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Abstract
Surface electromyogram (EMG) is often corrupted by three types of noises, i.e. power line
interference (PLI), white Gaussian noise (WGN), and baseline wandering (BW). A novel
framework based primarily on empirical mode decomposition (EMD) was developed to reduce all
the three noise contaminations from surface EMG. In addition to regular EMD, the ensemble
EMD (EEMD) was also examined for surface EMG denoising. The advantages of the EMD based
methods were demonstrated by comparing them with the traditional digital filters, using signals
derived from our routine electrode array surface EMG recordings. The experimental results
demonstrated that the EMD based methods achieved better performance than the conventional
digital filters, especially when the signal to noise ratio of the processed signal was low. Among all
the examined methods, the EEMD based approach achieved the best surface EMG denoising
performance.
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1. Introduction
Electromyography (EMG) signal is electrical manifestation of a contracting muscle. The
acquisition of a clean EMG is a prerequisite for an appropriate interpretation and application
of the signal. Surface EMG signals, like most of the electrophysiological measurements, are
frequently corrupted with three categories of noise [1], i.e. power line interference (PLI),
white Gaussian noise (WGN), and motion artifact or baseline wandering (BW). In particular,
efforts in multiple-channel surface EMG recording have been developed in recent years
using high density electrode arrays. Due to the large number of the recording electrodes and
their tiny electrode-skin contact area, noise contamination emerges as an even more
challenging problem. Situations are sometimes encountered where the signal to noise ratio
(SNR) is poor in a few channels.
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Noise contamination may compromise the efficacy of the EMG signal processing. Thus,
several methods have been proposed to reduce the noise from surface EMG signals, among
which the most simple and cost-efficient solution is to use conventional digital filters.
Although such filters substantially reduce the noise, they also attenuate the EMG signal due
to spectral overlap of the noise and the surface EMG. It, therefore, remains a challenging
problem to reduce noise without distortion of the useful EMG signals, which might require
more advanced methods than the conventional digital filters. For example, adaptive or
nonlinear filtering has been proposed to reduce the noise contamination while minimally
sacrificing sections of the surface EMG signal [2,3]. On the other hand, taking advantages of
the time-frequency resolution of the wavelet transform, wavelet thresholding has been used
for noise reduction in various electrophysiological signals, including surface EMG [4]. As
an alternative tool for processing nonlinear and non-stationary signals, the empirical mode
decomposition (EMD) can also be used for de noising and conditioning of the
electrophysiological signals [6–11], primarily using a similar approach to the wavelet based
method. In contrast to the wavelet transform, the EMD decomposes a signal into a series of
intrinsic mode functions (IMFs), which are zero-mean, amplitude- and frequency-modulated
(AM–FM) time series representing oscillations within the processed signal [12]. The EMD
is implemented via a sifting process, which is a purely data-driven, signal-dependent
iterative procedure and makes no assumption about the original signal.

In this study, a novel framework based on EMD was developed to eliminate noise
contamination in surface EMG. In contrast to most of the previous de noising methods that
solely target a specific category of noise, a major feature of the current study is the primary
reliance on the EMD for dealing with three different types of noise often present in surface
EMG, particularly in high density surface electrode array recordings. Moreover, the
ensemble EMD (EEMD) was used to overcome the limitation of the mode mixing routinely
induced by the regular EMD [13], thus further improving the surface EMG denoising
performance. The advantages of the EMD or EEMD based methods were demonstrated by
comparing them with the traditional digital filters, using signals derived from our routine
electrode array EMG recordings.

2. Methods
2.1. Background

2.1.1. Empirical mode decomposition (EMD)—The EMD is designed to adaptively
decompose a time-series signal s(t),1 ≤ t ≤ L, into a sum of intrinsic mode functions (IMFs)
ci(t),1 ≤ i ≤N,

(1)

where t is the time index, N denotes the number of IMFs, and rN(t) is the residual signal
[12]. An IMF is defined as a function satisfying two conditions, i.e. (1) the difference
between the number of extrema (including both the local maxima and minima) and zero-
crossings in the time-series must be no more than one; (2) the mean value of the upper
envelop (defined by maxima) and lower envelop (defined by minima) is zero through the
entire time-series. Thus, an IMF is a simple oscillatory mode being symmetric with respect
to zero.

The decomposition technique that sequentially extracts each IMF from the original signal is
known as the sifting processing. It was detailed elsewhere [12] and is described in brief here.
The processing starts from identification of the local maxima and minima of x(t), an
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auxiliary variable of the original signal s(t). Two cubic spline curves are fitted to the local
maxima and minima to form the upper envelope Eu and lower envelope El, respectively. The
mean of the Eu and El, designated as Em, is calculated and used to update x(t) by subtracting
it from the x(t). The previous steps are iteratively executed until x(t) is updated into an IMF
c1(t), which satisfies the two definition conditions. The residual r1(t), calculated by
subtracting the first IMF c1(t) from the initial x(t), is then treated as a new signal and the
previous sifting process is repeated to obtain all the possible IMFs until the residual rN(t) is
either a constant, a monotonic slope, or a function with only one extremum. If we refer the
residual rN(t) as the (N + 1)th order IMF cN+1(t), the formula (1) can be reorganized as:

(2)

With the above sifting process, the lower-order IMFs carry the fast oscillation modes
whereas the higher-order IMFs carry slow oscillation modes.

2.1.2. Ensemble empirical mode decomposition (EEMD)—The EEMD is anoise-
assisted approach developed to improve the standard EMD [13]. For EEMD, the sifting
process is performed on an ensemble of noise-added signals u(t), each derived from a
summation of the original signal s(t) and a different white noise w(t) of finite amplitude, i.e.
u(t) = s(t) + w(t). Each u(t) can be decomposed by the EMD algorithm. The resultant IMFs,
namely cij(t), are averaged across trials to obtain the final IMFs:

(3)

where i is the IMF order, j denotes the trial index, and NT is the total number of trials.

By such an average, it is assumed that the added noise in each trial can be cancelled. The
rationale for addition of the white noise is to facilitate the final IMFs in comparable scales
that are relatively independent of the local time-domain characteristics of the signal, thus
reducing the mode mixing induced by the regular EMD. In this study, the white noise was
added to the original signal at a 5 dB SNR and NT was set to be 100.

2.2. EMD/EEMD-based filtering method
The EMD/EEMD-based filtering methods can be summarized into two categories: (1) partial
reconstruction, and (2) IMF filtering. In the first category, the noisy EMG could be filtered
with partial reconstruction of IMFs:

(4)

where 1 ≤ p < q ≤ N + 1. By choosing different p or q values, a low-pass, high-pass, or band-
pass filter can be designed [9]. For the other category, each IMF ci(t) can be filtered
respectively, resulting in c̃i(t). The filtered signal can be reconstructed as:
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(5)

In this study, three IMF filtering schemes targeting PLI, WGN and BW were proposed
within the EMD/EEMD-based filtering framework.

2.2.1. PLI reduction—After EMD or EEMD of a surface EMG signal contaminated by
PLI, several IMFs may carry both PLI and useful signals. To assess the PLI components, a
second order notch filter (cutoff frequencies 60 Hz and harmonics) was applied to each of
the IMFs. Assuming ai(t) is the notch filter output of the ith-order IMF ci(t), 1 ≤ i ≤ N + 1,
we define εi to quantify the PLI involvement in each IMF:

(6)

where var[.] is an operator to calculate the variance of a time-series. Each of the filtered
IMFs c̃i(t) is defined as:

(7)

In other words, if there is a clear PLI component involved in the IMF (above 10% energy
proportion), the notch filter will be applied. Otherwise, the IMF remains unchanged.

2.2.2. WGN reduction—To reduce WGN using EMD or EEMD, a similar approach to
wavelet-based denoising methods can be used, described as

(8)

for hard thresholding and as

(9)

for soft thresholding, where c̃i(t) denotes the thresholded version of the i-th order IMF, and
Ti denotes a threshold for the order i.

To overcome the discontinuity of the reconstructed signals induced from the abovehard or
soft thresholding, an alternative strategy, namely EMD interval thresholding (EMD-IT), was
developed to adapt the EMD characteristics [5]. For EMD-IT, the entire time-series of the
ith-order IMF ci(t) can be divided by its zero-crossings zi,j into several concatenated
intervals zi,j = [zi,j, …, zi,j+1], where j is the index of the zero-crossings. Whether a specific
interval zi,j is noise-dominant or signal-dominant can be identified by the amplitude ci(ti,j) of
its extreme instant ti,j located in the interval, zi,j < ti,j < zi,j+1. As a result, the EMD-IT
translates to
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(10)

for hard thresholding and to

(11)

for soft thresholding, where the ci(zi,j) indicates the samples in the interval zi,j from instant
zi,j to zi,j+1 of the ith-order IMF. Similarly, the EMD-IT can also be applied to the EEMD
algorithm.

In this study, the EMD-IT soft thresholding was used. The thresholds were adaptively set as
[5,14]:

(12)

where L is signal length and σi is the noise level for ith-order IMF estimated as [14]:

(13)

2.2.3. BW reduction—The BW components mainly involve in the higher-order IMFs. A
signal with BW can be decomposed into a sum of IMFs ci(t),1 ≤ i ≤ N + 1. To assess the BW
components, a bank of low pass filters hi(t),1 ≤ i ≤ N + 1, were utilized to process each of
the IMFs:

(14)

where * denotes the convolution and di(t) is the filtered IMF. The cut-off frequencies ωi of
the lowpass filters hi(t) can be set as [7]

(15)

where ω0 is the cut-off frequency of hN+1(t) and M > 1 is a frequency-folding coefficient.
The selection of the cut-off frequencies in such a form is based on the fact that relatively
large BW components are present in the higher-order IMFs [7]. In this study, ω0 and M were
set to be 30 and 1.02 respectively. Similarly, εi was defined to quantify the BW involvement
in each IMF:

(16)

Thereby, the BW component bi(t) in each IMF was extracted according to εi:
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(17)

Consequently, the denoised signal can be reconstructed from the filtered IMFs defined as:

(18)

and the BW can be estimated as:

(19)

2.3. Performance evaluation
The performance of the proposed methods was examined using our routine surface electrode
array EMG recordings with a Refa EMG system (TMS International BV, Enschede,
Netherlands). Sample surface EMG recordings from the thenar group muscles of
amyotrophic lateral sclerosis patients were used for this analysis [15]. Two relatively high
clean surface EMG signals (denoted as EMG1 and EMG2) and each of the three typical
noises were selected to simulate different testing signals. All the selected signals were
recorded in a time period of 1 s and with a sampling rate of 2 kHz. A noisy surface EMG
signal s(t) can be generated as:

(20)

where x(t) is the highly clean experimental surface EMG, n(t) is a noise segment, and δ is
the scale factor used to adjust the signal to noise ratio (SNR):

(21)

The performance of the proposed methods were compared with the conventional IIR filters,
including second-order notch filters (cutoff frequencies: 60 Hz and harmonics) and a fourth-
order Butter worth band-pass filter (cutoff frequencies: 30–450 Hz) [16]. Both causal and
non causal filters were implemented [17]. To compare the different methods, the signal to
error ratio (SER) was used as the performance index, which is defined as

(22)

where x̂(t) is the signal after the denoising.

3. Results
The typical results from EMD and EEMD are presented in Fig. 1, where a relatively clean
surface EMG signal contaminated primarily by PLI was decomposed into IMFs by EMD
and EEMD, respectively. The IMF distribution indicates that the lower-order IMFs contain
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relatively high-frequency components while the higher-order IMFs contain relatively low-
frequency components. Such a distribution is similar to filter bank but not exactly band-
restricted, due to the fact that IMF was adaptively extracted based on the inherent signal
oscillation structure, not the predetermined frequency band.

It is noted that because of the reduced mode mixing effect, each IMF derived from EEMD
contains more concentrated and band limited components, as compared to that from EMD.
For example, the PLI oscillation mode is assigned in three different IMFs (IMF 2, 3 and 4)
as a result of EMD (Fig. 1a); whereas it is primarily involved in only one IMF (IMF 5) of
EEMD (Fig. 1b). In addition, IMF 1 resulted from EEMD usually contains high-frequency
noise free of any useful EMG signal. Therefore, the first IMF of EEMD can be removed for
the signal reconstruction, thus effectively reducing high frequency noise. These advantages
of EEMD can improve the denoising performance, as demonstrated in the following
examples.

A comparison of the different surface EMG denoising methods is demonstrated in Figs. 2–4,
with each example targeting a different category of noise, respectively. From the outputs of
each method, it can be observed that the EMD/EEMD-based methods achieved better
performance than conventional filtering methods to remove different noise from surface
EMG. To quantitatively compare the denoising performance, the SER values of different
methods were compared when they were applied to simulated noisy surface EMG signals
derived from highly clean experimental surface EMG and typical noise recordings. The
performance for different SNR levels' surface EMG is presented in Table 1. We found that
the SER values from the IIR causal filter were the lowest due to the imposed nonlinear
phase response. In general, the EMD or EEMD-based methods achieved higher SER values
than the conventional digital filtering methods. The EEMD-based method achieved the
highest SER values among all the methods, particularly when the processed signal had low
SNRs.

Fig. 5 shows a comparison of different denoising methods when they were applied to an
experimental surface EMG signal contaminated by all of the three categories of noise. The
processed surface EMG signal, the filtered outputs, and the residuals from the different
methods are all demonstrated. Consistently, the EMD- or EEMD-based methods
demonstrated better performance compared with traditional digital filters.

4. Discussions and conclusion
An EMD/EEMD-based IMF filtering framework was presented in this study to remove all
the three common categories of noise (i.e. PLI, WGN, and BW) from surface EMG
recordings. EMD is a powerful tool for processing nonlinear and nonstationary
physiological signals with complex temporal-spatial structure. It can adaptively separate an
original complex signal into a set of IMFs with different oscillation levels, thus offering an
interpretation of the dynamic processes underlying the system generating the signal. Since
the origins of multiple noises can be viewed as having different dynamic properties from the
origins of the useful signal, the noise components are prone to be separated in limited
number of band-restricted IMFs. Taking advantage of the EMD, we demonstrated that
different noise contaminations in surface EMG can be adaptively removed based on an IMF
filtering framework, where different IMFs were appropriately filtered according to the
characteristics of each specific noise.

The advantage of EMD method for noise removal from a variety of physiological signals
has been recently demonstrated in different studies [5–11]. Most of them, however, only
targeted one specific category of noise [5,6,8,10] or simply assumed that the noise can be
ideally separated in a specific IMF to be deleted for the purpose of noise removal [8–10].
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The EMD-based method for noise reduction from surface EMG in this study can be viewed
as the combination and extension of the previous methods. By integrating and optimizing
different noise reduction solutions within a uniform IMF filtering framework, we are able to
remove different categories of noise from surface EMG at the same time. The effectiveness
of the proposed EMD-based method was validated by our experiment results which showed
better performance than the conventional digital filters.

Furthermore, an important feature of this study is the employment of the ensemble EMD
(EEMD), which produces a set of more strictly band-restricted IMFs by eliminating the
problem of mode mixing routinely induced from the standard EMD. Based on such a
property, the EEMD method can separate each category of noise within fewer IMFs, thus
facilitating the removal of such noises with different time-frequency distribution. For
example, the narrowband noise (here PLI) in Fig. 1b is prone to be concentrated in one IMF
(IMF 5), so the appropriate processing can be performed accordingly. From Table 1, it is
observed that the EEMD-based methods achieved the best performance for PLI or WGN
elimination at all the tested SNR levels. For BW reduction, the advantage of the EEMD over
the EMD or conventional digital filtering based methods was also demonstrated when the
SNR of the processed signal was relatively low. The customized filtering performed on a
limited number of IMFs generated by the EEMD mostly contributed to such improved
performance of the noise removal while reducing distortion of the signal of interest.

We acknowledge that compared with conventional digital filters, the proposed EMD/EEMD
based methods are more computationally complex. Particularly, the EEMD algorithm
includes repetitive implementation of regular EMD over a number of trails, thus
dramatically increase the computational burden. In a general sense, methods that reply on
complicated signal processing techniques (e.g., wavelet transform [14], adaptive filter [2,3],
and EMD [6]) may improve denoising performance compared with conventional digital
filters, as demonstrated in this study. Nonetheless, they also impose additional
computational complexity. Thus, a tradeoff or balance between denoising performance and
computational efficiency is to be determined, depending on specific applications.

In conclusion, we present a surface EMG filtering method based on EMD, targeting three
common categories of noise that majorly contaminate surface EMG recordings under
clinical and laboratory condition. The performance of the EMD based methods were
compared with the traditional digital filters, using signals derived from our routine electrode
array EMG recordings. The EMD based method achieved better performance than the
conventional digital filters. Furthermore, the performance of the ensemble EMD (EEMD)
was also examined for surface EMG denoising. We found that the noise components were
prone to be separated in limited number of band-restricted IMFs, thus facilitating the
removal of different noise. Among all the examined methods, the EEMD achieved the best
surface EMG denoising performance when the SNR of the processed signal was relatively
low.
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Fig. 1.
An example of the EMD (a) and EEMD (b) decomposition of a surface EMG signal
contaminated by PLI.
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Fig. 2.
An example of reducing PLI from surface EMG using different methods. From top to
bottom: (a) the original highly clean surface EMG signal (denoted as EMG1); (b) the surface
EMG signal contaminated by PLI noise; (c) the output of the IIR causal filter; (d) the output
of the IIR noncausal filter; (e) the output signal after EMD filtering; and (f) the output signal
after EEMD filtering.
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Fig. 3.
An example of reducing WGN from surface EMG using different methods. From top to
bottom: (a) the original highly clean surface EMG signal (denoted as EMG2); (b) the surface
EMG signal contaminated by WGN; (c) the output of the IIR causal filter; (d) the output of
the IIR noncausal filter; (e) the output signal after EMD filtering; and (f) the output signal
after EEMD filtering.
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Fig. 4.
An example of reducing BW from surface EMG using different methods. From top to
bottom: (a) the original highly clean surface EMG signal (denoted as EMG2); (b) the surface
EMG signal contaminated by BW noise; (c) the output of the IIR causal filter; (d) the output
of the IIR noncausal filter; (e) the output signal after EMD filtering; (f) the estimated BW
noise after EMD filtering; (g) the output signal after EEMD filtering; and (h) the estimated
BW noise after EEMD filtering.

Zhang and Zhou Page 13

Med Eng Phys. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
An example of reducing three different noise contaminations from surface EMG using
different methods. The residual was calculated as the difference between the original signal
and the filtered output. For EMD/EEMD-based methods, the estimated BWs are also
demonstrated along with the residual signals.
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