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DrGaP: A Powerful Tool for Identifying Driver Genes
and Pathways in Cancer Sequencing Studies

Xing Hua,1,2 Haiming Xu,1,3 Yaning Yang,2 Jun Zhu,3 Pengyuan Liu,1,* and Yan Lu1,*

Cancers are caused by the accumulation of genomic alterations. Driver mutations are required for the cancer phenotype, whereas pas-

senger mutations are irrelevant to tumor development and accumulate through DNA replication. A major challenge facing the field of

cancer genome sequencing is to identify cancer-associated genes with mutations that drive the cancer phenotype. Here, we describe a

powerful and flexible statistical framework for identifying driver genes and driver signaling pathways in cancer genome-sequencing

studies. Biological knowledge of the mutational process in tumors is fully integrated into our statistical models and includes such vari-

ables as the length of protein-coding regions, transcript isoforms, variation inmutation types, differences in backgroundmutation rates,

the redundancy of genetic code, and multiple mutations in one gene. This framework provides several significant features that are not

addressed or naively obtained by previous methods. In particular, on the observation of low prevalence of somatic mutations in indi-

vidual tumors, we propose a heuristic strategy to estimate the mixture proportion of chi-square distribution of likelihood ratio test

(LRT) statistics. This provides significantly increased statistical power compared to regular LRT. Through a combination of simulation

and analysis of TCGA cancer sequencing study data, we demonstrate high accuracy and sensitivity in our methods. Our statistical

methods and several auxiliary bioinformatics tools have been incorporated into a computational tool, DrGaP. The newly developed

tool is immediately applicable to cancer genome-sequencing studies and will lead to a more complete identification of altered driver

genes and driver signaling pathways in cancer.
Introduction

All cancers arise as a result of changes that have occurred in

the DNA sequence of the genome of cancer cells.1 Next-

generation sequencing (NGS) technologies have revolu-

tionized cancer genomics research by providing an

unbiased and comprehensive method of detecting somatic

cancer genome alterations, including nucleotide substitu-

tions, small insertions and deletions, copy-number alter-

ations, and chromosomal rearrangements.2 Recent

sequencing experiments have brought success in the iden-

tification of several cancer-associated genes that were

frequently mutated in tumors, including IDH1 (MIM

147700) and IDH2 (MIM 147650) in gliomas,3 DNMT3A

(MIM 602769) in acute myeloid leukemia,4,5 BAP1 (MIM

603089) in metastasizing uveal melanomas6 and malig-

nant pleural mesothelioma (MESOM [MIM 156240]),7

ARID1A (MIM 603024) in ovarian clear cell carcinoma8

and gastric cancer,9 PHF6 (MIM 300414) in T cell acute

lymphoblastic leukemia,10 MEN1 (MIM 613733) and

DAXX (MIM 603186)/ATRX (MIM 300032) in pancreatic

neuroendocrine tumors,11 ARID2 (MIM 609539) in hepa-

tocellular carcinoma,12 MLL2 in diffuse large B cell lym-

phoma,13 GRIN2A (MIM 138253)14 and GRM3 (MIM

601115)15 in melanoma, and PBRM1 (MIM 606083) in

renal carcinoma.16 As genomic sequencing experiments

continue to identify large numbers of novel cancer muta-

tions, one big challenge for cancer biologists that remains

is to distinguish driver mutations from the larger number

of passenger mutations. An impetus for the better identifi-
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cation of driver mutations is the potential therapies

targeted against the products of these aberrant genomic

alterations.1,2

Driver mutations are required for the cancer phenotype,

whereas passenger mutations are irrelevant to tumor devel-

opment and accumulate through DNA replication. In gen-

eral, identification of driver genes involves statistical tests

of mutated genes followed by experimental validation.

The latter involves tailored in vitro and in vivo experi-

ments that collectively form a powerful approach to

validate driver genes. However, large-scale functional vali-

dation is time consuming and cost prohibitive. Further-

more, such validations are limited because there are no

universal functional assays that are suitable for assessing

all types of genes and pathways that can be altered in

cancers.2 From a statistical point of view, driver genes are

defined as those for which the nonsilent mutation rate is

significantly higher than a background (or passenger)

mutation rate. Silent mutations do not change amino

acid residue and generally do not affect protein function

and activity and are therefore considered to be passenger

mutations. Statistical methods and computational tools

are now actively being developed to attempt to assess func-

tional significance of a mutated gene in cancer sequencing

studies.17–24 However, applying biological knowledge of

the mutational process in tumors into statistical models

is not trivial and has not been adequately tested. These bio-

logical considerations include length of protein-coding

regions (CDS), variation in transcript isoforms, variation

in mutation types, differences in background mutation
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Figure 1. Overview of DrGaP Analysis Pipeline
The core of the pipeline includes input of tumor mutation data, sequencing analysis of somatic mutations, tabulation of somatic var-
iants, significance test of driver genes and pathways, and summary and output of results. Dashed lines indicate optional steps.
rates, redundancy of genetic code, and number of muta-

tions in one gene. These factors have not yet been fully

addressed by current methods in the quest of identifying

driver genes.

There is now abundant evidence that alteration of driver

genes can be productively organized according to the

biochemical pathways and biological processes through

which they act.25 Driver mutations can be either common

or rare and identification of rare driver mutationsmay pose

a potential challenge. It is possible that mutation in one

member of a collection of functionally related genes may

result in the same net effect. Furthermore, mutations in

certain genes may be observed less frequently if they play

functional roles in later stages of tumor development,

such as metastasis. As a result, these drivers will appear to

be sparsely distributed across a larger number of genes

than we expect. Large sample sizes are required to detect

these infrequently mutated cancer-associated genes. Alter-

natively, by analyzing these drivers at the pathway level,

the frequency of rare mutations is accumulated and can

be detected with sufficient power. Thus, there is an

increasing interest in the identification of driver pathways

in tumor formation and progression.26

To meet these challenges, we developed a powerful

computational tool, DrGaP (driver genes and pathways),

for use in cancer genome-sequencing studies (Figure 1).

DrGaP incorporates our statistical approaches and several

auxiliary bioinformatics tools for better driver gene identi-

fication. Biological knowledge of the mutational process is

fully integrated into the statistical models and provides

several significant improvements and increased power

over current methods.
Material and Methods

Lessons from Recent Large-Scale Cancer Sequencing

Studies
To more accurately model the mutational process in our methods,

we first described several significant features learned from recent
440 The American Journal of Human Genetics 93, 439–451, Septemb
large-scale cancer genome-sequencing data generated from

The Cancer Genome Atlas (TCGA). Specifically, whole-exome

sequencing data of 119 lung adenocarcinoma (LUAD) and 127

lung squamous cell carcinoma (LUSC) tumor samples were

analyzed. We observed that a total of 7,755 and 11,125 genes

were mutated at protein-coding regions (CDS) in LUAD and

LUSC, respectively. However, the numbers of somatic mutations

vary significantly between tumor histologies and also between in-

dividual tumors (Figure S1 available online). The number of silent

mutations, which are used for estimating background mutation

rates, ranges from zero to several hundred per individual tumor.

LUSC was observed to have higher background mutation rates

than LUAD, suggesting the necessity of estimating individual

background mutation rates in statistical models.

The mutation rate depends not only on the mutated nucleotide

base but also on the neighboring sequences. For example, somatic

variants occur predominantly at G/C base pairs with the most

prevalent changes being G/C to A/T and G/C to T/A in tobacco

exposure-related tumors17,27,28 (Figure S2). Furthermore, muta-

tions at G/C show differential rates between CpG and non-CpG

sites because of deamination of cytosine at CpG dinucleotides.29

To reduce the risk of bias, 11 different mutation types are consid-

ered in our statistical models (Table S1).

We also commonly observed that some tumors do not have any

silent mutations in specific mutation types (Figure S3), which can

lead to a problem in estimating background mutations. Therefore,

Bayesian methods are favored to estimate the distribution of

background mutation rates in individual tumors.30 Based on the

analysis of silent mutations from large-scale TCGA cancer

sequencing data, we found that a prior beta distribution Bða; bÞ
of background mutation fits the real data better than the

uniform distribution that has been commonly used in previous

studies17,18,22–24 (Figure S4).

Because of the nature of NGS, some CDS cannot be captured in

library preparation or by sequencing because of the existence of

regions with high GC content. Somatic mutations are called

only when both tumor andmatched normal tissue simultaneously

have sufficient sequence coverage that is generally defined to be at

least 83 for identifying mutations in whole-exome studies.31 We

estimated that, on average, less than 85% of CDS in the genome

have sequence coverageR83 in both tumor and matched normal

samples by analyzing TCGA lung cancer sequencing data (Fig-

ure S5A and Tables S2 and S3). Furthermore, the proportion of
er 5, 2013



Table 1. Biological Information Is Integrated into Statistical
Models

Biological Knowledge Statistical Interpretation

transcript isoforms sum aggregate of CDS from multiple
isoforms of the same gene

variation in mutation types consider 11 different mutation types

background mutation rates beta prior of hij which is background
rate of mutation type j in individual i

differences in background
mutation rates

estimate separate mutation rates hij
for each individual tumor

redundancy of the genetic code define Njk and Mjk as the number of
base pairs in CDS of gene k that can
give rise to nonsilent and silent
mutations

multiple mutations in one gene addressed by the Poisson process

sequencing coverage cik is the proportion of CDS with a
minimum eight sequence coverage in
both a tumor and its matched normal
DNA from individual i

CDS size
P

jðNjk þMjkÞ ¼ 3L where L is length
of CDS for gene k
CDS with sufficient coverage varies substantially among genes

within the same sample (Figure S5B). Statisticalmodels accounting

for sequence coverage may increase sensitivity of identifying

driver mutations. Below, we will describe how biological informa-

tion is integrated into our statistical models (Table 1).

Poisson Process
To better identify driver mutations, we introduced a Poisson

process to model the random nature of somatic mutations.

Suppose we have I tumor samples to analyze and J types of

mutations (Table S1) across the tumor samples. For each sample,

K genes are analyzed. For each type j we will calculate the

number of base pairs in CDS of gene k that can give rise to

nonsilent and silent mutations. These counts are denoted by

Njk and Mjk, respectively. Furthermore, suppose that for sample

i, the number of nonsilent and silent mutations in the screened

CDS of type j is a Poisson process with rate rijk and hij, respec-

tively, where rijk ¼ hij þ ajk, hij is the background mutation rate

in type j from sample i, and ajk is the driver effect and can be

interpreted as the increased rate of mutation due to the extent

of the ‘‘driver’’ property of gene k of type j. Suppose that nijk

and mijk are the number of nonsilent and silent mutations

actually observed in gene k with type j from sample i. The prob-

ability of observing a given set of mutations of type j in gene k

from sample i follows the Poisson distribution for nonsilent

and silent mutations:

Pr
�
nijk; rijk

� ¼ e�NjkðhijþajkÞ �hij þ ajk

�nijkNnijk
jk

nijk!
(Equation 1)

Pr
�
mijk; hij

� ¼ e�Mjkhijh
mijk

ij

M
mijk

jk

mijk!
: (Equation 2)

Both Njk and Mjk can be potentially further adjusted by the

sequence coverage of CDS, cik to increase sensitivity of identifying

driver mutations, where cik is defined as the proportion of CDS

with sufficient sequence coverage in both a tumor and its matched
The American
normal DNA at gene k in individual i (Figure S5). The nonsilent

mutations can be further classified into five different functional

types, i.e., missense, splicing, nonsense, in-frame, and out-of-

frame indel.

Log-Likelihood
For nonsilent mutations, the log-likelihood of observed nonsilent

mutations can be expressed

Lnonsilent

�
nijk;rijk

� ¼ log
Y
i

Y
j

Y
k
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X
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X
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��Njk
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�
þ nijk log
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��� log
�
nijk!

��
:

(Equation 3)

For silent mutations, the log-likelihood is

Lsilent

�
mijk;hij

� ¼ log
Y
i

Y
j

Y
k

Pr
�
mijk;hij

�
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X
i

X
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X
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log Pr
�
mijk;hij

�
¼
X
i

X
j

X
k

��Mjkhij þmijk log
�
Mjkhij

�
� log

�
mijk!

��
:

(Equation 4)

Maximum Likelihood Estimation
We can obtain the maximum likelihood estimation (MLE) of hij
from Equation 4:

ĥij ¼
P
k

mijkP
k

Mjk

: (Equation 5)

Note that in real data, some ĥij can be 0 if the sample i has no

mutations of type j (Figure S3). Therefore, Bayesian methods will

be used to estimate the distribution of hij in individual tumors,

which borrow information from all the samples for estimating

each individual hij and therefore give more smooth estimates.30

Based on the observation from the large-scale TCGA data, a prior

beta distribution Bða; bÞ of hij will be used, which is more appro-

priate than the uniform distribution that has been commonly

used in previous studies17,18,22–24 (Figure S4). Because it is the con-

jugate prior of the binomial distribution, the posterior distribution

is still a beta distribution. We can estimate ĥ
ðpriorÞ
ij ¼ â=ðâþ b̂Þ and

ĥ
ðpostÞ
ij ¼ ðâþPkmijkÞ=ðâþ b̂þPkMjkÞ. â ¼ xðxð1� xÞ=v � 1Þ and

b̂ ¼ ð1� xÞðxð1� xÞ=v � 1Þ are the moment estimation of the

parameters a and b, where x ¼ 1=I
P

iĥij is the sample mean and

v ¼ 1=I
P

iðĥij � xÞ2 is the sample variance. Then, we can obtain

the MLE of ajk by substituting ĥij into Equation 3, which is the

root of the following equation:

�NjkI þ
X
i

nijk

ĥij þ âjk

¼ 0: (Equation 6)
Journal of Human Genetics 93, 439–451, September 5, 2013 441



It is subject to the constraint ajkR0. If the root of Equation 6 is

negative or nijk ¼ 0; for all i, then âjk will be 0.
Likelihood Ratio Test
Significance of the driver mutation rate ajk for type j in gene k can

be tested by the likelihood ratio test (LRT) under null hypothesis.

If we want to test each single mutation type of ajk separately, it will

be a one-side test and the parameter space of ajk is ½0;NÞ. LRT will

be performed under H0: ajk ¼ 0:

LRTjk ¼ 2
X
i

 
�Njkâjk þ nijk log

ĥij þ âjk

ĥij

!
� 1

2
c2
0 þ

1

2
c2
1:

(Equation 7)

However, based on our empirical observation (Figures S1 and S3),

some hij may be too small to observe any mutations in samples.

This results in a larger probability of zero estimation of ajk than ex-

pected under the above Poisson models and may lead to incorrect

type I error. To remedy this problem, we will correct the mixture

proportion of asymptotic distribution by a factor ε:

LRTjk �
�
1

2
þ ε

�
c2
0 þ

�
1

2
� ε

�
c2
1: (Equation 8)

We may estimate the parameter ε by using simulations ε̂ ¼
0:5�#fðk; jÞ :LRTjk > 0g=JK (Appendix A). Similarly, if we want

to test whether any mutation type has increased rate of mutation

resulting from the extent of the ‘‘driver’’ property of gene k, the

distribution of the statistic of LRT will be a more complicated

mixture of chi-square distributions. The null hypothesis H0

is a1k ¼ / ¼ aJk ¼ 0; the alternative hypothesis H1 is ajk > 0

for some j. We can express the statistic of LRT in gene k as

LRTk ¼
XJ
j¼1

LRTjk �
XJ
d

�
J
d

��
1

2
þ ε

�J�d�
1

2
� ε

�d

c2
d :

(Equation 9)

Throughout the manuscript we will use the term LRT-S when

multiple types of mutations are summed into a single type in the

likelihood ratio tests (i.e., J ¼ 1 and ε ¼ 0 in Equation 9); LRT-M

when multiple types of mutations are jointly considered in likeli-

hood ratio tests but without correction of the mixture proportion

of chi-square distribution (i.e., J > 1 and ε ¼ 0); and LRT-C when

multiple types of mutations are jointly considered in likelihood

ratio tests with correction of the mixture proportion of chi-square

distribution by estimating ε (i.e., J > 1 and ε > 0). LRT-S, LRT-M,

and LRT-C represent three different likelihood ratio test statistics

and their asymptotic distributions are a mixture of chi-square dis-

tribution. These statistics may have different statistical power for

identify driver genes. The Benjamini-Hochberg method will be

used to control false discovery rate (FDR) in all statistical tests.32
Pathway Approach
The above Poisson models (Equations 1 and 2) for a single gene

can be easily extended to analyze a pathway or gene set by treating

multiple genes within a pathway as a ‘‘big’’ gene. In brief, somatic

mutations within a pathway are counted and classified into silent,

missense, nonsense, splicing mutations, in-frame, and out-of-

frame indels; each type of mutation except indels are further

classified into one of nine nucleotide types based on the base of in-

terest and its flanking bases and location of CpG islands (Table S1).
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Similarly, the expectations of base pairs that can give rise to

different types of mutations are summed: Nijp ¼
P

kcikNijpk and

Mijp ¼
P

kcikMijpk where gene k belongs to pathway p and cik is

the proportion of CDS with at least 83 in both a tumor and its

matched normal DNA. LRT will be performed to examine the sig-

nificance of a pathway. Currently, we have collected 880 gene sets,

including 186 KEGG, 217 BioCarta, and 400 Reactome pathways

and multiple user-specified gene sets such as Chromatin remodel-

ing, HMTs histone methylation reader, HATs HDACs, and DNMTs

and Methyl-CpG binding.

Simulation
We evaluated our DrGaP statistical approaches through simula-

tions under a range of scenarios comparable to recent tumor

mutation data generated by the TCGA sequencing projects. Two

different strategies of simulations were performed. One is to

generate somatic mutations from probability models. In brief,

backgroundmutation rate hwas first sampled from a beta distribu-

tion, i.e., h � Bð1;10000Þ, which we observed in TCGA data sets

(Figure S4). Then, we generated silent mutations by Poisson dis-

tribution with parameter l ¼ Mh where M is sampled from

Nð10000;2000Þ and is the number of base pairs that can give

rise to silent mutations and h is the background mutation rate.

Driver nonsilent mutations were generated in a similar way (i.e.,

a � Bð1;10000Þ). To evaluate the effects of multiple types of muta-

tions on statistical power, we considered that there are 1, 5, and 11

types of driver mutations occurring in tumor samples. In each

simulation, we generated 100 tumor samples with 10,000 genes

and 11 different mutation types. Each simulation was replicated

100 times; the power is defined as the proportion of driver genes

identified by a statistical test with a significance level of 0.05.

Another simulation strategy is to generate mutation data by

directly sampling somatic mutations in TCGA data sets, including

LUAD, LUSC,33 high-grade serous ovarian cancer (HGS-OvCa),34

and colorectal carcinoma (CRC)35 (Table S4). In each data set, we

randomly assigned observed somaticmutations intoCDS and their

splicing sites (within 2 bp of an exon/intron boundary) across the

genome. To maximally match simulated data to real observed

mutation data, themutation types (Table S1) remained unchanged

during sampling. For example, if an observed somatic mutation in

CDS is A/G, we randomly sample a base position corresponding

to base A in CDS across the genome and change A to G at that

position. Then, we determine whether the new mutation A/G is

a silent or nonsilent mutation according to the genetic code. We

applied the same sampling rule to mutations occurring in CpG

sites. After themutation reshuffling, themutations become evenly

distributed across the genome. Finally, we chose 100 simulated

tumor samples from each data set and made 300 driver genes by

adding 2–5 nonsilent mutations to these 300 selected genes.

With these simulation data, we also compared our DrGaP with

several previous methods, including Bernoulli,24 Binomial-S and

Binomial-M,17,18,22,23 Poisson,19 and TRAB.21 In order to test driver

mutations, these statistical models need to specify background

mutation rates. However, estimation of backgroundmutation rates

is not explicitly described inmost of thesemethods. For a fair com-

parison, we used the same method as our DrGaP to estimate indi-

vidual background mutation rates, hij, for the Bernoulli

method.24 Averaging ĥij over individual tumors, we obtained back-

ground mutation rates of different mutation types ðĥjÞ that were

subsequently used for multiple-parameter Binomial model (Bino-

mial-M)17,18,22,23 and Greenman’s Poisson model.19 Similarly, we

estimated the overall background mutation rate ĥ ¼ 1=IJ
P

i

P
jhij
er 5, 2013
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Figure 2. Parameter Estimation and
Type I Error in DrGaP
(A and B) Parameter estimation of h and a.
(C–E) Distribution of p values from dif-
ferent likelihood ratio statistics: LRT-M,
LRT-C, and LRT-S.
(F) Q-Q plot of uniform distribution [0, 1]
and p values from LRT-C under null
hypothesis.
LRT-M refers to LRT test jointly consid-
ering multiple types of mutation without
estimating ε; LRT-C refers to LRT test
jointly consideringmultiple types ofmuta-
tions and correctingmixture proportion of
chi-square distribution by estimating ε.
LRT-S refers to LRT test considering a single
type of mutation. That is, multiple types of
mutations are summed into a single type
in LRT-S.
in the sample and used it for single-parameter Binomial model

(Binomial-S).17,18,22,23 The TRAB method is a Bayesian method

that models the occurrence of tumor mutation as the Poisson-

Gammadistribution.21We implemented its R codewith thedefault

parameter setting in our simulations.
Software
Several bioinformatics tools, together with the newly proposed

statistical approaches, are integrated into an open-source software

called DrGaP (Figure 1). Other auxiliary bioinformatics tools were

also developed including (1) estimating depth of coverage of CDS

in paired samples from sequence alignment files (i.e., BAM), (2)

determining the sum aggregate of CDS from multiple isoforms,

(3) analyzing sequences in CDS, and (4) mutation tabulation.
Results

Simulation Studies

We first evaluated type I error and parameter estimation

under the null hypothesis ðajk ¼ 0Þ. Estimators of a and h
The American Journal of Human Gen
are unbiased under the null hypothe-

sis. p values from statistical tests

that either consider a single type

of mutation (i.e., LRT-S) or jointly

consider multiple type of mutation

without correcting LRT statistics

(i.e., LRT-M) are not uniformly

distributed [0, 1]. The LRT-M test is

also conservative. We thus proposed

to estimate the mixture proportion

of chi-square distribution, ε. The

corrected LRT (i.e., LRT-C) has uni-

formly distributed p values and

approximately correct type I error

under the null hypothesis (Figure 2).

When at least one of the mutation

types has an increased rate of occur-

rence in tumor samples (i.e., under

the alternative hypothesis), estima-
tors of a and h are also unbiased (Figure S6). As expected,

the statistical power for detecting mutations increases

when the mutations rate a increases. LRT-C performs

consistently better than the other two likelihood ratio sta-

tistics, LRT-S and LRT-M, in all of scenarios. The increased

power of LRT-C over LRT-M becomes more apparent when

there are multiple types of driver mutations that occur in

tumor samples (Figure 3). The performance of LRT-S is

improved when multiple types of driver mutations occur

in tumor samples. This is because as increased types of

mutations occur, the bias in estimating mutation rates is

reduced when treating all mutations as a single type in

LRT-S. We observed that lower background mutation often

leads to a larger estimate of ε and thus has a higher impact

on likelihood ratio statistics (Figure 4). Under these circum-

stances, statistical tests correcting the mixture proportion

of chi-square distribution (i.e., LRT-C) show a greater

advantage over those without correction (e.g., LRT-M).

We will present results only from LRT-C for our methods

below.
etics 93, 439–451, September 5, 2013 443
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Figure 3. Statistical Power of Three Statistics in DrGaP
(A) Only one type of driver mutation occurred in tumors.
(B) Five of 11 types of driver mutations occurred in tumors.
(C) All 11 types of driver mutations occurred in tumors.
For comparison, the total driver mutation rates are equal among
the three scenarios; the mutation rates of individual types are
also equal in the latter two scenarios.

Figure 4. Impact of Background Mutation Rate on Likelihood
Ratio Statistics
Lower background mutation (h) often leads to a larger estimate of
the mixture proportion of chi-square distribution (ε).
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We then compared our DrGaP approach with several

previous methods that use either Bernoulli,24 Bino-

mial,17,18,22,23 Poisson,19 or Poisson-Gamma21 related

statistical models to detect driver mutations. TRAB is a

Bayesian approach and computes a posteriori probability

of a driver mutation, whereas the other methods give a

p value, i.e., a probability that none of driver mutations

is true. We therefore used receiver operating characteristic

(ROC) curves to evaluate the sensitivity and specificity of

these statistical methods for detecting driver mutations.

First, we evaluated their performance under various

numbers of driver mutation types occurring in tumor

samples (Figure 5). Our method generally has higher sensi-

tivity and specificity than the other methods in different

scenarios. It shows a greater advantage over the other

methods when multiple types of driver mutations occur

in tumors. The performance of Bernoulli, Binomial-S,

and TRAB methods is comparable, whereas the perfor-

mance of Binomial-M depends on the number of mutation

types and often works better when fewer types of driver

mutation occur in tumors. Second, we evaluated their

performance in data simulated from TCGA cancer

sequencing studies (LUAD, LUSC, CRC, and HGS-OvCa)

that show a wide spectrum of somatic mutations in

tumors (Figure S7). Similarly, DrGaP consistently outper-

forms the other methods in four different TCGA data

sets. It works relatively better in LUAD and LUSC than in

nonhypermutated CRC and HGS-OvCa data sets. Tumors

in LUAD and LUSC often have higher frequencies of

somatic mutations and a large variability in background

mutation rates.

Althoughmultiplemethods exist to detect a single driver

gene, few methods to detect a whole driver pathway are

available. Our method is flexible and is also applicable
er 5, 2013
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Figure 5. ROC Plots of Sensitivity and Specificity of Six Statisti-
cal Methods under Different Tumor Mutation Patterns
(A) Only one type of driver mutation occurred in tumors.
(B) Five of 11 types of driver mutations occurred in tumors.
(C) All 11 types of driver mutations occurred in tumors.

The American
for identifying driver pathways and gene sets. We therefore

compared our method with PathScan for identifying driver

pathways. PathScan is a tool for testing whether a pathway

is significantly mutated in tumors. It is based on a Ber-

noulli distribution and its statistic is the number of genes

that are mutated in the pathway.37 Simulation studies

shows that DrGaP also has increased power over PathScan.

The advantage of DrGaP over PathScan is more evident

when fewer driver genes are mutated in the pathway

(Figure S8).

Comparison of the Results from the Study of Ding

et al.17

We applied our DrGaP methods to several cancer

sequencing studies (Table S4). As before, in each study,

somatic mutations are classified into silent, missense,

nonsense, splicing mutations, in-frame, and out-of-frame

indels. Each type of mutation, except indels, is further

classified into nine nucleotide types based on the base of

interest and its flanking bases and location of CpG islands

(Table S1). These mutation data were then input into our

DrGaP analysis pipeline (Figure 1) for identifying driver

genes and pathways.

Ding et al.17 sequenced coding exons and splice donor/

acceptor sites (dinucleotides in the 50/30 ends of introns)

of 623 genes in 188 LUAD samples and identified 1,013

nonsilent mutations. They also selected a subset of 250

genes to identify 108 silent mutations for measuring a

background mutation rate. Ding et al.17 identified 22

driver genes with 5% FDR. Recently, Youn and Simon

also applied their approach to the same data set and

identified 28 genes with 5% FDR.24 A total of 20 genes

overlapped between Ding’s and Youn’s methods, and

together they identified 30mutated driver genes. However,

our DrGaP method identified 59 driver genes at 5% FDR

and identified 29 out of the 30 total genes by Ding and/

or Youn’s methods17,24 (Figure 6). The single gene that

was missed by our method reached marginal significance

(FDR ¼ 6%) and was the least significant in the combined

Ding and Youn list (Table S5).

In addition to its high reproducibility, DrGaP identified

an additional 30 driver genes: INSRR (MIM 147671),

DOCK3 (MIM 603123), PAK4 (MIM 605451), PIK3C3

(MIM 602609), FLT4 (MIM 136352), PAK7 (MIM

608038), LMTK2 (MIM 610989), TEC (MIM 600583),

PRKCG (MIM 176980), CDC42BPA (MIM 603412),

SLC38A3 (MIM 604437), JAK2 (MIM 147796), BAP1,

PIK3CG (MIM 601232), ROR2 (MIM 602337), MSH6

(MIM 600678), ERAS (MIM 300437), ROBO1 (MIM

602430), MKNK2 (MIM 605069), CDK17 (MIM 603440),

ACVR1B (MIM 601300), LMTK3, MKNK1 (MIM 606724),

RET (MIM 164761), SMAD4 (MIM 600993), IRAK2 (MIM

603304), GNAS (MIM 139320), TP63 (MIM 603273), FOS

(MIM 164810), and GATA1 (MIM 305371). Most have

been suggested to play important roles in tumorigenesis

in a broad range of published studies. For example, genetic

variation in TP63 was recently found to contribute to the
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Map of Selected Genes vs. Tumor Samples

sample

G
en

e

KRAS
TP53
STK11
EGFR
NF1
CDKN2A
APC
ATM
PTPRD
RB1
EPHA3
LRP1B
FGFR4
ERBB4
KDR
NTRK3
NTRK1
EPHA7
PTEN
ZMYND10
LTK
MYO3B
PDGFRA
DOCK3
INSRR
PIK3C3
FLT4
INHBA
PAK7
LMTK2
PAK4
PRKCG
CDC42BPA
NRAS
EPHA5
TEC
ROR2
JAK2
PAK3
CDH11
PIK3CG
SLC38A3
MSH6
BAP1
GNAS
ROBO1
ACVR1B
IRAK2
NTRK2
ERAS
MKNK2
LMTK3
CDK17
SMAD4
RET
TP63
FOS
MKNK1
EPHB6
TFDP1

Figure 6. Driver Mutated Genes in the
Study Ding et al.17

Tumor samples with or without mutations
in genes are labeled green or red, respec-
tively. The red/blue/yellow banner across
the left side of the map shows the differ-
ence between genes selected by DrGaP
and those selected by the other methods
(Ding et al.17 and Youn and Simon24).
The genes covered by the red bar are iden-
tified by the Ding/Youn methods but are
missed by DrGaP and those covered by
the yellow bar are the additional genes
found by DrGaP. The genes covered by
the blue bar are those which both DrGaP
and Ding/Youn’s methods find significant.
susceptibility of lung adenocarcinoma in two large lung

cancer genome-wide association studies.38,39 RET (also

called ret proto-oncogene) is a receptor tyrosine kinase

that is one of the cell surface molecules that transduce

signals for cell growth and differentiation. Germline

gain-of-function mutations are known to predispose to

multiple endocrine neoplasia type 2 (MEN2), characterized

bymedullary thyroid cancer, pheochromocytoma, and hy-

perparathyroidism.40 More recently, a novel fusion gene

between KIF5B (MIM 602809) and RET, as generated by a

pericentric inversion in chromosome 10, was identified

in lung adenocarcinomas.41–44 Jak2 is a protein tyrosine

kinase involved in a specific subset of cytokine receptor

signaling pathways and has been implicated in a variety

of cancers including lung and ovary.45,46 We believe our

method provides higher accuracy and sensitivity than

other methods for detecting driver mutated genes.

DrGaP is applicable not only to identify driver genes but

also to identify driver pathway or any gene sets. To illus-

trate its utility, we applied DrGaP to the data of Ding

et al.17 to find significantly mutated KEGG pathways

(Table S6). In their original pathway analysis, Ding and

her colleagues used two statistical methods. One is a bino-

mial test that examines whether nonsilent mutation rates

are higher than background mutation rates in a pathway;

the other is a Fisher’s exact test that examines whether
446 The American Journal of Human Genetics 93, 439–451, September 5, 2013
the number of gene mutations occur-

ring in a pathway is proportionally

higher than in the rest of the genome.

Recently, Wendl et al.37 also applied

their PathScan to the same data

set to resolve the inconsistencies

between binomial and Fisher’s tests

from the study of Ding et al.17 DrGaP

yielded largely consistent results with

PathScan, but the p values from

DrGaP tend to be smaller than those

from PathScan. However, there are a

few exceptions including Jak-STAT

and TGF-b signaling pathways.

Fisher’s tests gave FDR values of
0.0006 and 0.03 for these two pathways whereas binomial

tests did not reach significance. PathScan concluded

that none of these pathways are significant. DrGaP found

these inconclusive pathways to actually be significant.

Indeed, mutations in the JAKs are often found in

myeloproliferative disorders (MPDs) and leukemia, and

the constitutive phosphorylation of STATs is a common

occurrence in many hematological and solid tumors.47

Alterations in TGF-b signaling are linked to a variety of

human diseases, including cancer and inflammation.

Disruption of TGF-b homeostasis occurs in several human

cancers.48

Lung Adenocarcinoma and Squamous Cell Cancers

We also applied DrGaP to the analysis of whole-exome

sequencing data of 119 LUAD and 127 LUSC tumor sam-

ples from TCGA. We found that 7,755 and 11,125 genes

were mutated in CDS in LUAD and LUSC, respectively.

Each individual tumor carried a median of 105 and 181

nonsilent mutations in LUAD and LUSC, respectively

(Figure S1). Such large numbers of mutations per tumor

are also observed in other tobacco-exposure related

tumors (e.g., larynx, oral cavity, esophagus, and bladder

cancers).49–51 Thus, it is critically important to apply statis-

tical approaches to narrow down amuch smaller and more

relevant list for subsequent functional validation.
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Figure 7. Numbers of DriverMutated Genes per Tumor in TCGA
Data Sets
LUAD, LUSC, nonhypermutated CRC, and HGS-OvCa.
Genes with <5% FDR from DrGaP are presented in the above
studies.
Our method identified 110 driver mutated genes in

LUAD tumor samples at 5% FDR, accounting for approxi-

mately 0.5% of genes in the genome. Each individual

LUAD tumor carries a median of 6 driver mutations. In

LUSC tumor samples, a total of 260 driver genes were iden-

tified with amedian of 16 driver genes per tumor (Figure 7).

A total of 36 genes are commonly mutated in both LUAD

and LUSC tumors, including CDH10 (MIM 604555),

CSMD3 (MIM 608399), GRM1 (MIM 604473), KEAP1

(MIM 606016), LRP1B (MIM 608766), NAV3 (MIM

611629), NF1 (MIM 613113), and TP53 (MIM 191170),

to name a few (Tables S7 and S8). In addition, we identified

multiple driver pathways significantly mutated in LUAD,

including focal adhesion, MAPK, tight junction, apoptosis,

and cell cycle pathways (Table S9). In LUSC, multiple

cellular pathways including TGF-b, Hedgehog, mTOR,

Jak-STAT, and Wnt signaling pathways were significantly

mutated in tumors (Table S10). Interestingly, chromatin re-

modeling and histone methylation pathways were signifi-

cantly mutated in both LUAD and LUSC tumors.

Colorectal Cancer

We further applied DrGaP to the driver gene analysis of

two additional TCGA data sets (CRC and HGS-OvCa)

with low prevalence of somatic mutations. In CRC, we

analyzed 194 nonhypermutated tumor samples with a

median of 58 nonsilent mutations per tumor.35 DrGaP

identified a total of 44 driver genes with 0.05 FDR (Table

S11). Each nonhypermutated CRC tumor carries a median

of 4 driver mutations (Figure 7). TCGA reported 17 signif-

icantly mutated genes defined by FDR less than 10%

and/or manual curation,35 15 of which were also identified

by DrGaP. Two genes missed by DrGaP are MLK4 (MIM

614793) and EDNRB (MIM 131244). The q value of EDNRB

exceeds 5% in the TCGA study; there are 6 missense and 3

silent mutations detected in EDNRB in nonhypermutated

CRC tumors. DrGaP found an additional 29 driver genes,

of which SMAD2 (MIM 601366), LRP1B (MIM 608766),

BRAF (MIM 164757), TNFRSF10C (MIM 603613), ARID1A
The American
(MIM 603024), LIFR (MIM 151443), ERBB4 (MIM

600543), SLITRK1 (MIM 609678), ATM (MIM 607585),

TGIF1 (MIM 602630), and CASP14 (MIM 605848) are

particularly interesting candidates. For example, LIFR is a

key tumor suppressor andmediates the action of the leuke-

mia inhibitory factor. Its activation has been reported in

the CRC and many other cancers.52,53
Ovarian Carcinoma

In HGS-OvCa, we analyzed 316 tumor samples with a

median of 40 nonsilent mutations per tumor.34 We identi-

fied a total of 29 driver genes with 0.05 FDR and a median

of 1 driver mutations per tumor (Table S12). TCGA re-

ported 9 significantly mutated genes, 7 of which were

also identified by DrGaP. Two genes that were not detected

by DrGaP are FAT3 (MIM 612483) and GABRA6 (MIM

137143). Although these two genes were claimed to be

significantly mutated genes, their likelihood ratio FDR

and convolution FDR were reported 0.09 and 0.02 for

FAT3 and 0.09 and 0.12 for GABRA6 in the TCGA study.

Our DrGaP yielded FDR of 0.09 for FAT3 and 0.11 for

GABRA6. In addition, DrGaP identified an additional 22

driver genes in HGS-OvCa, of which HIST1H1C (MIM

142710), CREBBP (MIM 600140), RB1CC1 (MIM 606837),

BAI3 (MIM 602684), DUSP19 (MIM 611437), GNAS

(MIM 139320), CDC27 (MIM 116946), and EFEMP1

(MIM 601548) are particularly interesting candidates. For

example, RB1 (MIM 614041) signaling is the most signifi-

cant pathways altered in HGS-OvCa. RB1CC1 is RB1-induc-

ible coiled-coil 1, which enhances the RB1 pathway

through transcriptional activation of RB1, CDKN1A (MIM

116899), and CDKN2A (MIM 600160).54
Discussion

A major challenge facing the field of cancer genome

sequencing is to identify cancer-associated genes with

mutations that drive the cancer phenotype. In this paper,

we described a powerful and flexible statistical framework

for identifying driver genes and pathways in cancer

genome-sequencing data. Our methods provide several

novel features that were either naively obtained or were

unattainable by previous methodologies.

First, biological knowledge of the mutational process

in tumors is fully integrated into our statistical models

(Table 1). Second, multiple types of mutations are consid-

ered to reduce the risk of bias in estimating mutation rates

in our statistical methods (Table S1 and Figure S2). This in-

creases statistical power compared with a single-type muta-

tion test in which all types of mutations are summed into

one. Third, we incorporate themixture proportion ε of chi-

square distribution in our LRT statistics. We observed that

some tumor samples have a very low backgroundmutation

rate h (Figure S3), leading to one-side LRT statistic as zero

to be overrepresented in the standard mixture chi-square

distribution under null hypothesis. Thus, the appropriate
Journal of Human Genetics 93, 439–451, September 5, 2013 447



mixture chi-square distribution of the LRT statistics is

ð1=2þ εÞc2
0 þ ð1=2� εÞc2

1;0 < ε < 1=2 under H0. Our simu-

lation shows that considering parameter ε in the LRT statis-

tic (i.e., LRT-C) corrects type I error and increases statistical

power. Interestingly, the parameter ε was estimated up to

0.4 in lung cancer sequencing studies, suggesting the large

impact of parameter ε on likelihood ratio statistics. We

expect that our method will be of greater advantage for

analyzing tumors with low prevalence of somatic muta-

tions, such as in cancers of the hematological system.

Fourth, more appropriate and informative Bayesian prior

of background mutation rates, hij, was used in our statisti-

cal methods (Figure S4). After analyzing large-scale TCGA

data, we found that a prior beta distribution of background

mutation rates fits the real data better than uniform distri-

bution commonly used in previous studies.17,18,22–24 Fifth,

sequence coverage at CDS varies across studies, individual

tumors, and genes in NGS experiments (Figure S5). In our

methods, CDS sizes are adjusted for sequence coverage in

order to increase sensitivity of identifying driver muta-

tions. Finally, although multiple methods exist to detect

a single driver gene, few methods exist to detect a whole

driver pathway. Our methods can do both, because they

are implemented in the same statistical framework.

Because of the innovative features described above, we

believe our proposed methodology increases power and

sensitivity for identifying driver genes and driver path-

ways, compared to current methods. It should be also

noted that cancers with copy-number alterations may

cause allelic imbalance and thus potentially affect infer-

ence of somatic mutations. However, identification of

driver mutations in our methods is focused on observed

(or already detected) somatic mutations and its estimation

of mutation rate per se won’t be affected by copy-number

alterations.

All cancers are as a result of somatically acquired changes

in the DNA of cancer cells. However, how many driver

mutations does it take to make a tumor? Not all detected

somatic abnormalities present in a cancer genome are

required for the development of the cancer. Indeed, most

of them have made no contribution at all.1 On the basis

of age-incidence statistics, it has been suggested that com-

mon adult epithelial cancers such as breast, colorectal,

lung, and prostate require 5–7 rate-limiting events,

possibly equating to drivers, whereas cancers of the hema-

tological system may require fewer.55 We applied our tool

DrGaP to the analysis of four TCGA data sets: LUAD,

LUSC, nonhypermutated CRC, and HGS-OvCa. DrGaP

not only recaptured a large majority of driver genes previ-

ously reported by TCGA studies,33–35 but it also identified a

much longer list of additional candidate genes whose

mutations potentially drive cancer phenotypes. Most of

them have been suggested to play important roles in

neoplasm initiation and progression. Numbers of somati-

cally mutated driver genes vary among individual tumors

and cancer types. We observed a median of 6 driver muta-

tions in LUAD, 16 in LUSC, 4 in nonhypermutated CRC,
448 The American Journal of Human Genetics 93, 439–451, Septemb
and 1 in HGS-OvCa (Figure 7). Interestingly, different

tumors usually carry different sets of driver mutations.

These data demonstrated the extreme complexity and het-

erogeneity of tumor cells and have important implications

in targeted cancer therapy.

Large number of driver mutations involved in lung

tumors, especially in LUSC, may be also attributed to

potent carcinogen from life-long tobacco exposure.

Tobacco exposure causes a large number of somatic muta-

tions on the genome. This increases the chance that muta-

tions conferring small cell growth advantage (i.e., small

effect) are selected in lung microenvironment. Many

mutations with small effects can be accumulated in a

specific group of cells over time and collectively lead to

tumor initiation and progression in lung. In tumors such

as HGS-OvCa with a low prevalence of somatic mutations,

fewer driver mutations (but with large effects) are expected

in each individual tumor.

In the past few decades, a number of agents have

been developed to target pathways that are deregulated

in cancer. However, even when there is a well-known

target and a highly specific drug, increased survival

is generally very limited.56 For example, Gefitinib, an

EGFR-tyrosine-kinase inhibitor, is a standard first-line

treatment for patients with advanced non-small-cell

lung cancer whose tumors have activating EGFR (MIM

131550) mutations. Although Gefitinib is one of the

most specific drugs targeting EGFR-activating mutations,

it prolongs life by only a median of 5-month progres-

sion-free survival compared with platinum-based doublet

chemotherapy.57,58 One of the reasons why current target

therapy does not work is that multiple driver mutations

shape the tumorigenic process. Combination therapy

targeting multiple driver mutations and pathways simul-

taneously has the potential to dramatically increase

survival.

In summary, we have developed a powerful and flexible

statistical framework for identifying driver genes and path-

ways in cancer genome-sequencing studies. Our statistical

approaches and several auxiliary bioinformatics tools have

been incorporated into a computational tool, DrGaP, for

cancer genomics research. This newly developed tool is

immediately applicable to cancer sequencing studies. We

believe that DrGaP provides significantly improved accu-

racy and sensitivity and can be used to identify a more

complete array of driver genes and pathways altered in

cancers.
Appendix A

The LRT statistics in Equation 8 follow a mixture of

ð0:5þ εÞc2
0 and ð0:5� εÞc2

1 where ε is a positive factor,

0%ε%0:5. This correction is necessary because some

tumors have too low background mutation rate h to

observe any occurrences of a certain type of mutations in

samples. The parameter ε increases as the h decreases.
er 5, 2013



To prove this fact, we start with a simple example that

considers only one single gene with one single mutation

type. Let M and N be the length of CDS that can give

rise to silent and nonsilent mutations. Suppose there

are I tumor samples with background mutation rates

hi; i ¼ 1;.; I. Denote h ¼PI
i¼1hi. We can calculate the

probability that there are no mutations occurring across

all tumor samples under the null hypothesis (i.e., no driver

mutations):

Prðm ¼ 0; n ¼ 0 j hÞ ¼ Poissonð0; hNÞPoissonð0; hMÞ
¼ exp f�hðM þNÞg:

This probability reaches nearly 1 when h become

very small. The probability of zero LRT statistics will

be larger than 0.5, because we can observe only posi-

tive discrete number of mutations f1;2; 3;.g, and no

mutations f0g across all samples that result in zero LRT

statistics.

In the above example, ε can be estimated by

ε̂ ¼ Prðm ¼ 0; n ¼ 0jhÞ=2. However, in reality we should

consider all different mutation types across all different

genes for estimating. Therefore, we propose a simulation

method to estimate ε. In brief, we randomly generate

somatic mutation data under the null hypothesis.

That is, we set all of the driver mutation rates

ajk ¼ 0; j ¼ 1;.; J; k ¼ 1;.;K. We simulate the occurrence

of somatic mutations by the Poisson process with ĥij,

which is estimated by Equation 5. Then, we calculate the

LRT statistics LRTjk for each gene k ðk ¼ 1;.;KÞ and each

mutation type ðj ¼ 1;.; JÞ. The parameter ε can be

estimated by ε̂ ¼ 0:5�#fðj; kÞ : LRTjk > 0g=JK. Note that

the positive LRTjk � c2
1, we can also estimate ε by the

mean of LRTjk: ε̂ ¼ 0:5�Pj

P
kLRTjk=JK.
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