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INTRODUCTION
Obstructive sleep apnea (OSA) is characterized by intermittent hypoxemia, recurrent
arousals, and intra-thoracic pressure swings, all of which can contribute to sympathetic
activation and/or cardiovascular risk. The intermittent hypoxemia can lead to inflammation
and oxidative stress, while pressure swings can place shear stress on the myocardium and
intrathoracic vessel walls.1 Taken together, these pathways can result in endothelial
dysfunction, a recognized early marker of cardiovascular disease.2

At the macrovascular level, cross-sectional studies have reported impaired brachial artery
flow-mediated dilation (FMD), increased carotid intima-media thickness, and arterial
stiffness quantified by the augmentation index (AIx) in OSA subjects compared with
controls.3-8 This association is strengthened by reports of a dose-response relationship
between these outcomes and OSA severity and duration.3,8,10 Microvascular reactivity has
been less studied in OSA; an association between OSA and reduced capillary density has
been demonstrated,11 and two small studies have reported differences between OSA subjects
and controls in microcirculatory flow following administration of the endothelium-
dependent vasodilator acetylcholine (ACh) delivered either non-invasively12 or via intra-
arterial infusion.13 Two studies conducted in our laboratories, however, have not replicated
these findings in the microvasculature.4,14

In addition to this observational evidence, a number of randomized controlled trials have
found improvements in FMD and the AIx with continuous positive airway pressure
(CPAP),15-18 while CPAP-withdrawal studies have demonstrated a deterioration.15,19,20

Again, the effects of CPAP on endothelium-dependent microvascular reactivity have not
been widely studied. Only one study has reported a significant improvement with CPAP in
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microvascular reactivity measured non-invasively;12 this trial was of a short duration (two
months) and the average BMI was <30kg/m2. The association between OSA and endothelial
dysfunction is complicated by the presence of obesity as a potential confounder;1 thus, the
independent contributions of OSA and obesity on vascular functioning – at the cellular,
microvascular, and macrovascular levels – are as yet unclear. In an attempt to elucidate the
mechanisms by which obesity and OSA may contribute to endothelial dysfunction, we
sought to follow-up a sample of obese subjects who, since completing our aforementioned
cross-sectional study,14 have undergone either bariatric surgery resulting in substantial
weight-loss, or begun CPAP treatment to eliminate obstructive respiratory events. We
hypothesized improved vascular function with both therapeutic approaches, consistent with
a reversible OSA effect on the circulation. Such pilot data would be critical to the design of
subsequent randomized comparative effectiveness trials.

METHODS & PROCEDURES
Subjects

Subjects in the current study represent a sub-sample of n=27 from our original cross-
sectional study,14 which consisted of 72 non-smoking, obese subjects (body mass index ≥30
kg/m2) aged 18-70 years who were free from any cardiovascular, endocrine or sleep co-
morbidities other than OSA. OSA subjects who were scheduled to undergo either bariatric
surgery or CPAP treatment were approached for potential inclusion immediately after
completing the aforementioned cross-sectional study. The study was approved by the
Brigham & Women’s Hospital institutional review board, and all subjects gave written
informed consent. Data collection began in 2005, pre-dating the requirement for listing on
the clinicaltrials.gov website.

Protocol
Subjects underwent attended polysomnography (PSG) in a research setting as described
below. All vascular tests occurred the following day in the fasting state between 8:00 and
11:00 in temperature-controlled rooms (24-26°C). Subjects who chose to undergo CPAP
treatment via our local clinical sleep laboratory were managed in the clinical rather than
research setting. As such, the type of CPAP device and mask varied across subjects, but a
fixed therapeutic pressure was always applied (that is, no auto-adjusting or flexible pressure
delivery was used). Subjects who chose to undergo bariatric surgery (either gastric banding
or gastric bypass) underwent the procedure at Brigham & Women’s Hospital. All subjects
were CPAP-naive at baseline, and those undergoing surgery did not receive CPAP during
the course of the study. Six months after intervention, subjects returned for a follow-up PSG,
as well as repeat vascular testing under the same conditions as baseline. The CPAP group
used therapy during the follow-up PSG.

Diagnostic & follow-up polysomnographic studies
PSG consisted of electroencephalogram (C4-A1, C3-A2, O2-A1, O1-A2), bilateral electro-
oculogram, bilateral chin and tibial electromyogram, electrocardiogram, airflow using
thermistor and nasal pressure sensors, abdominal and thoracic respiratory excursion
measured by piezo bands, pulse oximetry, and body position. PSGs were scored by
experienced sleep technicians blinded to treatment allocation according to the Chicago
scoring criteria.21 OSA was diagnosed as an apnea-hypopnea index (AHI) of at least 10
events/hour. Follow-up PSGs were conducted with nasal pressure measured at the CPAP
mask using a pneumotachometer, where applicable.
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Assessment of macrovascular reactivity
Images of the brachial artery in the left arm were obtained using a high-resolution
ultrasound with a 10.0-MHz linear array transducer and an HDI Ultramark 9 system
(Advanced Technology Laboratories, Signal Hill, CA) as previously described.14,22 Surface
electrocardiogram was measured simultaneously, and each image was captured at the peak
of the R-wave. Four images were obtained during rest in the supine position, before a blood
pressure cuff was inflated to supra-systolic pressure to occlude brachial artery blood flow for
five minutes. A further four images were obtained following cuff release (endothelium-
dependent FMD). Separated by at least thirty minutes, another set of four images were
obtained during rest, followed by sublingual administration of 400μg nitroglycerin and a
further four images (endothelium-independent nitroglycerin-induced dilation, NID). The
media-to-media brachial artery diameter was measured by two independent investigators,
blinded to both treatment allocation (CPAP or surgery) and condition (before/after cuff
release or nitroglycerin). The average percentage change for each condition was then
calculated.

Assessment of microvascular reactivity
Following at least 15 minutes rest after completion of the macrovascular testing, skin blood
flow was measured on the ventral surface of the right forearm using LASER Doppler
flowmetry (Lisca PIM 2.0, Lisca Development AB, Linkoping, Sweden) as previously
described,14,23 after ten minutes of seated rest. Measurements were obtained before and after
iontophoresis of ACh, and before and after iontophoresis of sodium nitroprusside (SNP)
(endothelium-dependent and –independent microvascular reactivity, respectively) using a
MICI iontophoresis system (Moor Instruments, Millwey, Devon UK). The percentage
change with each drug was calculated.

Assessment of blood pressure and arterial stiffness
Peripheral blood pressure was measured at the brachial artery using an automatic
sphygmomanometer.24 Ten-second pulse wave readings were obtained at the radial artery
using a SphygmoCor applanation tonometry device (AtCor Medical, NSW Australia). The
average radial pulse waveform was converted to an estimate of the central pulse waveform
by the SphygmoCor software, which was then used to calculate central systolic and diastolic
blood pressure (SBP, DBP), and the AIx corrected to a heart rate of 75 beats per minute.
Two measurements meeting manufacturer-defined quality control values were averaged.
This technique has demonstrated satisfactory inter- and intra-operator reproducibility in
previous studies.25,26

Statistical analysis
All analyses were performed using SPSS (Version 20, IBM, NY USA). Statistical analyses
were undertaken using non-parametric tests due to the small sample size in each group, and
data are presented as the median with 25th and 75th percentile. Within-group comparisons
were made using Wilcoxon Matched-Pairs tests. Univariate linear regression models were
used to investigate predictors of vascular reactivity measurements. Standardized residuals of
the regression models were assessed, in order to ensure that the assumptions for linear
regression were met. All statistical analyses were considered statistically significant when
p≤0.05 (2-sided).

RESULTS
Of the 72 subjects in the original cohort, 27 were scheduled to undergo either CPAP
treatment (n=15) or bariatric surgery (n=12) based on clinical indications independent from
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this study. Descriptive characteristics of the study sample at baseline and post-intervention
are summarized in Table 1. Both groups showed significant improvements in the AHI, SpO2
nadir, arousal index, and sleep efficiency, while the surgery group also exhibited significant
reductions in both BMI and neck circumference. Objective CPAP adherence data were
available for seven of the 15 subjects (median 7.1 hours/night, interquartile range [6.5, 7.6]).
Comparing subjects for whom CPAP adherence data were available vs. absent, there were
no significant differences in baseline BMI, neck circumference, AHI, oxygen saturation
(SpO2) nadir, % of total sleep time with SpO2<90%, or arousal index (all p>0.05). The
median therapeutic CPAP level was 11cmH2O, interquartile range [8, 12].

Microvascular reactivity and pulse wave analysis measurements were obtained for all
subjects. Two subjects in the CPAP group did not tolerate the cuff inflation during FMD
measurements, and high quality brachial artery ultrasound images were not obtained in a
further two subjects in each group. The surgery group showed a significant reduction in both
central and peripheral DBP despite being normotensive at baseline; there were no significant
BP changes in the CPAP group. The percent change in skin blood flow following ACh
(endothelium-dependent microvascular reactivity) improved with CPAP but not with
surgery. There were no significant changes in skin blood flow following SNP (endothelium-
independent microvascular reactivity), FMD (endothelium-dependent macrovascular
reactivity), or NID (endothelium-independent macrovascular reactivity).

In separate univariate linear regression models with all subjects combined, the change in
skin blood flow with ACh between baseline and post-intervention was predicted by the Δ
SaO2 nadir (β=1.6, SE=0.8, p=0.047), but not the Δ AHI. Multivariate analysis was not
conducted due to the small sample size.

DISCUSSION
The major finding of this pilot study is that obese OSA subjects undergoing CPAP treatment
demonstrate a significant improvement in endothelium-dependent microvascular reactivity
despite experiencing no weight loss, an effect which was not observed in OSA subjects
undergoing weight-loss surgery. Although both the CPAP and surgery group experienced
statistically significant reductions in OSA severity, the change in AHI in the CPAP group
was far greater than the surgery group (decreases in AHI of 31.2 and 7.6 events/hour
respectively), which we believe is likely the reason for the greater improvement in
microvascular reactivity with CPAP. As expected, there were no significant differences in
endothelium-independent microvascular reactivity, demonstrating that the impairment in
vasodilation in OSA and the subsequent improvement with CPAP is due to endothelial
rather than vascular smooth muscle dysfunction. The fact that we did not observe any
concurrent changes in macrovascular reactivity suggests that these improvements may take a
longer duration of therapy to occur; although our analyses of macrovascular reactivity may
be under-powered due to the pilot nature of the study.

As mentioned, the evidence of microvascular improvements with CPAP is limited and our
methodology differs from previous studies. We have reported a 45.6% response to ACh at
baseline and a 69.1% response post-CPAP; the latter is similar to the response in an obese
control group of a prior study (70.7%).14 The predictive value of Δ SaO2 nadir in
determining endothelium-dependent microvascular reactivity is consistent with previous
publications, which have reported that the degree of vascular impairment in OSA is
proportional to the degree of oxygen desaturation during sleep.27-29 Although improvements
in microvascular reactivity with weight loss in presumably non-OSA subjects have been
demonstrated using invasive methodology,30 few previous studies using non-invasive
administration of ACh are available for comparison. Our results are consistent with those

Bakker et al. Page 4

Intern Med J. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



reported by Hamdy et al., who found no significant improvement in microvascular reactivity
resulting from a 6-month weight-loss program.31

To our knowledge, this study is the first to attempt to separate the influences of obesity and
sleep-disordered breathing on vascular functioning by quantifying the effects of CPAP
treatment and bariatric surgery. It is also the longest study of CPAP investigating non-
invasive microvascular reactivity published to date that we are aware of. We do, however,
acknowledge a number of important limitations, most notably the small sample size which
did not allow us to investigate further predictors of the microvascular response (such as
age14), as well as our non-randomized design. By choosing to study subjects who
volunteered to undergo treatment in a clinical setting our aim was to investigate real-world
clinical effectiveness of each therapy; however, this approach did not allow us to make
treatment comparisons as would be possible in a randomized trial. This approach also meant
that the two treatment groups were not balanced at baselinef in aspects such as gender, age,
BMI and AHI; the groups resemble usual CPAP and weight-loss clinic populations and as
mentioned, our aim was not to make direct comparisons between treatments. Having
subjects undergo treatment clinically resulted in a large amount of missing CPAP adherence
data, and thus we were unable to investigate the ‘dose’ of treatment applied over the follow-
up period. The average CPAP adherence level in the subjects with available data was high,
and there is no reason to believe that the missing data for the remaining subjects was
selective. Although subjective reporting of CPAP adherence is notoriously unreliable, we
have observed reasonably high subjective adherence levels amongst the highly motivated
subjects in our research studies. We are therefore fairly confident that non-adherence did not
have a major effect on our results. We also acknowledge that because treatment assignment
was not random, selection bias may have contributed to unexplained variance between our
two intervention groups (for example, more severe OSA in the CPAP group compared with
the surgery group at baseline). Despite these limitations, we believe our findings are a useful
addition to the literature and will be critical to the design and power calculation/s of
comparative effectiveness trials in the future.

In summary, we have demonstrated that six months of CPAP is sufficient to improve
endothelium-dependent microvascular reactivity. Further research should be directed
towards randomized trials using these novel surrogate outcomes, as well as hard
cardiovascular outcomes.
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Table 1

Subject characteristics at baseline and six months following CPAP or surgery.

CPAP GROUP (n=15) SURGERY GROUP (n=12)

Baseline Post-CPAP Baseline Post-surgery

Male gender (number) 11 (73%) 2 (17%)

Age (years) 48 (range 26-60) 43 (37, 49)

BMI (kg/m2) 33.8 (31.3, 37.9) 34.1 (31.7, 39.1) 43.7 (42.0, 51.4) 32.7 (30.1, 38.7) **

Neck circumference (cm) 44.0 (41.9, 46.0) 43.1 (41.5, 45.0) 41.1 (39.6, 47.97) 37.8 (35.1, 41.1) **

AHI (events/hour) 36.5 (24.7, 77.3) 5.3 (1.6, 10.9) ** 18.1 (16.3, 67.5) 10.5 (5.0, 20.8) **

SaO2 nadir (%) 73.0 (53.0, 81.0) 84.0 (81.0, 89.0) ** 78.0 (72.8, 82.8) 79.0 (74.0, 88.0) **

Arousal index (events/hour) 37.2 (19.4, 72.6) 16.2 (11.1, 28.6) ** 36.5 (27.2, 54.5) 29.5 (18.6, 35.7) **

Sleep efficiency (%) 84.1 (78.1, 92.8) 85.4 (81.5, 90.3) 86.7 (77.9, 91.9) 92.7 (89.1, 95.3)*

Glycated hemoglobin (%) 5.7 (5.4, 6.3) 5.7 (5.4, 6.0)

Total cholesterol (mg/dL) 164 (149, 202) 181 (167, 230)

Low-density lipoprotein (mg/dL) 103 (86, 128) 116 (105, 148)

High-density lipoprotein (mg/dL) 44 (36, 50) 43 (34, 55)

Triglycerides (mg/dL) 107 (83, 132) 117 (77, 166)

Plasma glucose (mg/dL) 93 (82, 103) 95.5 (88.3, 99.0)

Follow-up duration (days) 161 (141, 217) 204 (174, 245)

Data are presented as median (lower quartile, upper quartile) unless indicated otherwise.

AHI = apnea-hypopnea index; BMI = body mass index; CPAP = continuous positive airway pressure; SaO2 = oxygen saturation.

*
p≤0.05 compared to baseline,

**
p≤0.01 compared to baseline.
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Table 2

Changes in micro- and macro-vascular reactivity and arterial stiffness with CPAP and surgery

CPAP GROUP (n=15) SURGERY GROUP (n=12)

Baseline Post-CPAP Baseline Post-surgery

Pulse wave analysis

Office brachial SBP (mmHg) 118 (110, 132) 122 (114, 128) 123 (116, 137) 117 (109, 131)

Office brachial DBP (mmHg) 72 (67, 85) 75 (65, 80) 75 (71, 81) 71 (67, 78)*

Central SBP (mmHg) 109 (101, 122) 108 (104, 117) 109 (105, 128) 106 (101, 118)

Central DBP (mmHg) 73 (68, 86) 76 (66, 80) 76 (72, 82) 72 (68, 79)*

Augmentation index (%) 20.0 (14.5, 26.0) 15.5 (10.5, 23.0) 21.5 (16.4, 31.9) 20.3 (15.6, 26.9)

Microvascular reactivity

Change in skin blood flow with ACh (%) 45.6 (24.4, 61.9) 69.1 (36.2, 98.5)* 57.7 (33.4, 108.8) 57.5 (34.3, 75.1)

Change in skin blood flow with SNP (%) 59.0 (35.5, 92.1) 44.0 (32.1, 68.2) 64.1 (29.3, 82.7) 57.5 (42.1, 73.5)

Macrovascular reactivity

Flow-mediated dilation (%) 5.5 (2.2, 10.5) 2.8 (-0.06, 4.4) 4.8 (-0.5, 8.9) 5.2 (1.7, 7.4)

Nitroglycerin-induced dilation (%) 17.0 (11.5, 22.1) 13.0 (5.7, 19.6) 11.6 (7.2, 15.0) 16.5 (9.7, 24.4)

Data are presented as median (lower quartile, upper quartile).

ACh = acetylcholine; CPAP = continuous positive airway pressure; DBP = diastolic blood pressure; SBP = systolic blood pressure; SNP = sodium
nitroprusside.

*
p≤0.05 compared to baseline.
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