again, from how
behavior cues are expressed by humans and how observers process them. In particular, a
major class of behavior studies involves more than one person wherein the interlocutors are
both observers and responders to the behaviors of others in the interactions. A key aspect of
BSP lies in modeling this mutual influence. For example, prediction of interruption patterns
in dialog [213] as well as affective behavior [129] was improved by explicitly modeling the
mutual influence. While the mutual influence of the interlocutors has been observed across a
variety of settings, computational models of the phenomena need to be further developed,
especially in how they help explain the complex behavior patterns in distressed and atypical
interaction settings.

One specific phenomenon that has been variedly described in studies of human
communication and interaction, and implicated in explaining specific behavior patterning, is
entrainment (interaction synchrony). This subtle phenomenon is difficult for direct human
computation (and annotation) but is modeled based on features inspired by theoretical
considerations (such as, for example, pitch contour features playing an important role in
capturing vocal entrainment). Similarly the model's validity is demonstrated indirectly by
showing its usefulness in explaining complex behavior phenomena where it is implicated
(e.g., vocal entrainment in explaining positive affective dynamics [172], [214]). Advances in
computational modeling are, however, sorely needed both to understand the nature of
mutual influence across the various verbal and nonverbal channels and how they in turn
explain complex higher level behavior patterns. Beyond improving scientific knowledge,
such models can inform behavioral assessment, diagnostics, and intervention design. For
example, recent modeling results in an autism diagnostic interaction between a child and a
psychologist suggest that the behavioral patterns of the interacting psychologist offer
predictive power about the ratings they provide about the child's atypical prosody [184].
Similarly, modeling a patient's response patterns offers clues about the therapist's reflective
behavior in a motivational interviewing setting [197]. These complex interactions have to be
better understood to enhance the explanatory and predictive ability of behavioral modeling.
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BSP is inherently an interdisciplinary realm and is human centered. It promises both to
improve process efficiency and accuracy in support of human behavior modeling and its
applications as well as to create and offer tools for new scientific discovery. Advances in
this domain crucially depend on developing productive and collaborative partnerships
between domain experts and signal processing and computing researchers.
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Fig. 1.
Behavioral analysis by an expert: in practice, experts observe directly and infer diagnosis
and treatment outcomes. In some clinical cases and in observational research the data may
be revisited through audiovisual recordings and coded by experts. [Image of couple
interacting courtesy of Prof. A. Christensen, Clinical Psychology Department, University of
California Los Angeles (UCLA)].
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Fig. 2.
Human in the loop: outcomes are both learned from and fed to the human expert to refine
machine knowledge and augment the experts' analytical capabilities. Similar behavioral
informatics can facilitate decision making across a number of domains such as in education
and commerce.
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Fig. 3.
Intent (intended, conscious, or subconscious), production (explicit or implicit), observed
perception, and machine recognition.
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Fig. 4.
Illustration of emotional profile (EP) derivation from signal data for quantifying
nonprototypical, ambiguous expressions (after [110]).
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Fig. 5.
Distribution of data based on (top 20% lowest averaged ratings in red and 20% highest
averaged ratings in blue) the average ratings provided by multiple human experts and
(bottom) the difference in log-likelihoods of the ML model for λ = 0.5. Codes where
annotators had minimal separation also result in the greatest overlap by the ML model.
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Fig. 6.
Overview of the classification process without human transcripts through the use of ASR
lattices.
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Fig. 7.
Variability in the confidence of evaluator rating across various reading performance levels
[180]. Means and standard deviations of ratings obtained from 11 human evaluators across
42 children (arranged in increasing overall score received). Note lower variability, i.e.,
increased evaluator consistency, for higher performing children.
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Fig. 8.
Illustration of the speech social zones surrounding the occurrence of a laughter event. BSP
models attempt to predict the laughter, a social cue, from the speech in the social zones
[194].
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Table 1
Illustrative Applications, Some Considered in This Paper, in the Context of BSP

Domain Activity Expert Agent Role Sample BSP Goals

Observational assessment of
distressed couples in marital

therapy

Problem solving interactions Observational Screening/
Diagnostics by expert (not

engaged in elicitation)

Computational behavior
coding for supporting theory

and practice

Education/Reading Cognitive Task Performance Observational Assessment
(minimal/no direct active

elicitation)

Quality and efficacy of
learning

Assessment in Autism (e.g.,
Autism Diagnostic Observational

Schedule)

Structured dialogic interactions
with specific socio affective and

cognitive processes

Behavior elicitation and
simultaneous assessment by

expert

Computational tools for
supporting diagnosis for

further behavior stratification

Psychotherapy for addiction Therapeutic intervention using
Motivational Interviewing

Dialogic interactions with
specific therapeutic goals and

structure

Quantifying effective therapy
strategies predicting therapy

outcomes

Commerce/Customer care/ Information Transactions Information provisioning,
service (direct interaction)

Interaction quality:
satisfaction, hotspots

Meeting monitoring, focus groups Interactions usually focused on
specific topic or agenda

Often expert analysis not
copresent

Behavior sensing/capture,
Quantifying affective

dynamics, engagement
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Table 2
A List of the Acoustic LLDs and Static Functionals We Used; the Six “Basic” Functionals
Are Starred (*)

LLD speech/non-speech, f0, intensity, 15 MFCCs, 8 MFBs, jitter, jitter-of-jitter, shimmer

Functional mean*, median*, standard deviation*, minimum*, maximum*, range*, skewness, kurtosis, min/max positions, lower quartile,
upper quartile, interquartile range, linear approximation slope coeff.
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Table 7
Accuracy With Which a Husband's or Wife's Attitude Toward an Interaction Can Be
Classified as Positive Versus Negative Based on a Markov Model of Pitch Entrainment
[99]

Model Accuracy (%)

Chance 50%

Full set features 71%

Reduced set features 76%
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