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Abstract
Ideally, randomized trials would be used to compare the long-term effectiveness of dynamic
treatment regimes on clinically relevant outcomes. However, because randomized trials are not
always feasible or timely, we often must rely on observational data to compare dynamic treatment
regimes. An example of a dynamic treatment regime is “start combined antiretroviral therapy
(cART) within 6 months of CD4 cell count first dropping below x cells/mm3 or diagnosis of an
AIDS-defining illness, whichever happens first” where x can take values between 200 and 500.
Recently, Cain et al (2011) used inverse probability (IP) weighting of dynamic marginal structural
models to find the x that minimizes 5-year mortality risk under similar dynamic regimes using
observational data. Unlike standard methods, IP weighting can appropriately adjust for measured
time-varying confounders (e.g., CD4 cell count, viral load) that are affected by prior treatment.
Here we describe an alternative method to IP weighting for comparing the effectiveness of
dynamic cART regimes: the parametric g-formula. The parametric g-formula naturally handles
dynamic regimes and, like IP weighting, can appropriately adjust for measured time-varying
confounders. However, estimators based on the parametric g-formula are more efficient than IP
weighted estimators. This is often at the expense of more parametric assumptions. Here we
describe how to use the parametric g-formula to estimate risk by the end of a user-specified
follow-up period under dynamic treatment regimes. We describe an application of this method to
answer the “when to start” question using data from the HIV-CAUSAL Collaboration.

1 Introduction
In an ideal world, all policy and clinical decisions would be based on the findings of
randomized experiments (with perfect adherence to the assigned treatment arm and no loss
to follow-up). Unfortunately, randomized experiments are often unethical, impractical, or
simply too lengthy for timely decisions. The difficulties of conducting randomized
experiments increase when they are used to compare the long-term effectiveness of clinical
strategies in terms of clinically relevant outcomes. For example, randomized clinical trials
have demonstrated that combined antiretroviral therapy (cART) reduces the risk of AIDS
and death in HIV-infected patients (Hammer et al, 1997; Cameron et al, 1998). However,
the optimal time to start cART remains under debate (European AIDS Clinical Society,
2009; World Health Organization, 2009; Panel on Antiretroviral Guidelines for Adults and
Adolescents, 2009; Thompson et al, 2010) and no randomized clinical trials have yet been
completed to answer this question (http://insight.ccbr.umn.edu/start/, accessed 2011; NIH,
2009).

Consider a clinical trial in which HIV-infected individuals are randomly assigned to one of
several initiation strategies indexed by CD4 cell count. For example, individuals could be
randomized to cART initiation when CD4 cell count first drops below either 500 or 350
cells/mm3 (or there is a diagnosis of an AIDS-defining illness, whichever happens first).
Each arm of this trial, differing by the two thresholds for CD4 cell count, implements a
dynamic treatment regime because whether an individual does or does not start treatment
depends on her own evolving history of prognostic factors. Under full adherence to the
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assigned regime and no loss to follow-up, the data from this trial can be used to compare the
effectiveness of these two regimes. One could, for example, estimate the 5-year mortality
risk under each regime and choose the one that resulted in the lowest risk (or, equivalently,
the highest survival).

However, one would ideally want to compare multiple initiation strategies, each of them
under a different CD4 threshold. For example, one might want to estimate the 5-year risk
under each of the 7 dynamic regimes: “start cART within 6 months of CD4 cell count first
dropping below x or diagnosis of an AIDS-defining illness, whichever happens first”, with x
taking on values between 200 and 500 in increments of 50 cells/mm3. Such a trial with 7
arms would require extremely large sample sizes and is unlikely to be conducted. Rather, we
can use observational data to obtain preliminary answers to the “when to start” question. At
the very least, the findings from properly analyzed observational studies may guide the
design of future randomized experiments.

There are relatively few examples of analyses of observational data to compare dynamic
regimes similar to those described above (Cain et al, 2011, 2010; Murphy et al, 2001;
Hernán et al, 2006; van der Laan and Petersen, 2007; Petersen et al, 2007). Cain et al (2011)
applied inverse probability (IP) weighting of dynamic marginal structural models (Hernán et
al, 2006; Orellana et al, 2010a,b; Cain et al, 2010) to observational data from the HIV-
CAUSAL Collaboration, and emulated a randomized clinical trial with multiple initiation
strategies similar to the ones described above. Unlike standard regression/stratification
approaches, IP weighting may be used to appropriately adjust for measured time-varying
confounding and selection bias in observational studies as well as in randomized clinical
trials with imperfect adherence and loss to follow-up.

The parametric g-formula is an alternative to IP weighting that also appropriately adjusts for
the measured time-dependent confounders and selection factors when comparing the
effectiveness of dynamic regimes. This method was first described by Robins (1986) to
estimate the causal effect of arsenic on heart disease in an occupationally exposed cohort
and has since been applied by Robins et al (2004) and Taubman et al (2009) to estimate risk
under dynamic interventions. Estimators based on this approach are more efficient (i.e. have
smaller variance) than those obtained via IP weighting but will generally require more
parametric modelling assumptions. In this paper we describe how to apply the parametric g-
formula to data from the HIV-CAUSAL Collaboration to estimate the 5-year risk of all-
cause mortality under several dynamic strategies for cART initiation. We start by
introducing notation and a description of the study data.

2 Data and notation
The HIV-CAUSAL Collaboration has been described elsewhere (Ray et al, 2010). Briefly,
the collaboration includes several cohort studies from five European countries and the
United States: UK CHIC (United Kingdom), ATHENA (Netherlands), FHDH-ANRS CO4
(France), SHCS (Switzerland), PISCIS (Spain), CoRIS/CoRIS-MD (Spain), VACS-VC
(United States veterans), UK Register of HIV Seroconverters (United Kingdom), ANRS
PRIMO (France), ANRS SEROCO (France), and GEMES (Spain). All cohorts included in
the HIV-CAUSAL Collaboration were assembled prospectively and are based on data
collected for clinical purposes within national health care systems with universal access to
care.

Our analysis was restricted to HIV-infected individuals who met the following eligibility
criteria between 1996 and 2009: age 18 years or older, antiretroviral therapy-naïve, no
history of an AIDS-defining illness (CDC, 1992), no pregnancy (when information was
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available), no history of CD4 cell count less than 500 cells/mm3, and CD4 cell count and
viral load (HIV RNA) measurements within six months of each other at baseline.

Let k = 0, 1, 2, … , K, … , 151 represent month of follow-up where K +1 = 60 months is the
follow-up of interest and 151 months is the maximum observed follow-up length. An
individual’s baseline (k = 0) was defined as the first time her CD4 cell count dropped into
the range 200–499 cells/mm3 and all of the above criteria were met. There were n = 8, 392
individuals at baseline. Individuals’ observations were assumed i.i.d.

Let Ak be an indicator of treatment (cART) initiation before the end of month k. cART was
defined as either three or more antiretroviral drugs, or two ritonavir-boosted protease
inhibitors, or one non-nucleoside reverse transcriptase inhibitor plus one boosted protease
inhibitor. We denote the history of a random variable using overbars; for example Āk = (A0,
… , Ak) is the observed treatment history through the end of month k.

Let V be a vector of variables measured at or before k = 0 containing sex, geographic origin
(Western countries, other or unknown), mode of transmission (heterosexual, homosexual/
bisexual, injection drug use, other or unknown), race (white, black, other or unknown),
cohort, calendar year (1996 – 1998, 1999 – 2000, 2001 – 2003, ≥ 2004), years since HIV
diagnosis (< 1, 1 – 4, ≥ 5 years, unknown) and age (< 35, 35 – 49, ≥ 50 years).

Let L1,k be an indicator of whether viral load was measured during month k, L2,k the most
recently measured viral load by the end of month k (on the natural log scale), L3,k an
indicator of whether CD4 cell count was measured during month k, L4,k the most recently
measured CD4 cell count by the end of month k (on the natural log scale) and L5,k an
indicator of AIDS-defining illness by the end of month k. For k > 0, we define Lk = (L1,k,
L2,k, L3,k, L4,k, L5,k) and define L0 = (V, L1,0, L2,0, L3,0, L4,0, L5,0). We constructed the data
set such that, when treatment was initiated during month k, Lk represents the last
measurements of covariates preceding treatment initiation.

Let Yk+1 represent the indicator of death from any cause by the end of month k+1, and Ck+1
the indicator of censoring by the end of month k+1 with Y̅0 = C̅0 = 0 by definition. An
individual was censored at pregnancy or after 12 months without a viral load or CD4 cell
count measurement. An individual was also censored at the cohort-specific administrative
end of follow-up for this analysis (between December 2003 and September 2009). For
notational convenience we set L̅−1 and Ā−1 to be identically 0. We assume the order (Ck, Yk,
Lk, Ak) within each measurement interval k.

3 Deterministic dynamic regimes
As in Robins and Hernán (2009), we define a deterministic treatment regime or intervention
as a collection of functions {gk(āk−1, l ¯k); k = 0, … , K} which determine treatment
assignment during month k for a possible realization (āk−1, l¯k) of (Āk−1, L̅k) under that
regime. We say a treatment regime g is static if the rule for assigning treatment at each k
does not depend on past treatment or covariates; otherwise we say g is dynamic. For
example, the intervention “initiate cART at baseline” or gk(āk−1, l¯k) = 1 for all k = 0, … , K
and any (āk−1, l¯k) is a static regime.

In contrast, the interventions “start cART when CD4 cell count first drops below x or there
is a diagnosis of an AIDS-defining illness, whichever happens first” are deterministic
dynamic treatment regimes. They are dynamic because the treatment value at k depends on
the history of the time-varying covariates CD4 cell count and AIDS diagnosis. They are
deterministic because treatment history through k − 1 and covariate history through k
determines (with probability 1) whether an individual will initiate treatment at k. In §6 we
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will consider random dynamic regimes where, for a given treatment history through k − 1
and covariate history through k, treatment may be initiated at k with probability between 0
and 1.

We formalize regimes of the form “start cART when CD4 cell count first drops below x or
there is a diagnosis of an AIDS-defining illness, whichever happens first,” which we index
by x, as follows:

Let gk(āk−1, l¯k) = 1 if either

1. gk−1(āk−2, l¯k−1) = 0 and l4,k < ln(x) or l5,k = 1 or

2. gk−1(āk−2, l¯k−1) = 1

and let gk(āk−1, l ¯k) = 0 otherwise for k ≥ 0 and ln(x) the natural log of x.

Because k = 0 is the time when each subject’s CD4 cell count first drops below 500 cells/
mm3, Pr[L4,0 < ln(500)] = 1. Thus, this dynamic regime for x = 500 is equivalent to the
static regime “initiate treatment at baseline” as all subjects will meet the criteria for starting
treatment at baseline.

Finally, all regimes x discussed in this paper implicitly include an intervention to abolish
censoring throughout the follow-up. That is, all regimes set Ck+1 = 0 for all k even if, for
simplicity of presentation, this intervention on censoring is not explicitly stated in the
definition of the regimes x.

4 The g-formula and identifying assumptions

In general, let  and  represent the outcome and covariate histories, respectively, a
subject would have experienced had she, possibly contrary to fact, followed any
deterministic treatment regime g, whether static or dynamic. We can write the risk of death

through month k + 1 had all subjects followed regime g as , for each k = 0, … ,
K. These represent our population parameters of interest for g defined at the end of §3 (our
regimes x).

Recursively, for s = 0, … , k, define  and  by . We make the
following identifying assumptions for each k (Robins and Hernán, 2009):

1. Consistency: If  then  and 

2. Exchangeability:

3. Positivity:

w.p.1.

Exchangeability and consistency will hold in a sequentially randomized trial defined as
follows:

Definition 1: A sequentially randomized trial is equivalent to a dynamic regime associated
with an intervention density fint(ak|l¯k, āk−1, Y̅k = C̅k = 0) – for āk ∈ 𝒜 ̅k with 𝒜 ̅k the support
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of 𝒜 ̅k – which is chosen by the investigator and in which each subjects’ treatment Ak in
month k is an independent draw from this choice of intervention density.

Exchangeability also holds under weaker assumptions (see Robins, 1997). Note that a
sequentially randomized trial where the intervention density is chosen such that it may only
equal zero or one for any history and any follow-up interval is equivalent to a deterministic
dynamic regime. By contrast, if chosen such that it may take on values between zero and
one for some history and follow-up interval, this sequentially randomized trial is equivalent
to a random dynamic regime (see §6).

Under the consistency, exchangeability and positivity assumptions as defined above and the

data structure described in §2,  for any k = 0, … , K and deterministic dynamic
regime g can be written as the g-formula (Robins, 1986, 1997):

(1)

where  represents the probability of surviving
through month j conditional on remaining uncensored through j, surviving through j − 1 and
adhering to the regime g through j − 1 for specific history

 represents the density for Lj conditional on
surviving and remaining uncensored to j and adhering to regime g through j − 1, for specific

history , j = 0, … k; and l̄j represents the first j + 1 components of l¯k, j = 0, … k.
Thus, under our identifying assumptions, the g-formula expresses the counterfactual risk in
terms of only the observed data distribution.

One minus expression (1) is equivalent to

(2)

which, under our identifiability assumptions, is , or survival through k + 1 had all
subjects followed regime g. For pedagogic purposes, we provide a proof in the appendix of

the equivalence between  and expression (2) under the identifying assumptions as
defined in this section and the interval-censored observed data structure described in §2.
Original proofs can be found in Robins (1986, 1997).

5 Estimation of the risk under a dynamic regime
In low-dimensional data, we can compute the g-formula for the counterfactual risk of death
by k + 1 in expression (1) by non-parametrically estimating the value of each density
function for all possible covariate histories and then taking the sum over these histories. This
computation, however, is not possible in the presence of even one continuous covariate. In
general, for high-dimensional data, we can only estimate the g-formula (1) by estimating
these density functions under parametric modelling assumptions and then approximating the
sum over all histories via Monte Carlo simulation.

In the estimation algorithm that follows for expression (1), we use the equivalence between
f(lk|l¯k−1, āk−1, Y̅k = C̅k = 0) and
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(3)

for each k = 0, … , K.

Note that under our observed data structure described in §2, we have a priori knowledge of
some of the conditional densities/probability functions in the product (3) for certain
histories. Specifically:

1. f(l2,k|L1,k = 0, l¯k−1, āk−1, Y̅k = C̅k = 0) = 1 whenever l2,k = l2,k−1 and f(l4,k|L3,k = 0,
l2,k, l1,k, l¯k−1, āk−1, Y̅k = C̅k = 0) = 1 whenever l4,k = l4,k−1; that is, the last
measured viral load or CD4 cell count during month k will be the same as the last
measured viral load or CD4 cell count during month k−1 if viral load or CD4 cell
count was not measured during month k, respectively.

2.
Pr[L1,k = 1 |l¯k−1, āk−1, Y ̅k = C̅k = 0] = 1 whenever  if k ≥ 12 and

Pr[L3,k = 1|l2,k, l1,k, l¯k−1, āk−1, Y ̅k = C̅k = 0] = 1 whenever  if k ≥ 12;
that is, by the definition of censoring, an individual whose viral load or CD4 cell
count remains unmeasured for 12 consecutive months must have a measurement in
the next month.

3. Pr[L5,k = 1|L5,k−1 = 1, l¯4,k, l¯3,k, l ¯2,k, l̄1,k, āk−1, Y̅k = C̅k = 0] = 1; that is, if an AIDS-
defining illness is diagnosed by month k−1 then it is diagnosed by month k.

Thus, in estimating expression (1), we do not have to impose parametric models on all of the
component densities of that expression over all histories. Some of these densities are known
and need not be estimated. Further, we do not require parametric estimation of the density
f(l0|l¯−1, ā−1, Y̅0 = C̅0 = 0) because we can use the empirical distribution of L0 as an estimate
of this density.

We now present a consistent estimation algorithm for the risk of death by k + 1 under each
regime x for any k = 0, … , K as defined in (1) which incorporates the above described a
priori knowledge of the data.

For each x, do the following:

STEP I: Parametric modelling of conditional densities
1. Fit models for the conditional densities of the covariates (for k = 1 to the maximum

length of follow-up). Specifically, model:

a. Pr[L1,k = 1|L ̅k−1 = l¯k−1, Āk−1 = āk−1, Y̅k = C̅k = 0], for l¯k−1 such that

 if k ≥ 12; that is, the probability that viral load is measured
during month k conditional on viral load not remaining unmeasured for
the 12 consecutive prior months, past history, surviving and remaining
uncensored through k

b. f(l2,k|L1,k = 1, L̅k−1 = l¯k−1, Āk−1 = āk−1, Y̅k = C̅k = 0); that is, the density
of natural log of viral load during month k conditional on viral load being
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measured during month k, past history, surviving and remaining
uncensored through k

c. Pr[L3,k = 1|l2,k, l1,k, L ̅k−1 = l¯k−1, Āk−1 = āk−1, Y̅k = C̅k = 0], for l¯k−1 such

that  if k ≥ 12; that is, the probability that CD4 cell count is
measured during month k conditional on CD4 cell count not remaining
unmeasured for the 12 consecutive prior months, past history, surviving
and remaining uncensored through k

d. f(l4,k|L3,k = 1, l2,k, l1,k, L̅k−1 = l¯k−1, Āk−1 = āk−1, Y̅k = C̅k = 0); that is, the
density of natural log of CD4 cell count during month k conditional on
CD4 cell count being measured during month k, past history, surviving
and remaining uncensored through k

e. Pr[L5,k = 1|l¯4,k, l¯3,k, l¯2,k, l¯1,k, L5,k−1 = 0, āk−1, Y̅k = C̅k = 0]; that is, the
probability of diagnosis of AIDS-defining illness by month k conditional
on no prior diagnosis, past history, surviving and remaining uncensored
through k

2. Fit a model for the outcome (for k = 0 to the maximum length of follow-up).
Specifically, model: Pr[Yk+1 = 1|L̅k = l̄k, Āk = āk, Y̅k = C̅k+1 = 0]; that is, the
probability of death by month k+1 conditional on past history, surviving and
remaining uncensored through k

Detailed modelling assumptions for step I are described in the appendix.

STEP II: Monte Carlo simulation under regime x
For k = 0, … , K and υ = 1, … , n:

1. If k = 0 set l0,υ to the observed values for subject υ. Otherwise if k > 0

a.
Set l1,k,υ = 1 if  and k ≥ 12. Otherwise, draw l1,k,υ from the
probability function estimated in step I.1.a based on previously drawn
covariates l¯k−1,υ and assigned treatment āk−1,υ under x (see step II.2).

b. Set l2,k,υ = l2,k−1,υ if l1,k,υ = 0. Otherwise, draw l2,k,υ from the density
function estimated in step I.1.b based on previously drawn covariates
l¯k−1,υ and assigned treatment āk−1,υ under x.

c.
Set l3,k,υ = 1 if  and k ≥ 12. Otherwise, draw l3,k,υ from the
probability function estimated in step I.1.c based on previously drawn
covariates l2,k,υ, l1,k,υ, l¯k−1,υ and assigned treatment āk−1,υ under x.

d. Set l4,k,υ = l4,k−1,υ if l3,k,υ = 0. Otherwise, draw l4,k,υ from the density
function estimated in step I.1.d based on previously drawn covariates
l2,k,υ, l1,k,υ, l¯k−1,υ and assigned treatment āk−1,υ under x.

e. Set l5,k,υ = 1 if l5,k−1,υ = 1. Otherwise, draw l5,k,υ from the probability
function estimated in step I.1.e based on previously drawn covariates
l¯4,k,υ, l¯3,k,υ, l¯2,k,υ, l¯1,k,υ, and assigned treatment āk−1,υ under x

2. Assign the treatment ak,υ under x. Specifically,

Set a−1,υ = 0.

(a) If ak−1,υ = 0
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i. if l4,k,υ < ln(x) (based on step II.1.d) or l5,k,υ
= 1 (based on step II.1.e) then set ak,υ = 1;

ii. otherwise set ak,υ = 0

(b) If ak−1,υ = 1 then set ak,υ = 1

3. Estimate probability of death by month k+1 given survival to k, remaining
uncensored to k + 1 for the υth simulated treatment and covariate history under x
based on the estimated coefficients from step I.2.

STEP III: Computation of risk under regime x
For k = 0, … , K, estimate the g-formula (1) as

(4)

where

k = 0, … , K is obtained in step II.3.

Expression (4) is our estimate of the risk of death by each month k+1 had all subjects
followed regime x and one minus expression (4) is our estimate of survival through k + 1
had all subjects followed this regime.

Note that the Monte Carlo simulation in step II is based on n samples. However, if there is
concern about the Monte Carlo variance, the algorithm may be generalized to a larger
number of samples. Further, the algorithm described above models (or constrains using a
priori knowledge) the components of the product in (3) which is based on the permutation
(L1,k, L2,k, L3,k, L4,k, L5,k) of the variables in Lk. Expression (3) is clearly only one of
several ways we could write f(lk|l¯k−1, āk−1, Y̅k = C̅k = 0) in terms of the product of the
conditional densities of the components of Lk. In principle, we could modify the above
algorithm for any of the 119 alternative permutations of the five variables in Lk. Only
permutations where L1,k precedes L2,k and L3,k precedes L4,k would allow us to incorporate
constraints based on our a priori knowledge and, therefore, these are the only reasonable
permutations to consider. Our main results described in §8 are based on the algorithm
described above using the permutation (L1,k, L2,k, L3,k, L4,k, L5,k). We performed sensitivity
analyses under the five alternative permutations of the variables in Lk such that L1,k
immediately precedes L2,k and L3,k immediately precedes L4,k.

6 Random dynamic regimes
The regimes “start cART when CD4 cell count first drops below x or there is a diagnosis of
an AIDS-defining illness, whichever happens first” require that patients initiate treatment
immediately after their CD4 cell count drops below x or an AIDS diagnosis is made. This
requirement makes regimes of this form difficult to implement in practice as the expectation
of immediate treatment is often unrealistic due to administrative delays and other factors.

To address this issue, Cain et al (2011) considered random dynamic regimes which allow for
a grace period during which starting treatment is required. A random dynamic regime is
equivalent to a sequentially randomized trial, as defined in Definition 1 of §4, where the
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user-specified intervention density may take on values between zero and one for a given
follow-up interval and history. Here we will also extend consideration to random regimes
that allow for a grace period, specifically “start cART within m months of CD4 cell count
first dropping below x or diagnosis of an AIDS-defining illness, whichever happens first”
for m > 0.

If CD4 cell count first drops below x during month k, then we define the end of the grace
period as the end of month k + m. If CD4 cell count was measured the first day of month k,
then the length of the grace period is m+1 months. If measured the last day of month k, then
the length is m months plus 1 day. Thus, whenever we refer to regimes with grace period m,
we are actually referring to regimes with grace period somewhere between m and m + 1
months.

As discussed in Cain et al (2010), the regimes as stated above are ill-defined because they do
not specify a particular initiation schedule during the grace period. For example, do all
patients eligible for initiation start right at the end of the grace period? Alternatively, are the
initiation times uniformly distributed during the grace period?

We define fobs(ak|l¯k, āk−1, Y̅k = C̅k = 0) as the observed data treatment density for a given
history with the restriction that, by the definition of Ak, fobs(1|l̄k, Ak−1 = 1, Y̅k = C̅k = 0) = 1,
k = 0, … , K. As in Cain et al (2011), we chose to compare random regimes x that assign
treatment up until the last month of the grace period according to the observed data
treatment density (i.e., according to how treatment is initiated in the observed data). That is,
we will consider random dynamic regimes x with grace period m of the form:

“start cART m months after CD4 cell count first drops below x or diagnosis of an AIDS-
defining illness, whichever happens first, if the subject is still alive and has not initiated
treatment during the grace period on her own”.

To formalize these random regimes x with a grace period m, let fx(ak|l¯k, āk−1, Y̅k = C̅k = 0)
be the intervention density associated with this random regime. Specifically, fx(1|l¯k, āk−1, Y̅k
= C̅k = 0) is the probability of initiating treatment by k under this random regime x and fx(0|
l¯k, āk−1, Y̅k = C̅k = 0) is the probability of not initiating treatment by k under this regime,
conditional on survival and remaining uncensored to k and for a given history (l¯k, āk−1).

Define rk(x) as the indicator that CD4 cell count first dropped below x or an AIDS diagnosis
was first made by month k; in other words, this is an indicator that the threshold for entering
the grace period has been crossed either during month k or in some prior month. Though not
shown in the notation for simplicity, rk(x) is clearly a function of the history l¯k. By definition
if rk−1(x) = 1 then rk(x) = 1 (if you have crossed the threshold at k − 1 then you have crossed
it by k) and r¯−1(x) = 0 (before baseline all observations will have CD4 cell count above 500
and no prior diagnosis of AIDS-defining illness and thus will not have crossed the
threshold).

Then, for any m ≥ 0, the random dynamic regime x is defined as follows:

1. if rk(x) = 0, fx(0|l¯k, āk−1, Y̅k = C̅k = 0) = 1;

2. otherwise if rk(x) = 1

a. for m > 0, if rk−m(x) = 0 then

b. otherwise if rk−m(x) = 1 then fx(1|l̄k, āk−1, Y̅k = C̅k = 0) = 1
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Note that for m = 0 this definition of regime x reduces to:

1. if rk(x) = 0 then fx(0|l¯k, āk−1, Y ̅k = C̅k = 0) = 1

2. otherwise if rk(x) = 1 then fx(1|l¯k, āk−1, Y̅k = C̅k = 0) = 1

for any follow-up month k, which is equivalent to the definition given for the deterministic
dynamic cART regimes indexed by x in §3. Thus, it is only the allowance for a grace period
(m > 0) that introduces a “random component” to the rule for treatment assignment under x.

Generalizing to any m ≥ 0, we show in the appendix that under our identifying assumptions
of §4, the generalized g-formula for risk of death by month k + 1 had all subjects followed
the random dynamic regime characterized by the intervention density fx(as|l¯s, ās−1, Y̅s = C̅s =
0), s = 0, … , k is:

(5)

When m = 0, note that this expression is equivalent to the g-formula (1) of §4 for the
deterministic regimes indexed by x defined at the end of §3.

One minus expression (5) is equivalent to

(6)

In the appendix, not only do we show that under our identifying assumptions the generalized
g-formula (6) gives survival through k + 1 had all subjects followed this random regime
indexed by x, but also that expression (6) is equal to a weighted average of survival
distributions of deterministic regimes.

To consistently estimate (5), we must slightly modify the algorithm described in §5 such that
we

1. Add a step I.3: Fit a parametric model for treatment (for k = 0 to the maximum
length of follow-up). Specifically model:
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that is, the probability of initiating treatment by k conditional on not having
initiated prior to k, covariate history and surviving and remaining uncensored to k.

2. Change step II.2 to: Assign the treatment ak,υ under x. Specifically:

a. If rk,υ(x) = 0 based on the previously drawn l¯k,υ then set ak,υ = 0;

b. otherwise if rk,υ(x) = 1 based on the the previously drawn l¯k,υ then

i. for m > 0, if rk−m,υ(x) = 0 and ak−1,υ = 1 then set ak,υ = 1;
otherwise if rk−m,υ(x) = 0 and ak−1,υ = 0 then draw ak,υ from
the estimated density in step I.3 based on previously drawn
covariates l¯k,υ and assigned treatment āk−1,υ under x;

ii. otherwise set ak,υ = 1.

Under the data generating assumptions of §2, the estimation algorithm described here
extends that described in Taubman et al (2009) and Robins et al (2004) to allow for
incorporation of a priori knowledge of the observed data densities conditional on certain
histories. This algorithm is implemented in a publicly available SAS macro which we used
to obtain the results presented in §8 (http://www.hsph.harvard.edu/causal/software/).

7 Estimation of the risk under the “natural course”
The estimation procedure described in the previous sections relies heavily on the correct
specification of parametric models for the conditional densities of the outcome and
covariates. If the parametric modelling assumptions described in the appendix are incorrect,
then our risk estimates will be biased. One way to explore the validity of our parametric
assumptions is to use the above estimation procedure to estimate the mortality risk that
would have been observed under no treatment intervention; equivalently, under a random
dynamic regime where the intervention density is chosen to be fobs(ak|l¯k, āk−1, Y̅k = C̅k = 0)
at each k = 0, … , k. We refer to this risk as the “natural course” risk.

If censoring is independent – i.e. if , where  represents
the outcome history had all subjects followed the “natural course” – the “natural course” risk
by k + 1 should be equivalent to the observed risk by k + 1 in the study population. The
former can be estimated by the algorithm described in the previous section by assigning ak,υ
for any k in step II according to the observed data treatment density. The latter is estimated
as

where nk is the number of individuals still at risk (alive and uncensored) at the beginning of
month k and ek is the number of individuals who died in month k + 1 amongst those still at
risk at the beginning of month k.

Analogously, the observed means of the time-varying covariates and treatment in each
month will be equivalent to those under the “natural course” under independent censoring
for treatment, covariates and survival. Estimates of covariate means under the “natural
course” may be obtained from the simulated data generated in the estimation algorithm
described in §5 and §6.
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Thus under independent censoring for both the outcome and covariates, any discrepancy
between the observed and “natural course” estimates of risk and covariate means suggests
misspecification of the parametric models described in the appendix. It follows, however,
that if censoring is informative for the outcome or covariates, then discrepancy between
these estimates may be all or partly due to the fact that the “natural course” estimands differ
from the estimands to which our observed estimators converge.

To assess the possible role of random sampling variation in the differences between
estimated observed and “natural course” survival and covariate means in each month we
calculated point-wise 95% confidence intervals for these differences based on 500 bootstrap
samples.

8 Data analysis
Table 1 presents characteristics of the 8, 392 study participants at baseline. Of these 8,392,
197 died, 4,006 were censored for having more than 12 consecutive months of unmeasured
viral load or CD4 cell count, 3,985 by administrative end of follow-up and 204 by
pregnancy. The proportion of subjects with a CD4 cell count above 350 cells/mm3 was 89%.

The top panel of Figure 1 shows estimates of observed and “natural course” survival, as well
as means of the indicator of cART initiation by each month of follow-up in the population
based on the estimators defined in §7. The bottom panel depicts differences between these
estimates by month, along with point-wise 95% confidence intervals. Similarly, the top
panel of Figure 2 presents the estimated observed and “natural course” means of natural log
viral load, natural log CD4 cell count, and the indicator of AIDS-defining illness by follow-
up month. Again, the bottom panel depicts differences and point-wise 95% confidence
intervals. Only the point-wise confidence intervals for differences in survival and mean of
the AIDS indicator contained zero for all months. The differences in means of natural log
CD4 cell count and other variables, while small, may suggest misspecification of some of
the parametric models described in the appendix. However, as discussed in §7, these
discrepancies may also be due to informative censoring.

The estimated 5-year mortality risk and 95% confidence interval under the regime x = 500
with a grace period m = 6, specifically: “start cART 6 months after CD4 cell count first
drops below 500 or diagnosis of an AIDS-defining illness, whichever happens first, if the
subject is still at risk and has not initiated treatment during the 6-month grace period on her
own”, was 2.65 (2.15, 3.43). The estimated 5-year risks for x = 350 and x = 200 were 3.06
(2.59, 3.67) and 3.65 (3.01, 4.44), respectively.

Table 2 presents the 5-year mortality risks as well as risk ratios and risk differences for the 7
random regimes with x between 200 and 500 in increments of 50 cells/mm3 and with a grace
period m = 6 months. The risk was estimated to be 38% higher under regime x = 200 and
16% higher under regime x = 350 compared with x = 500. All 95% confidence intervals
were based on 500 bootstrap samples. Figure 3 shows the survival estimates by month of
follow-up under regimes x = 500, 350 and 200.

The estimated risk ratios and risk differences (with x = 500 reference group), were little
changed by alternative modelling choices to those defined in the appendix including:
addition of a knot at 50 to h(k), the function of month; addition of a knot at ln(700) to
s4(L4,k), the function of CD4 cell count; replacement of I*(t(L1,k, L3,k)), the indicator
functions for categories of number of months since last measured CD4 cell count or viral
load by month k, with linear and squared terms of number of months since either

measurement by k; replacement of , the interaction term between the treatment
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initiation indicator by k and number of months since treatment initiation by k − 1, with a
vector of interaction terms, each component the product of the treatment initiation indicator
by k and an indicator that number of months since initiating is in each of the categories (≤ 1,
2 – 10, 11 – 20, 21 – 40).

We also found estimates were not sensitive to restriction to follow-up starting in 1999 or
later, restriction to men, restriction of step I of the algorithm in §5 to only the 60-month
follow-up of interest (as opposed to using all 151 months of available follow-up), exclusion
of injection drug users, alternative definitions of cART (Cole et al, 2003; Mocroft et al,
2007), and changing the criteria that an individual is censored in the observed data if she has
had either no viral load or CD4 cell count measurement within the last 12 months to 18
months or 24 months. Alternative permutations of covariates within Lk (as described in §5)
also did not have a substantial impact on mortality risk estimates, risk ratios or differences.

9 Discussion
We used the parametric g-formula to compare the effectiveness of several dynamic
treatment regimes for cART initiation in HIV-infected patients. Specifically, we considered
the 7 dynamic regimes “start cART 6 months after CD4 cell count first drops below x cells/
mm3 or diagnosis of an AIDS-defining illness, whichever happens first, if the subject is still
alive and has not initiated treatment during the 6-month grace period on her own” with x
taking on values between 200 and 500 in increments of 50 cells/mm3. Our findings, which
are based on observational data from the HIV-CAUSAL Collaboration, suggest that the 5-
year mortality risk is lowest for x = 500 and increases as x decreases, i.e., when cART
initiation is delayed.

The parametric g-formula is an alternative to IP weighting of dynamic marginal structural
models to appropriately adjust for measured time-varying confounders when comparing the
effectiveness and safety of dynamic interventions. Specifically, for a given target population
and underlying observed data generating distribution, these two estimation methods can both
give consistent estimates of the same counterfactual population parameter of interest (here,
risk under a specified dynamic treatment regime). The consistency of each estimator will
rely on the same identifying assumptions but will require parametric assumptions on
different component densities of the observed data. Under correct parametric assumptions
on these components, the parametric g-formula estimator will be more efficient than its IP
weighted counterpart because the former is based on parametric maximum likelihood
estimation (under the assumption of exchangeability) and the latter is a semi-parametric
estimator. Further, unlike IP weighted estimators, parametric g-formula estimators do not
generally become unstable in the presence of near violations of the positivity assumption
(see Petersen et al, 2010 for a discussion).

These advantages of the parametric g-formula estimator are at the expense of a greater
reliance on parametric assumptions and thus more opportunity for bias. That is, the validity
of our parametric g-formula estimates requires correct specification of the conditional
distribution of the outcome Yk+1, the treatment Ak (because our regimes use the observed
treatment density to assign treatment during the grace period, otherwise we would not have
needed to specify this density) and each of the five time-varying covariates in Lk in all
follow-up months k. In contrast, the validity of an analogous IP weighted estimate would
require correct specification of the conditional distribution of the treatment Ak, the censoring
indicator Ck+1, and the marginal structural model for the relation between x and the risk of
death had all subjects followed x for all k.
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Parametric g-formula estimators are further subject to the “g-null paradox” theorem, which
implies it can be essentially impossible to specify correct parametric models under the
causal null hypothesis (i.e. the true risk difference under any two choices of x is exactly
zero). As a consequence, the method will reject the causal null even when true in sufficiently
large samples. In this particular application, it is reasonable to assume that the causal null
does not hold overall.

Doubly robust methods are alternative approaches to the parametric g-formula for estimating
risk under interventions that do not involve the observed data treatment density. These
estimators are then consistent if either the model for treatment given the past (as needed to
implement IP weighting) is correctly specified or the models for the outcome and covariates
given the past (as needed to implement the parametric g-formula) are correctly specified,
without knowing which of the two sets of models is correct. See Bang and Robins (2005);
van der Laan (2010a,b) for further discussion. We did not compute doubly robust estimators
here as our regimes of interest involved the observed data treatment density, although, as
discussed in §6, we might have chosen an alternative treatment assignment rule during the
grace period. Further, the software required to compute such estimators in this context was
unavailable.

The parametric g-formula algorithm described in §6 has been previously applied to compare
the effectiveness of dynamic regimes involving lifestyle interventions (Robins et al, 2004;
Taubman et al, 2009). In these previous applications, the follow-up was divided into 5 to 10
intervals during which time-varying variables were assessed. Our application of the
parametric g-formula to the HIV-CAUSAL Collaboration demonstrates the computational
feasibility of this software in settings with many more follow-up intervals - specifically, 60
intervals.

Cain et al (2010) described how to use IP weighting to compare the effectiveness of the 7
dynamic cART regimes considered here in the FHDH observational cohort (a subset of the
HIV-CAUSAL Collaboration). Cain et al (2011) also used IP weighting to compare the
effectiveness of similar dynamic regimes in the HIV-CAUSAL Collaboration. Table 3
shows estimated 5-year risks, risk ratios, and risk differences for x = 500, 350 and 200
reported in Cain et al (2011). The 95% confidence intervals for the IP weighted estimates of
the risk ratio have substantial overlap with those for our parametric g-formula estimates.
Further, the 95% confidence intervals for the IP weighted estimates of the risk ratios include
the parametric g-formula estimates. As expected, the 95% confidence intervals around our
parametric g-formula estimates are narrower than those around the IP weighted estimates.

However, the estimates in Table 3 are not fully comparable with ours in Table 2 because
Cain et al (2011) considered slightly different dynamic regimes. Specifically, these authors
compared random regimes of the form “do not start cART while the CD4 cell count is at or
above x cells/mm3, unless an AIDS-defining illness is diagnosed, and start cART 6 months
after CD4 cell count first drops below x cells/mm3 or diagnosis of an AIDS-defining illness,
whichever happens first, if the subject is still alive and has not initiated treatment during the
6-month grace period on her own” with x ranging from 500 to 200. That is, Cain et al (2011)
considered interventions that started when patients had a CD4 cell count above 500 cells/
mm3 rather than (as we did) when their CD4 cell count first dropped below 500 cells/mm3.

When possible, we recommend using both the parametric g-formula and IP weighting for
comparative effectiveness research. Similar estimates from the two methods will increase
our confidence in the results as each requires parametric assumptions on different
components of the observed data generating distribution. Discrepant estimates will force us
to question our parametric assumptions for one or both estimators.
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Appendix

10.1 Parametric modelling assumptions
Results provided in §8 are based on the following set of parametric modelling assumptions
for step I of the estimation algorithm described in the main text:

1. Models for densities of covariates (for k = 1 to maximum length of follow-up):
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a.  where βl1 is a
coefficient vector, Xl1,k is the vector

and

– h(k) contains terms based on transformation of k needed
to fit a restricted cubic spline with knots (1, 6, 24, 132);

– s2(L2,j) contains terms based on transformation of L2,j
needed to fit a restricted cubic spline with knots (6.215,
7.601, 9.211, 10.597, 11.513) for j = 0, … , K and
s2(L2,−1) = 0;

– s2(L4,j) contains terms based on transformation of L4,j
needed to fit a restricted cubic spline with knots (3.912,
4.605, 5.298, 5.858, 6.215) for j = 0, … , K and s4(L4,−1)
= 0;

– t(L1,j, L3,j) is number of months since last measured CD4
cell count or viral load by month j for j = 0, … K and
t(L1,−1, L3,−1) = 0;

– I*{t(L1,j, L3,j)} is a vector of the following indicator
variables: {I(t(L1,j, L3,j) < 1), I(1 < t(L1,j, L3,j) ≤ 3), I(3 <
t(L1,j, L3,j) ≤ 5), I(5 < t(L1,j, L3,j) ≤ 7)}, j = 0, … K.

Note that, by the definition of Aj,  represents the number of
months since treatment initiation by k − 1.

b.  where βl2 is a coefficient vector, Xl2,k = Xl1,k and ε2 is

distributed .

c.  where βl3,k is a
coefficient vector and Xl3,k = {Xl2,k, s2(L2,k), L1,k}.

d.  where βl4 is a coefficient vector, Xl4,k = Xl3,k and ε4 is

distributed .

e.  where
βl5 is a coefficient vector and Xl5,k = {Xl4,k, s4(L4,k), L3,k}

2. Model for the outcome (for k = 0 to maximum length of follow-up):

 where βy is a coefficient vector
and Xyk is the vector
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3. Model for treatment (for k = 0 to maximum length of follow-up):

 where βa is a coefficient vector
and Xak is the vector

Note that  and  were estimated by the sample variances of viral load and CD4 cell count
over all person-months, respectively. Further, in step II of the estimation algorithm,
simulated values of these covariates were truncated to the observed minimum (if below) and
maximum (if above).

10.2 Proof of equivalence between the g-formula and survival by k +1 had
all subjects followed a dynamic regime
10.2.1 Deterministic dynamic regimes

Here we present a proof of the equivalence between  and the g-formula (2) for
any deterministic dynamic regime g under the interval-censored data structure described in
§2.

Assume the identifying conditions of §4 hold.

In the following set , t ≤ k. If f(L ̅t, Āt−1, Ct = 0, Yt = 0) ≠ 0 then define

. Note that by 
definition.

By the definition of  we have

By exchangeability and positivity

By consistency and probability rules

By probability rules

By exchangeability and positivity

Young et al. Page 18

Stat Biosci. Author manuscript; available in PMC 2013 September 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Arguing recursively we have for j = 0, … , k

The result follows by setting j = 0 and invoking consistency once more such that we have

(7)

10.2.2 Random dynamic regimes
We will show that the generalized g-formula (6) is a particular weighted average of the g-
formula (2) for the survival probabilities associated with the set of all deterministic dynamic
regimes that a) satisfy positivity under the joint distribution of the data when fobs(as|l¯s, ās−1,
Y̅s = C̅s = 0) is replaced by fx(as|l¯s, ās−1, Y̅s = C̅s = 0) and b) only depend on past covariate
history. Now (i), under our exchangeability and consistency assumptions, the g-formula (2)
for the survival probabilities associated with any deterministic dynamic regimes satisfying
positivity is equal to the counterfactual survival probability had all subjects followed that
regime and (ii) a random dynamic regime satisfies our exchangeability and consistency
assumptions. It follows that the the survival probabilities of the random dynamic regime
with intervention density fx(as|l¯s, ās−1, Y̅s = C̅s = 0) is also given by (6) and equals the
aforementioned weighted average of the survival probabilities associated with the set of
deterministic dynamic regimes satisfying positivity under fx(as|l ¯s, ās−1, Y̅s = C̅s = 0) that
only depend on past covariate history.

Let gt : l¯t ↦ gt (l¯t) denote a function with domain ℒ ̅t and range At. Then the deterministic
dynamic regime g ≡ ḡ : l¯ ↦ ḡ (l ¯), ḡ (l ¯) ∈ (that only depends on past covariate history) is

the vector (gt; t = 0, …, K). Let  denote the survival probability through t given
by the g-formula (2) for the deterministic dynamic regime g where the quotes around “Pr”

denote the formal survival probability given by this expression. Note  equals the

true counterfactual survival probability  under our identifying conditions.

Let fx(as|l¯s, ās−1, Y̅s = C̅s = 0) be the intervention density defined in the main text.

Let 𝒢 ̅ denote the set of all such dynamic regimes (that only depends on past covariate
history) for which positivity holds under intervention density fx(as|l¯s, ās−1, Y̅s = C̅s = 0). Let |

 denote its cardinality.

We now use fx(as|l¯s, ās−1, Y̅s = C̅s = 0) to a construct a specific density q : g ↦ q {g} for

regimes in 𝒢 ̅. Note as a density  and q {gj} ≥ 0, gj ∈ 𝒢 ̅. Our density is
constructed as follows.
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Given g ∈ 𝒢 ̅, let  equal the intervention density fx(at|l¯t, āt−1, Y̅t = C̅t = 0)

evaluated at , where  in  is the treatment history determined by g and l¯t.

In the following we assume Lt is discrete and we choose an ordering such that {lt,1, …,
lt,|ℒt|} = ℒt, with ℒt the support of Lt and |ℒt| its cardinality.

Let . For t = K − 1, …, 0, let

. Let .

The following is Lemma 4.2 in Robins (1986) with his γ (·itjt) equal to fx(at|l¯t, āt−1, Y̅t = C̅t =
0) and his mA equal to q. The proof of Robins’ Lemma (4.2) is immediate from his tree
graph representation of the distribution of the data.

Theorem: Given fx(at|l¯t, āt−1, Y̅t = C̅t = 0) and derived density q(g), g ∈ 𝒢 ̅, then expression
(6) through t equals
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Fig. 1.
Top panel: estimated observed (solid line) and “natural course” (dotted line) survival and
mean cART indicator by month. Bottom panel: estimated differences between observed and
“natural course” survival and mean cART indicator by month (solid line) and point-wise
95% confidence intervals based on 500 bootstrap samples (dotted lines).
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Fig. 2.
Top panel: estimated observed (solid line) and “natural course” (dotted line) mean natural
log viral load, natural log CD4 cell count and AIDS indicator by month. Bottom panel:
estimated differences between observed and “natural course” mean natural log viral load,
natural log CD4 cell count and AIDS indicator by month (solid line) and point-wise 95%
confidence intervals based on 500 bootstrap samples (dotted lines).
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Fig. 3.
Survival by each month of follow-up k = 0, … , 60 under regimes “start cART 6 months
after CD4 cell count first drops below x or diagnosis of an AIDS-defining illness, whichever
happens first, if the subject is still at risk and has not initiated treatment during the 6-month
grace period on her own” for x = 500, 350, 200
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Table 1

Characteristics of 8,392 therapy-naive HIV-infected individuals when CD4 first falls between 500 and 200*,
HIV-CAUSAL Collaboration

Characteristic No. of individuals (%)

Sex Male 6, 500 (77.5)

Female 1, 892 (22.6)

Age, years < 35 3, 391 (40.4)

35 – 50 4,242 (50.6)

> 50 759 (9.0)

Transmission group Heterosexual 2, 457 (29.3)

Homosexual 4, 122 (49.1)

Injection drug use 779 (9.3)

Other/Unknown** 1, 034 (12.3)

CD4 cell count, per mm3 200 – 349 914 (10.9)

350 – 499 7, 478 (89.1)

HIV RNA, copies/mL < 10,000 2, 767 (33.0)

10,000 – 100,000 4, 255 (50.7)

> 100,000 1, 370 (16.3)

Calendar year 1996 – 1998 1, 299 (15.5)

1999 – 2000 1, 191 (14.2)

2001 – 2003 2, 298 (27.4)

≥ 2004 3, 604 (43.0)

Cohort UK CHIC 1, 785 (21.3)

ATHENA 650 (7.8)

FHDH-ANRS CO4 3, 390 (40.4)

SHCS 523 (6.2)

PISCIS 343 (4.1)

CoRIS 451 (5.4)

Seroconverters 641 (7.6)

VACS-VC 609 (7.3)

*
Table is identical to last two columns of Table 1 in Cain et al (2011)

**
Other/Unknown included all VACS-VC participants.

Stat Biosci. Author manuscript; available in PMC 2013 September 11.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Young et al. Page 25

Table 2

Five-year mortality risks, risk ratios, and risk differences under 7 regimes of the form “start cART 6 months
after CD4 cell count first drops below x or diagnosis of an AIDS-defining illness, whichever happens first, if
the subject is still at risk and has not initiated treatment during the 6-month grace period on her own”.

x Risk (%) Risk Ratio Risk Difference

500 2.65 (2.15, 3.43) 1.00 (ref) 0.00 (ref)

450 2.77 (2.28, 3.47) 1.05 (0.99, 1.09) 0.12 (−0.02, 0.21)

400 2.92 (2.43, 3.55) 1.10 (0.99, 1.18) 0.27 (−0.02, 0.44)

350 3.06 (2.59, 3.67) 1.16 (1.00, 1.29) 0.41 (−0.01, 0.71)

300 3.22 (2.73, 3.81) 1.22 (1.02, 1.41) 0.57 (0.05, 0.99)

250 3.44 (2.87, 4.07) 1.30 (1.03, 1.55) 0.79 (0.08, 1.32)

200 3.65 (3.01, 4.44) 1.38 (1.05, 1.71) 1.00 (0.15, 1.76)
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Table 3

Five-year mortality risks, risk ratios, and risk differences comparing cART initiation regimes with CD4
thresholds of x = 500, 350 and 200 cells/mm3 from Cain et al (2011).

x Risk (%) Risk Ratio Risk Difference

500 2.45 (1.34,3.56) 1.00 (ref) 0.00 (ref)

350 2.43 (1.83,3.04) 0.99 (0.53, 1.46) −0.02 (−1.20, 1.20)

200 2.91 (2.06,3.77) 1.19 (0.62,1.76) 0.50 (−0.80,1.80)
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