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SUMMARY

The detection of areas in which the risk of a particular disease is significantly elevated, leading to an
excess of cases, is an important enterprise in spatial epidemiology. Various frequentist approaches have
been suggested for the detection of “clusters” within a hypothesis testing framework. Unfortunately, these
suffer from a number of drawbacks including the difficulty in specifying a p-value threshold at which to
call significance, the inherent multiplicity problem, and the possibility of multiple clusters. In this paper,
we suggest a Bayesian approach to detecting “areas of clustering” in which the study region is partitioned
into, possibly multiple, “zones” within which the risk is either at a null, or non-null, level. Computation is
carried out using Markov chain Monte Carlo, tuned to the model that we develop. The method is applied
to leukemia data in upstate New York.
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1. INTRODUCTION

The detection of disease clusters has a long and controversial history in spatial epidemiology. A major area
of debate is on the definition of a cluster, with initial efforts examining all pairs of cases to see if they are
“close” or “not close” in space and time (Knox, 1964). Following Wakefield and others (2000), we define
cluster detection as, “the identification of areas of high residual risk”. Residual here acknowledges that we
have controlled for known risk factors (e.g., age and gender). This definition requires a specification of
what we mean by “high”, which will be disease-specific. The method we describe recognizes that even in
the absence of any true elevated risk, area-level relative risks will “wobble” around the value 1, and we do
not wish to highlight every small fluctuation. The interpretation of cluster detection studies is hazardous
since data anomalies (problems with population estimates, under- or over-count of disease cases) may be
responsible for apparent increased risk (Besag and Newell, 1991). The situation on which we concentrate
considers a study region containing n areas (with associated geographical centroid), typically administra-
tive subdivisions, with each providing an aggregate disease count and an associated population count or
expected number of disease cases.
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There is a large literature on spatial scan statistics, in which a (usually) circular window is passed
over the study region and the significance of the observed number of cases in the window is deter-
mined. Different proposals base the circle size on distance (Openshaw, 1984), the number of cases
(Besag and Newell, 1991), or the population (Kulldorff, 1997). By far the most popular cluster detection
method is based on the latter, in part because of the availability of the easy-to-use software, SatScan
(http://www.satscan.org/). The method allows the circular clusters to be centered on each of the n area
centroids, with varying radii, up to a maximum that gives a circle with no more than a certain pro-
portion of the total population (common choices include 20% and 50%). We refer to the circles as
“zones”. In the unconditional version of the test, a Poisson likelihood is assumed, while the condi-
tional version conditions on the total number of cases, and uses a binomial likelihood. A likelihood
ratio statistic is then computed for each zone; for example, in the unconditional version of the test the
null and alternative consist of the relative risk being either 1, or > 1. Clearly, this strategy leads to
a large number of tests, and the multiplicity problem is circumvented by evaluating the significance
of only the maximum of the likelihood ratio statistics over all circles, using a Monte Carlo p-value.
The method we describe has elements in common with that of Kulldorff (1997), in particular, in the
way in which we describe cluster configurations in terms of zones, but attempts to rectify a number
of the drawbacks that we discuss in Section 2. In this section, we also apply the SatScan method
to leukemia data in upstate New York. Our model is described in Section 3 and Section 4 outlines
computation. We return to the upstate New York data in Section 5 and conclude with a discussion in
Section 6.

2. DEFICIENCIES OF THE SCAN STATISTIC

Clearly, a key component of cluster detection using SatScan is deciding upon a threshold for significance
at which to call a collection of areas (a zone) a “cluster”. A review of the literature reveals that current
practice is the use of a 0.05 threshold, regardless of the number of areas, or the distribution of expected
numbers within those areas, both of which affect the power. Appendix A of the supplementary material
available at Biostatistics online gives examples of the use of SatScan. This appendix also contrasts the
use of p-values and Bayes factors, in particular showing that the latter is a consistent model selection
procedure in a simplified hypothesis-testing setting.

A further difficulty arises when the possibility of multiple clusters is entertained. In both
Kulldorff and others (1997) and Jemal and others (2002) secondary clusters were reported with an infor-
mal measure of significance. In an investigation one would not expect a large number of clusters (at least
not in the way in which we have defined a cluster), but a cluster detection method should not be restricted
to finding a single cluster only. In Kulldorff and others (1997) and Jemal and others (2002) (and numer-
ous other studies) p-values for secondary clusters are computed by comparing their likelihood ratios to the
simulated null distribution of the likelihood ratios of the most likely cluster. This procedure is conservative
since the secondary p-values are being calculated by comparison to the null distribution of the maxi-
mum statistic and not the second highest which is the correct reference. More recently, Zhang and others
(2010) proposed a modification to the original approach in which, after identifying a statistically sig-
nificant cluster, they drop the data corresponding to that cluster (possibly along with some neighboring
areas), recompute the internally standardized expected numbers for the new reduced dataset, and repeat
the Kulldorff procedure until no statistically significant further cluster is found. The resulting sequen-
tially computed p-values are not necessarily monotonically non-increasing but are less conservative than
those of the original method. However, a major problem is that the p-values are not directly compara-
ble since they are based on different sample sizes and hence have different power. One should also con-
sider the multiple testing aspect of the multiple comparisons that are being made but it would be very

http://www.satscan.org/
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt001/-/DC1
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt001/-/DC1
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Fig. 1. Highlighted clusters for leukemia in upstate New York, under the spatial scan statistic of Zhang and others
(2010), and with a significance level of 0.05.

difficult to determine the appropriate error rate of the sequential procedure defined by Zhang and others
(2010).

As a motivating example, we consider leukemia data in eight counties of upstate New York, and
described by Turnbull and others (1990). These data have provided a test bed for a number of meth-
ods. We consider data collected from 1978 to 1982 in n = 277 census tracts from the 1980 census.
Using an upper limit of 15% of the total population, the spatial scan statistic was evaluated over 12 675
zones (circles). In Figure 1, we present the results of Zhang and others (2010) method on the upstate
New York leukemia data with α = 0.05 and p-values calculated from 99 999 Monte Carlo simulations
under the null. In order of discovery, the significant clusters were: (1) the area surrounding Bingham-
ton in Broome County, (2) the western half of Cortland County, (3) the area surrounding Syracuse
in Onondaga County, (4) Central Cayuga County and (5) the area surrounding Ithaca in Tompkins
County. Appendix G of the supplementary material available at Biostatistics online contains a figure in
which the counties are labeled, to aid in identifying areas of interest. The p-values cannot be inter-
preted independently as they are computed sequentially, e.g. the interpretation of the third p-value is
that: after removing the first two significant clusters we obtained a cluster with observed significance
level 0.024.

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt001/-/DC1
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3. A BAYESIAN PARTITION MODEL FOR CLUSTER DETECTION

3.1 Notation

Let yi and Ei denote disease counts and expected counts in i = 1, . . . , n areas that partition a study region.
Following Kulldorff (1997), we define single zones as contiguous collections of areas that form “jagged
circles”. We create the list of single zones by sequentially aggregating neighboring areas, by taking each
area in turn, and continually adding the areas whose centroids are closest to the area center. For each area
this procedure is continued until the zone’s population reaches a pre-specified maximum allowable pro-
portion of the total study region’s population. Suppose there are N1 single zones; we emphasize that there
are multiple zones centered on each area centroid. The model that we define partitions the study region
so that each area is either in a cluster/anti-cluster, or is at a null level. Areas within a cluster are associ-
ated with increased relative risk, while areas within an anti-cluster are associated with decreased relative
risk.

The number of clusters/anti-clusters is j = 0, . . . , J , where J is specified in advance. Each
of the clusters/anti-clusters corresponds to a single zone though for a partition with j � 2 sin-
gle zones, the constituent single zones are not allowed to overlap. We define a configuration as a
set of non-overlapping single zones; for j = 1, . . . , J suppose there are N j configurations of such
zones. For j = 0, we set N0 = 1 for notational consistency. We label the null (i.e., no lows/highs)
configuration as c0N0 and c jl as the lth configuration of j single zones, for j = 1, 2, . . . , J , and
l = 1, . . . , N j . More precisely, c jl consists of the j single zone labels that constitute configura-
tion l. For example, c2l is the pair of (non-overlapping) single zones that correspond to config-
uration l; the label l ranges over the set of all pairs that are “legal”, i.e. non-overlapping, with
N2 such pairs. For the null configuration c01 = ∅. Examples of c jl are contained in Appendix B
of the supplementary material available at Biostatistics online. There are

∑J
j=0 N j possible values of

c jl , which grows very quickly as J increases. For the New York State data N1 = 12 675 and N2 =
59 455 392.

Define Sz as the set of area indices associated with (single) zone z, z = 1, . . . , N1. Finally, let yz
z =∑

i∈Sz
yi and Ez

z = ∑
i∈Sz

Ei be the observed and expected numbers of cases in single zone z, with
yz

z = {yi , i ∈ Sz} and Ez
z = {Ei , i ∈ Sz} the vectors of observed and expected numbers, respectively, for

z = 1, . . . , N1 (the superscript z therefore distinguishes observed and expected counts in single zones from
observed and expected counts in areas).

3.2 A model for clusters and anti-clusters

For a rare disease, we assume that counts are conditionally independent to give: yi |θi ∼iid Poisson(Eiθi ),
where θi is the relative risk associated with area i . The prior we assign to θi depends on whether area
i lies within a cluster/anti-cluster or not. If in a cluster/anti-cluster a “wide” gamma prior is assumed
while if null, a “narrow” gamma prior is assumed. The narrow prior reflects variation around 1 that is due
to small levels of confounding and small data anomalies (errors in the population and disease counts).
These two specifications are what allows us to distinguish between “null” areas and “non-null” areas
contained within clusters/anti-clusters. For all i ∈ Sz , that is, areas in single zone z, we have θi = θ�

z ∼
Gamma(aw, bw), i.e. a common relative risk. Therefore, consistent with our earlier definition, an area
is in a cluster/anti-cluster if its relative risk is deemed high/low. The choices of an, bn, aw, and bw are
study-specific since different diseases have differing inherent “null” spatial variability. The wide model
assumes that for single zone z in configuration c jl , all the constituent areas of the single zone share a
common relative risk θ�

z , and the counts {yi , i ∈ Sz} are conditionally independent given θ�
z . For null areas

i , θi ∼iid Gamma(an, bn).

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt001/-/DC1
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We may integrate the θ parameters from the model so that the distribution for a generic null area with
count y and expected number E , Prn(y), is Neg-Bin(an, bn/(E + bn)), i.e.

Prn(y) = �(y + an)

y!�(an)

(
E

E + bn

)y (
bn

E + bn

)an

.

Similarly, for a non-null area Prw(y) is Neg-Bin(aw, bw/(E + bw)). Under this construction, the only
unknown parameter in the model is the configuration {c jl , j = 1, . . . , J ; l = 1, . . . , N j }, a discrete param-
eter with

∑J
j=0 N j possible values.

Given these specifications, we can derive the likelihood. For the null configuration, the study region is
entirely comprised of null areas:

Pr(y|c01) =
n∏

i=1

Prn(yi ).

Non-null configuration c jl , j � 1, contains j single zones each with summed counts yz
z and expected

numbers Ez
z , for z ∈ c jl . We assume that the vectors of counts yz

z associated with each single zone z ∈ c jl

are independent. Therefore, the likelihood for the set of counts y is

Pr(y|c jl) =
∏
z∈c jl

{Prw(yz
z ) × Pr(yz

z|yz
z )} ×

n∏
i=1

i /∈{Sz ,z∈c jl }

Prn(yi ),

for j = 1, . . . , J ; l = 1, . . . , N j . The first term on the right-hand side contains a product of j terms for
the cluster/anti-cluster contribution and the second term is for the remaining null areas. The distribution
Pr(yz

z|yz
z ) is multinomial with dimension equal to the number of areas in zone z, |yz

z|, with total counts yz
z

and vector of probabilities Ez
z/Ez

z . It is useful to define the Bayes factor comparing the probability of the
data under configuration c jl to the probability of the data under the null:

BF = Pr(y|c jl)

Pr(y|c01)
=

∏
z∈c jl

BFz, (3.1)

a product over zones, where

BFz = Prw(yz
z ) × Pr(yz

z|yz
z )∏

i∈Sz
Prn(yi )

(3.2)

is the Bayes factor comparing the distribution of the data within single zone z under the non-null
cluster/anti-cluster model to that under the null model.

One consequence of (3.1) is that computation for our model is vastly simplified since we only need
to consider calculations for single zones. In the case of a single zone, (3.1) may be compared with the
likelihood ratio statistic:

LR(z) = Pr(y| alternative )

Pr(y| null)
=

∏
i /∈Sz

Pr(yi |θi = 1) × Pr(yz
z |θ̂z)∏n

i=1 Pr(yi |θi = 1)

= Pr(yz
z |θ̂z)∏

i∈Sz
Pr(yi |θi = 1)

of the scan statistic used within SatScan. In the denominator, the scan statistic conditions on θ = 1
while the Bayes approach integrates over the narrow prior. In the numerator, up to a constant, the scan
statistic maximizes over θz (subject to θz > 1) while the Bayes approach integrates over the wide prior. The
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multiple zone version of SatScan looks at sequential likelihood ratio statistics (removing parts of the
data), whereas the Bayes approach (roughly speaking) averages over products of Bayes factors.

3.3 Prior distribution

In this section, we describe the priors we place on the
∑J

j=0 N j possible configurations c jl . This choice
implies a prior on the number of non-overlapping single zones in the partition, τ ∈ {0, . . . , J } since Pr(τ =
j) = ∑N j

l=0 Pr(c jl). When constructing the probabilities Pr(c jl) there are a number of considerations. We
wish to pay particular attention to the j = 0 case and set Pr(τ = 0) = π0, which is the prior probability of the
null configuration c0N0 . This value will be typically close to 1 given the rarity of true clusters/anti-clusters.
Given the existence of one cluster/anti-cluster (τ = 1), the probabilities should reflect our prior belief of
each of the N1 single zones being the cluster/anti-cluster. When extending to combinations of j � 2 single
zones, configurations of non-overlapping single zones are assigned prior probability proportional to the
prior probability of each of the component single zones being a cluster/anti-cluster. All combinations of
single zones with overlap are dropped from consideration.

The simplest form is to take a uniform prior over the total number of single zones, i.e. πz = 1/N1. This
is consistent with SatScan within which all single zones are treated equally. In what follows this form
is labeled the uniform prior. A second specification is based on ideas of Gangnon and Clayton (2003)
in which an area center is selected with probability proportional to its area with a radius then selected
with probability proportional to its size. Suppose that there are mi single zones centered on area i so that∑n

i=1 mi = N1. A single zone is defined by its center and its radial area and let l = 1, . . . , mi index the
radial area of single zone z(i, l) centered at area i . Now, let ri,1 < · · · < ri,mi denote the distances of the cen-
troids of each of the mi possible radial areas to centering area i , with ri,1 = 0, and let ri,mi +1 denote the dis-
tance to the next area beyond area mi . Then the prior for the single zone centered on area i with radius ri,l is

πz(i,l) = Ai

A

ri,l+1 − ri,l

ri,mi +1
, (3.3)

where Ai is the surface area of area i , i = 1, . . . , m and A is the total surface area of the study region. We
label this form the modified dartboard prior.

The prior on configurations of two or more single zones, i.e. c jl , is specified in two stages. First, a par-
tition (cluster/anti-cluster) size is selected with probability Pr(S = j) = λ j for known λ j , j = 0, . . . , J .
Second, given S = j , a set of j zones are sampled, with replacement, from the N1 single zones with proba-
bilities πz , z = 1, . . . , N1, using one of the two forms just described. If the j randomly generated zones are
“non-overlapping” this j and configuration are retained, otherwise we repeat this procedure until a legal
configuration is sampled.

Let
q j =

∑
l1,...,l j ∈L j

πl1 × · · · × πl j (3.4)

be the probability that the j randomly selected zones are non-overlapping, with L j the set of indices of j
non-overlapping zones, for j = 2, . . . , J . Define q0 = q1 = 1 since there is no concept of overlapping for
j = 0, 1. Then, given the construction of our prior,

Pr(τ = j) = λ j q j∑J
j ′=0 λ j ′q j ′

and Pr(c jl |τ = j) = q−1
j

∏
z∈c jl

πz . Consequently, the required prior probabilities are

Pr(c jl ∩ τ = j) = Pr(c jl) = λ j
∏

z∈c jl
πz∑J

j ′=0 λ j ′q j ′
∝ λ j

∏
z∈c jl

πz .
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If we choose the λ j ’s as

λ1 = · · · = λJ = 1 − π0

(1 − π0) × J + π0 × ∑J
j=1 q j

, λ0 = 1 −
J∑

j=1

λ j ,

then, as detailed in Appendix E of the supplementary material available at Biostatistics online, we obtain
Pr(τ = 0) = π0 and

Pr(τ = j) = (1 − π0) × q j/

J∑
l=1

ql ∝ q j

for j = 1, . . . , J . Therefore, after dropping all combinations of single zones with overlaps, the prior prob-
ability of no clusters/anti-clusters is π0, as desired, and the prior probabilities for j = 1, . . . , J are defined
in a natural fashion (as proportional to the probabilities of obtaining j non-overlapping single zones under
random sampling of single zones).

The model that we have described is closest to that of Gangnon and Clayton (2003) and we describe this
approach here in some detail. Other approaches (Denison and Holmes, 2001; Gangnon and Clayton, 2000;
Knorr-Held and Raßer, 2000; Neill and others, 2006) are described in Appendix F of the supplementary
material available at Biostatistics online. We emphasize that the detection of disease clusters is a very dif-
ferent endeavor to disease mapping. In contrast to cluster detection, Bayesian approaches to disease map-
ping are commonplace, but the usual random effects models that are fitted (for example, Besag and others,
1991) produce both strong global shrinkage of relative risk estimates and strong local smoothing across
neighboring areas; the latter is undesirable in a cluster detection context. In particular, the spatial smoothing
of abrupt changes/discontinuities in the relative risk surface is not desirable. For evidence of this behavior,
see the simulation results of Richardson and others (2004).

Our model differs from that of Gangnon and Clayton (2003) in the following respects. We assume con-
jugate gamma priors for the “small” and “wide” components while Gangnon and Clayton (2003) assume
lognormal random effects. We exclude overlapping zones when constructing configurations of zones; this
is not done by Gangnon and Clayton (2003) and it is even possible for the same zone to be included twice in
the same configuration, which is clearly not appealing. The priors on the number of clusters/anti-clusters
are quite different. We construct a prior to have a user-specified value on the null, and then the mass
on j = 1, . . . , J clusters/anti-clusters is spread out in a way that is consistent with our prior construc-
tion for multiple non-overlapping zones. Gangnon and Clayton (2003) emphasize a uniform distribution
on the number of zones (including the null configuration) in the methods description of their paper, but
then also use a geometric prior in their analysis of the New York data. The computation required for the
Gangnon and Clayton (2003) model is more complex than for our model since they use a non-conjugate
formulation. In particular, reversible jump MCMC (Green, 1995) is used, which is difficult to implement
(for the uninitiated) and there are no available implementations (as far as we know). We only have to sample
configurations which makes the computation far more straightforward.

3.4 Summaries of the posterior distribution

The posterior distribution can be expressed as

Pr(c jl |y) = Pr(y|c jl) × Pr(c jl)

Pr(y)
= λ j

∏
z∈c jl

BFzπz∑J
j ′=0

∑N j ′
l ′=1 λ j ′

∏
z′∈c j ′l′ BFz′πz′

(3.5)

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt001/-/DC1
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt001/-/DC1
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt001/-/DC1
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where the BFz terms are given by (3.2); see Appendix D of the supplementary material available at
Biostatistics online for this derivation. This form for Pr(c jl |y) emphasizes that for any configuration c jl

the posterior is proportional to a product BFz × πz over the component unit zones, multiplied by λ j .
A first summary of interest is the posterior on the number of clusters/anti-clusters, τ :

Pr(τ = j |y) =
N j∑

l=1

Pr(c jl |y) (3.6)

and this may be compared with the prior on this quantity. If there are clusters in the data the posterior
distribution of any one c jl will be small, because many configurations are overlapping and, if a non-null
region exists, the posterior probability will be spread over similar alternatives. A number of summaries are
informative, however. We may evaluate the posterior probability that an area lies in a cluster/anti-cluster.
Let Ci = {the event that area i is in a cluster/anti-cluster}. Then, summing over all configurations cjl that
contain area i :

Pr(Ci |y) =
J∑

j=1

N j∑
l=1

Pr(Ci |c jl , y) Pr(c jl |y) =
J∑

j=1

N j∑
l=1

1(i ∈ Sz, z ∈ c jl) Pr(c jl |y). (3.7)

Often we will be specifically interested in clusters (i.e., highs), and so we define C H
i =

{the event that area i is in a cluster}. For each configuration cjl this event occurs when both area i is in
c jl and θi is “high”. We define the latter as θi > θ H

c where the high crossover point θ H
c is a threshold that

we take as the larger of the two intersection points of the narrow and wide priors. The posterior probability
of area i being in a cluster is therefore

Pr(C H
i |y) =

J∑
j=1

N j∑
l=1

Pr(C H
i |c jl , y)

∫ ∞

θ H
c

p(θi |c jl , y) dθi Pr(c jl |y)

=
J∑

j=1

N j∑
l=1

1(i ∈ Sz, z ∈ c jl) Pr(θi > θ H
c |c jl , y) Pr(c jl |y), (3.8)

where

Pr(θi > θ H
c |c jl , y) =

∫ ∞

θ H
c

p(θi |c jl , y) dθi

p(θi |c jl , y) = Pr(yi |θi )p(θi |c jl)

Pr(yi |c jl)
,

Pr(yi |θi ) is Poisson, and the prior p(θi |cjl) is Gamma(aw, bw). We note that the conditional posterior
p(θi |c jl , y) is gamma also, by conjugacy.

The probabilities Pr(C H
i |y) are therefore straightforward to evaluate, and may be mapped to indicate

areas of clustering. If one wishes to remove the effect of the prior, we may consider the Bayes factor of

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt001/-/DC1
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt001/-/DC1
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area i being in a cluster C H
i versus not being in a cluster C

H
i :

BFH
i = Pr(y|C H

i )

Pr(y|C H
i )

= Pr(C H
i |y)/[1 − Pr(C H

i |y)]
Pr(C H

i )/[1 − Pr(C H
i )]

, (3.9)

where Pr(C H
i ) is the prior counterpart to (3.8)

We may also provide a map of E[θi |y] = ∑J
j=1

∑N j

l=1 E[θi |c jl , y] Pr(c jl |y), which gives the expected
relative risk surface based on the cluster model and aids in interpretation of clusters. In addition, this surface
may be compared with maps of the raw SMRs and other modeled summaries. Each of these summaries
help one to give a context within which public health decisions may be considered. Finally, we may map
Pr(C H

i |y) > c, for different thresholds 0 < c < 1, to provide a more succinct visual summary of areas of
clustering.

4. COMPUTATION

Recall from Section 3.3 that we specify the prior up to a normalizing constant. For sampling from the pos-
terior, we do not require this constant, but its calculation is required to achieve the prior on the null config-
uration π0 = Pr(τ = 0). Normalization of the posterior probability of configuration c jl requires estimation
of q j , as given by (3.4), which we achieve using importance sampling; details are available in Appendix E
of the supplementary material available at Biostatistics online.

We now turn to simulation from the posterior for c jl , a discrete parameter that can take a very large
number of values (

∑J
j=0 N j ). We implement an MCMC algorithm whereby the current configuration is

perturbed via one of five moves. A detailed description of the algorithm is presented in Appendix G of the
supplementary material available at Biostatistics online and here we provide an outline of the main steps.
Recall that c jl consists of a set of j single zone labels with Sz the set of area labels within zone z. The
moves are:

(1) Growth: The index set for a particular single zone z {i ∈ Sz, z ∈ c jl} is increased by adding the nearest
free neighbouring area (in terms of distance to its center) to the selected single zone. If the zone
selected is the largest single zone with this particular center then a growth move is not possible.

(2) Trim: The index set for a particular single zone z {i ∈ Sz, z ∈ c jl} is reduced by dropping the area
that is furthest from the centering area from the single zone selected for trimming. If the single zone
consists of only one centering area, then such a move is not possible. Trim moves are reciprocal to
growth moves.

(3) Replacement: Replace a single zone z ∈ c jl with another single zone with a different centering area.
(4) Death: Drop one of the j single zones z ∈ c jl to form a configuration with j − 1 single zones.
(5) Birth: Add a new single zone to c jl to form a new configuration of j + 1 single zones. Birth moves

are reciprocal to death moves.

In the first three moves, the newly adjusted single zone that modifies c jl must not overlap the remaining
j − 1 single zones in c jl and in move 5 the newly added single zone must not overlap the existing j single
zones. The first three moves are such that the number of single zones remains the same, whereas moves 4
and 5 modify j . In the application to the upstate New York data each of the five moves are proposed with
equal probability. The above represents a generic scheme, but we tune to the cluster model. Specifically,
single zones are proposed randomly via one of two mechanisms: uniformly from the N1 single zones, or
proportional to the posterior probabilities Pr(c jl |y) with j = 1. The latter are known, up to a normalizing
constant, and so are available for sampling. Convergence is monitored via examination of the sample paths
of various key summaries, including the number of clusters/anti-clusters.

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt001/-/DC1
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Fig. 2. Prior and posterior probabilities on the number of clusters/anti-clusters for the New York data.

5. EXAMPLE: LEUKEMIA IN UPSTATE NEW YORK STATE

We use the uniform prior on single zones, set π0 = 0.95 and take J = 7 as the maximum number of
clusters/anti-clusters. We first calibrated the prior (i.e. chose the λ’s) to give π0 = 0.95, which lead to
the histogram of prior probabilities in Figure 2. For these data, we choose the priors on θ in the following
way. For both the narrow and wide choices, we require the mode to be at 1 so that the prior is decreasing
either side of this “null” value. We further require the upper 95% points of the narrow and wide pri-
ors to be 1.03 and 4, respectively. This specification leads to the choices (an, bn) = (2976.3, 2977.3) and
(aw, bw) = (2.31, 1.31). These choices are shown in Appendix C of the supplementary material available
at Biostatistics online. The high crossover point θ H

c is 1.05.
We ran the importance sampling algorithm to estimate the (λ0, λ1, . . . , λJ ) using 105 points and the

Markov chain algorithm for estimating Pr(C H
i ) and Pr(C H

i |y) for 105 and 106 iterations, respectively. We
picked each of the five moves types with probabilities 0.2, and sampled zones alternately using probabilities
proportional to the single zone posterior and from a uniform distribution on the number of legal single
zones. The analysis took 66 min on a 2 GHz Intel Core i7 processor with 8 GB of 1333 MHz DDR3 RAM.
Appendix I of the supplementary material available at Biostatistics online contains details and plots of how
convergence of the Markov chain was assessed in this example and also reports the acceptance rates of the
different MCMC moves.

Using the uniform prior N−1
1 , we plot Pr(C H

i ) for each area in Figure 3, with all areas surrounding
Syracuse and Binghamton zoomed in on the right-hand panels. We see that our model puts higher prior
probability on urban areas, most notably the areas surrounding Syracuse, Binghamton and Cortland. This
is primarily because urban areas tend to be smaller in geographical size, and hence are contained within
more single zones, than are rural areas.

Figure 2 compares the posterior probabilities Pr(τ = j |y) (grey columns) against the prior proba-
bilities for j = 0, 1, . . . , 7. We see that around 80% of the prior probability on the null has moved to
1,2,3,4 clusters/anti-clusters, strongly indicating that there are clusters and anti-clusters in these data. In
Figure 4, we display the estimated posterior probability Pr(C H

i |y) of cluster membership for each area
i . We observe that even with a prior that is skeptical to the existence of clusters (π0 = 0.95), there is
strong evidence that areas surrounding Binghamton in Broome County and areas in the western half of

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt001/-/DC1
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt001/-/DC1
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Fig. 3. Prior probability of clusters for New York State.

Cortland County are in a cluster, while there is milder evidence of cluster areas in Syracuse in Onondaga
County.

In Figure 5, we plot the log Bayes factors BFH
i of each area being in a cluster, as defined in (3.9). We

observe that even after accounting for the prior Pr(C H
i ), which favors urban areas, there is still relatively

strong evidence of clusters. Appendix H of the supplementary material available at Biostatistics online
provides further summaries for these data, with sensitivity analyses to the various tuning parameters inclu-
ding the crucial choice of π0 (Appendix D of the supplementary material available at Biostatistics online
contains details of how prior sensitivity to π0 can be computed efficiently). Also included are mapped
relative risk summaries from our model and a comparison with the SMRs, an empirical Bayes
model and the ICAR model of Besag and others (1991). Appendix J of the supplementary material
available at Biostatistics online compares our conclusions for these data with those of other authors.

6. DISCUSSION

In this paper, we have described a Bayesian model for cluster detection. The model is designed so that the
computation is relatively efficient. In particular, we lean on conjugacy so that the unknown parameter is a
single discrete parameter, the configuration c jl . By defining multiple zones as the product of independent
non-overlapping single zones the posterior is an interpretable function of single zone Bayes factors. The
prior is built in a natural way, given our multiple non-overlapping single zone construction. The meth-
ods described in the paper are implemented within the SpatialEpi R package. The code to reproduce

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt001/-/DC1
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Fig. 4. Posterior probability Pr(C H
i |y) of cluster membership for each area i , using π0 = 0.95.

the upstate New York example can be found in Appendix H of the supplementary material available at
Biostatistics online.

Our aim was to provide a Bayesian version of the approach considered by SatScan and to this end we
have only considered circular windows. A critical feature of our model is that we can account probabilis-
tically for the presence of more than one cluster in the study region. Recently, there has been increased
interest in constructing methods for arbitrarily shaped clusters, see for example Duczmal and Assunção
(2004) and Kulldorff and others (2006). Our model can be extended to allow for non-circular regions by
redefining the set of single zones from which the multiple zones are constructed.

The model we have proposed does not lead to each area having a uniform prior probability of lying
within a cluster/anti-cluster. The non-uniformity arises from our definition of single zone and from how
single zones are combined to form configurations. The limit on zone size (in terms of population) also has
implications. One way in which the effect of these factors can be determined is by plotting the posterior
to prior odds ratio of lying in a cluster, i.e. the Bayes factor, and the use of this measure was illustrated
in Section 5. The number of clusters is critically dependent on the prior on the null configuration π0, and
addressing the sensitivity to this choice is a key step. If one has area-level covariates then these may be
incorporated in the expected numbers. The introduction of a log-linear model is possible, but would break
the conjugacy of the model and hence increase computation.

In terms of “cluster detection” one may proceed in a variety of ways but examining multiple posterior
summaries is recommended. A starting point will always be comparison of the prior and posterior on the
number of clusters/anti-clusters. Following this step, the posterior probabilities of each area falling in a

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt001/-/DC1
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Fig. 5. Log of Bayes factor of area i being in a cluster versus not being in a cluster, log(BFH
i ), using π0 = 0.95, see

equation (3.9) for the form of the Bayes factor.

cluster can be mapped. These maps may be thresholded to reveal more clearly areas of high relative risk.
“Clusters” in our model are determined with respect to the narrow (null) and wide (non-null) priors and
careful thought is required in these specifications, since these choices are defining the answer to the key
epidemiological question of: What is a “high” relative risk?

SUPPLEMENTARY MATERIAL

Supplementary materials, including extensive sensitivity analyses for the New York data and R code to
reproduce the example, are available at http://www.biostatistics.oxfordjournals.org.
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ZHANG, Z., ASSUNÇÃO, R. AND KULLDORFF, M. (2010). Spatial scan statistics adjusted for multiple clusters. Journal
of Probability and Statistics. Article ID 642379.

[Received May 17, 2012; revised January 15, 2013; accepted for publication January 19, 2013]



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


