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SUMMARY

We propose a beta product confidence procedure (BPCP) that is a non-parametric confidence procedure
for the survival curve at a fixed time for right-censored data assuming independent censoring. In such
situations, the Kaplan–Meier estimator is typically used with an asymptotic confidence interval (CI) that
can have coverage problems when the number of observed failures is not large, and/or when testing the
latter parts of the curve where there are few remaining subjects at risk. The BPCP guarantees central
coverage (i.e. ensures that both one-sided error rates are no more than half of the total nominal rate) when
there is no censoring (in which case it reduces to the Clopper–Pearson interval) or when there is progressive
type II censoring (i.e. when censoring only occurs immediately after failures on fixed proportions of the
remaining individuals). For general independent censoring, simulations show that the BPCP maintains
central coverage in many situations where competing methods can have very substantial error rate inflation
for the lower limit. The BPCP gives asymptotically correct coverage and is asymptotically equivalent to
the CI on the Kaplan–Meier estimator using Greenwood’s variance. The BPCP may be inverted to create
confidence procedures for a quantile of the underlying survival distribution. Because the BPCP is easy to
implement, offers protection in settings when other methods fail, and essentially matches other methods
when they succeed, it should be the method of choice.

Keywords: Clopper–Pearson confidence interval; Exact confidence interval; Kaplan–Meier estimator; Median
survival; Non-parametric methods; Survival analysis.

1. INTRODUCTION

In this paper, we use products of beta random variables to create a new pointwise confidence procedure
for the survival distribution from right-censored data. Our beta product confidence procedure (BPCP)
is invariant to monotonic transformations and can be applied to data with tied event times. The BPCP
is designed to guarantee central coverage, so that a 100(1 − α)% confidence interval (CI) allows one to
conclude whether survival at a specific time is higher (or lower) than a reference value, with a type I
error rate that is less than or equal to α/2. Theoretically, under progressive type II censoring the BPCP
guarantees central coverage. Our simulations show that under independent censoring for small samples the
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BPCP retains coverage, whereas existing procedures based on the Kaplan–Meier estimator do not. Further
asymptotically, both limits of the BPCP are correct and equivalent to the usual confidence limits based on
the Kaplan–Meier estimator and Greenwood’s formula.

A common approach to estimating CIs for the survival distribution is to use a normal approxima-
tion with the Greenwood formula for the variance of the Kaplan–Meier estimator and the delta method
on a transformation (see, e.g. Kalbfleisch and Prentice, 2002; Meeker and Escobar, 1998; SAS, 2011;
Therneau, 2012). Strawderman and others (1997) discuss improving the normal CIs using Edgeworth
expansions. Barber and Jennison (1999) review several more complex confidence procedures for survival
and identify two CIs that perform quite well, the constrained estimator of Thomas and Grunkemeier (1975)
and the constrained bootstrap, the latter of which can be computationally time consuming.

Although many of the previously developed CIs are asymptotically consistent when the censoring is
independent with a fixed distribution (Andersen and others, 1993), those CIs can have coverage problems
at times before very many events have occurred. For example, consider CIs before the first death at 14
days (0.038 years) in the data from Nash and others (2007) (see Figure 1 and Section 8 for details). The
Kaplan–Meier estimator before the first death equals 1 and its estimated variance is 0, so the Greenwood
95% CI is [1,1], which is clearly not correct. Andersen and others (1993, p. 214, 268) discuss adjusting this
first interval using exact methods, but our BPCP does this naturally, giving a 95% CI of (0.897, 1]. This
interval is the same as the exact Clopper–Pearson interval for 34 out of 34 surviving. The BPCP reduces
to this type of exact interval at each time point when there is no censoring.

A second coverage problem with many traditional CIs occurs when the Kaplan–Meier estimate does
not change as subjects are censored, and the Greenwood CIs, for example, also do not change. In Figure 1,
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Fig. 1. The black middle curve is the Kaplan–Meier estimator of survival for 34 patients with 12 observed deaths from
Nash and others (2007). Censored values are denoted by small vertical hashes. Gray lines are previously derived CIs
and the black CIs are the BPCP intervals developed in this paper.
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we would expect that the variance of the Kaplan–Meier estimate would be larger (and hence the CI should
be larger) just before the 12th failure time (6.35 years) when there are only 4 subjects at risk, than just after
the 11th failure (4.93 years) when there are 13 subjects at risk. Because of the constancy of the Green-
wood CIs between failure times, we have oddities such as the following: the 95% lower confidence limit
just before the 12th failure is 0.479, but immediately after the 12th failure our estimate of the survival
distribution is 0.477, even lower than the Greenwood lower limit just prior to the failure. There are several
additional methods that allow CIs to change in intervals where only censored observations are observed
(Peto and others, 1977; Dorey and Korn, 1987; Borkowf, 2005), but they are all based on asymptotic nor-
mal approximations, so their coverage for small samples will not be guaranteed. It appears that the Green-
wood and other previously developed lower limits just prior to the 12th failure are too high. In fact, we show
through simulations in Section 7 that the lower bound can have very poor one-sided coverage for previously
developed methods when there are either few observed failures or when there are few subjects at risk.

A third issue with some previously developed CIs is that the upper limit may increase (see the upper
limits in Figure 1), while we know that the survival curve does not increase. Our simulations show that
some upper bounds can be needlessly conservative compared with our BPCP.

We can invert the BPCP to obtain confidence procedures for quantiles of the survival distribution (see,
e.g. Barber and Jennison, 1999). These BPCP quantile confidence procedures are simpler than the method
of Guilbaud (2001), which uses a mixture representation of the order statistics to provide an exact non-
parametric confidence procedure for quantiles from progressive type II censoring. The associated median
unbiased estimator (MUE) provides estimates of quantiles (e.g. median).

We begin by defining beta product random variables in Section 2, since they are essential in the devel-
opment of the BPCP. Our development of the BPCP first assumes continuous failure times (Section 3), but
then we allow ties through grouping of the failure times (Section 4). The BPCP requires estimation of beta
product quantiles described in Section 5. In Section 6, we discuss extensions such as MUEs of survival at
t based on the BPCP. We end with simulations, applications, and a discussion.

2. BETA PRODUCT RANDOM VARIABLES

Let B(a, b) be a beta random variable with parameters a and b, with mean a/(a + b) and variance
ab/(a + b)2(a + b + 1), and let Q(p, a, b) be the pth quantile of that beta distribution. For notational
convenience, we extend the definition of beta distribution to include the limits. Specifically, B(a, 0) with
a > 0 and B(0, b) with b > 0 are random variables with point masses at 1 and 0, respectively, so that
Q(p, a, 0) = 1 and Q(p, 0, b) = 0 for 0 < p < 1. We leave B(0, 0) undefined.

Let a = [a1, . . . , ah] and b = [b1, . . . , bh] be vectors with all values � 0 and no j such that a j = b j = 0.
Define the beta product random variable, BP(a, b), such that

BP(a, b) ∼
h∏

i=1

B(ai , bi ),

where ∼ denotes “is distributed as” and the terms in the product are all independent. Let Q(p, a, b) be the
pth quantile of BP(a, b).

In some cases, a beta product random variable simplifies to a beta random variable:

BP([a + b, a], [c, b]) ∼ B(a, b + c),

for constants a, b, and c where the beta product variables are defined. To see this for cases with a, b, c ∈
(0,∞), see Casella and Berger (2002, p. 158), and for cases with some parameters equal to 0, we can show
the result by inspecting each case. By repeated use of this property, we have
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BP([a, a − 1, . . . , a − j + 1], [1, 1, . . . , 1]) ∼ B(a − j + 1, j). (2.1)

3. CONTINUOUS FAILURE WITH NO GROUPING

3.1 Proposed confidence procedure

We define our procedure first without motivation; in later subsections, we motivate it under various censor-
ing conditions. Throughout Section 3, we assume that the failure time for the i th individual is continuously
distributed with random variable Xi and S(t) = Pr[Xi > t]. Suppose that there are n total observations,
and we observe the failure time exactly in k � n of those observations. Let the k observed failure times
be T1 < T2 < · · · < Tk , and define T0 = 0. Let Y (t) be the number at risk just before time t , and no more
individuals are at risk after tmax, and let

Y(t) =
{

[Y (T1), Y (T2), . . . , Y (Tj )] if t = Tj ,

[Y (T1), Y (T2), . . . , Y (Tj ), Y (t)] if Tj < t < Tj+1.

Similarly, define

1a(t) =
{

[1, 1, . . . , 1] j×1 if t = Tj ,

[1, 1, . . . , 1, a]( j+1)×1 if Tj < t < Tj+1,

where a = 0, 1. Let Z(t) be all the data collected up until time t . We define the 100(1 − α)% BPCP for
S(t) with t � tmax as

Lt (Z(t), 1 − α/2) = Q{α/2, Y(t), 11(t)}
Ut (Z(t), 1 − α/2) = Q{1 − α/2, Y(t), 10(t)},

(3.1)

and with t > tmax as Lt = 0 and Ut = Utmax . Note that Lt (Z(t), 1 − α/2) and Ut (Z(t), 1 − α/2) can each
be separately interpreted as one-sided 100(1 − α/2)% confidence procedures.

3.2 No censoring

We begin motivating and exploring the properties of the BPCP with the simplest case, when there are
no censored observations and no tied event times. Suppose that we observe X1, . . . , Xn independent
observations from the distribution F = 1 − S. Then, by the probability integral transformation (see, e.g.
Casella and Berger, 2002, p. 54), F(X1), . . . , F(Xn) are uniformly distributed. Let X(1) < X(2) < · · · <
X(n) be the order statistics; then F(X( j)) is the j th order statistic from a uniform distribution and is
distributed Beta( j, n − j + 1) (see, e.g. Casella and Berger, 2002, p. 230). The associated survival dis-
tribution, S(X( j)) = 1 − F(X( j)) is distributed Beta(n − j + 1, j). With no censoring, (2.1) shows that
B(n − j + 1, j) ∼ BP{Y(Tj ), 1(Tj )}, where 1(Tj ) = 10(Tj ) = 11(Tj ). Thus, the BPCP uses quantiles of
that distribution at the observed failures, and in between the observed failures the BPCP just acts conser-
vatively (see Figure 2). A formal proof that the BPCP guarantees central coverage is given in Theorem 1,
in which the no censoring setting is just a special case. Note that for t in the intervals between the death
times, this confidence procedure is equivalent to performing the Clopper–Pearson interval for a binomial
observation based on the fact that the number that survive past t is binomial with parameter S(t), and the
Clopper–Pearson interval for n − j out of n is {Q(α/2, n − j, j + 1), Q(1 − α/2, n − j + 1, j)} (see,
e.g. Meeker and Escobar, 1998).
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Fig. 2. BPCP without censoring. Recall that S(Tj ) ∼ B(n − j + 1, j). Note that the upper limits use the (1 − α/2)th
quantile of B(n − j + 1, j) in (Tj , Tj+1), while the lower limits use the (α/2)th quantile of B(n − j + 1, j) in
(Tj−1, Tj ). For any t ∈ (Tj , Tj+1), the CI is equivalent to the Clopper–Pearson interval for n − j successes out of
n trials with probability S(t).

3.3 Progressive type II censoring

Now assume progressive type II censoring (see Kalbfleisch and Prentice [2002, p. 54]), and so immediately
after each failure a fixed proportion of the remaining individuals are randomly selected to be censored.
Under this censoring scheme, no censoring occurs before the first event time, and we know from Section 3.2
that the distribution of S(T1) = S(X(1)) is exactly Beta(n, 1). After T1 there are Y (T2) subjects at risk, and
the conditional survival distribution, given survival after T1 and Y(T2), can be shown to be BP{Y (T2), 1}.
Using this type of argument, we show formally in supplementary material available at Biostatistics online
(Section A) that

S(Tj ) ∼ BP{Y(Tj ), 1(Tj )}.

This motivates the following theorem.

THEOREM 1 Under independent progressive type II censoring and assuming a continuous failure time
distribution, the 100(1 − α)% BPCP given by (3.1) guarantees central coverage for S(t).

Proof. For the proof, see supplementary material available at Biostatistics online (Section B). �

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt016/-/DC1
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt016/-/DC1
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3.4 Independent censoring

Now suppose that the censoring times are independent of the failure times, and allow censoring to happen at
any time. Although we do not formally prove guaranteed central coverage of the BPCP under this scenario,
we give some motivation to argue that the BPCP is a reasonable confidence procedure.

Consider first the lower BPCP confidence limit. Suppose that there are Y (0) − Y (T1) subjects censored
before T1 and that the observed censoring times before T1 are T01 < T02 < · · · < T0k0 , with Y (T0 j ) −
Y (T0, j+1) censored at T0 j . Then, before T01 we have n = Y (0) subjects at risk. Consider the lower CI
for S(t). For t � T01, we know that none of the n at-risk subjects had the event before T01, and if a sub-
ject had an event at T01, then the lower interval would have been Q(α/2, n, 1). We let the lower CI be
as high as that value, suggesting that we conservatively retain coverage. For the next interval, (T01, T02],
imagine that T01 was actually 0 and T02 represented a failure time. Then from the previous section a lower
CI for S(t) for t = T02 would be Q(α/2, Y (t), 1). Each of these modifications (T01 moving to zero and
T02 representing a failure) indicate a lower survival, so we treat Q(α/2, Y (t), 1) as a conservative lower
limit. We continue with this reasoning for intervals up until (T0k0 , T1]. At T1 the lower limit matches the
limit for the associated progressive type II case (i.e. matches the modification that moves all the censored
observations before T1 to T0 = 0). Continuing with this type of reasoning throughout the rest of the sample
space suggests the one-sided guaranteed coverage of the lower BPCP.

Now consider the upper limit of the BPCP. The upper BPCP limit under independent censoring matches
the upper limit progressive type II case (i.e. matches the case where all censoring times are moved to
immediately following the previous failure time). This fact appears to suggest that the upper BPCP is too
low, since knowing that the censoring times did in fact happen later than immediately after the last failure
would suggest that the survival curve was larger in that interval. But (3.1) implies that the upper limit
is constant between observed failure times, and it does not decrease between failures regardless of the
censoring pattern between failures. Although we do not formally prove that the BPCP guarantees central
coverage, we show in Theorem 2 the asymptotic equivalence of the BPCP to the usual normal theory
confidence procedures, and hence the BPCP has correct coverage asymptotically.

The Nelson–Aalen estimator of the cumulative hazard, Â(t), and its variance estimate, σ̂ 2(t), are,
respectively,

Â(t) =
∑
Tj �t

1

Y (Tj )
and σ̂ 2(t) =

∑
Tj �t

1

Y (Tj )2
.

By asymptotic normality, a 100(1 − α) confidence procedure for the cumulative hazard is Â(t) ±
�−1(1 − α/2)σ̂ (t), where �−1(p) is the pth quantile of the standard normal distribution (see, e.g.
Andersen and others, 1993). Since for continuous failure times S(t) = exp(−�(t)), where �(t) is the
cumulative hazard, a confidence procedure for S(t) is

exp{− Â(t) ± �−1(1 − α/2)σ̂ (t)}. (3.2)

Another asymptotically equivalent confidence procedure is to use the Kaplan–Meier survival estimator

Ŝ(t) =
∏
Tj �t

{
1 − 1

Y (Tj )

}
,

and the Greenwood formula for its variance (Kaplan and Meier, 1958),

τ̂ 2(t) = Ŝ(t)2
∑
Tj �t

1

Y (Tj ){1 − Y (Tj )} ,
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yielding the interval
Ŝ(t) ± �−1(1 − α/2)τ̂ (t). (3.3)

Other asymptotically equivalent confidence procedures may be constructed using transformations and the
delta method (see, e.g. Andersen and others, 1993). All of these confidence procedures are all known to
give 100(1 − α)% central coverage asymptotically, so the following theorem shows that the asymptotic
coverage of the BPCP approaches the nominal value.

THEOREM 2 Under independent censoring with continuous failure time where the censoring distribution
is the same for all individuals and Pr[C > t] > 0 for all t < tmax, where C represents the censoring random
variable, the BPCP for S(t) for t < tmax is asymptotically equivalent to the procedures given in (3.2) or (3.3).

Proof. For the proof, see supplementary material available at Biostatistics online (Section C). �

4. HANDLING TIES VIA GROUPING

The continuity of the failure times is a vital condition for the motivation of the BPCPs, but ties in failure
times are common with real data. Now we formally adjust the BPCP to allow for ties. The basic idea is
simple: tied failures can be interpreted as grouped continuous failures, and grouping hides information
about the continuous failure time, but we can extend the confidence procedures of (3.1) in a conservative
way using the monotonicity of survival distributions.

Under grouping, we only observe the number who are still at risk and the number who were known
to have failed at certain assessment times. For full generality, we define those assessment times as
0 < g1 < g2 < · · · < gm < ∞. We consider only conventional grouping for right-censored data, where if
failure observations and censored observations occur in the same interval, the censored observations are
assumed to occur after the failure observations in that interval. Since we still assume continuous survival,
the probability that a failure time would occur exactly at some g j is 0.

Let Z(t) represent the information about survival or censoring as in Section 3, only now Z(t) is unob-
served. Let Zg(gi ) be the observed data up until time gi after grouping, i ∈ {1, . . . , m}. Although not
measured continuously, it is convenient to use Zg(t) = Zg(gi ) for t ∈ (gi−1, gi ], with Zg(t) = Zg(gm)

for t > gm . Let Zg(t) be the set of all Z(t) that are consistent with Zg(t) under conventional grouping.
Then we extend the BPCP to grouped data. Define the 100(1 − α)% BPCP for S(t) applied to grouped
data as

Lt (Zg(t), 1 − α/2) = min
Z(t)∈Zg(t)

Lt (Z(t), 1 − α/2)

Ut (Zg(t), 1 − α/2) = max
Z(t)∈Zg(t)

Ut (Z(t), 1 − α/2),
(4.1)

where Lt (Z(t), 1 − α/2) and Ut (Z(t), 1 − α/2) are given in (3.1). Equivalently, for t ∈ (gi−1, gi ] with
i ∈ {1, . . . , m},

Lt (Zg(t), 1 − α/2) = Q{α/2, Y(gi ), 11(gi )}
Ut (Zg(t), 1 − α/2) = Q{1 − α/2, Y(gi−1), 10(gi−1)},

(4.2)

and, for t > gm , Lt = 0 and Ut = Ugm . Expression (4.2) is more straightforward for implementation and is
motivated by the monotonicity of both the upper and lower limits of the continuous BPCP. Expression (4.1)
clearly shows that if a BPCP under continuity guarantees coverage, then it will continue to guarantee
coverage under conventional grouping. If there are intervals with more than one failure, then since we

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt016/-/DC1
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assume all censoring in an interval happens at the end, the beta product vectors may be collapsed using
(2.1); see supplementary material available at Biostatistics online (Section D).

5. ESTIMATION OF THE BETA PRODUCT QUANTILES

The calculation of Q(p, a, b) = Q(p) used in the definition of the BPCP is not straightforward
(Johnson and others, 1995), so we propose two implementations: the Monte Carlo implementation of
the BPCP (BPCPMC) and the method of moments implementation of the BPCP (BPCPMM). To esti-
mate Q(p) in BPCPMC, we take m Monte Carlo replicates, where the i th replicate is Ri = ∏ j

h=1 Bih with
Bih ∼ Beta(ah, bh). Then we estimate Q(p) with the empirical quantile of the m Monte Carlo Ri values.

For the method of moments implementation, we estimate Q(p, a, b) with the pth quantile of a beta
distribution with the same mean and variance as BP(a, b). In particular, when no ai = 0 and no bi = 0,

we use the pth quantile of a beta distribution with parameters a∗ = (u1 − u2)u1/(u2 − u2
1) and b∗ =

(u1 − u2)(1 − u1)/(u2 − u2
1), where u1 = E(BP(a, b)) = ∏ j

i=1(ai/(ai + bi )) and u2 = E(BP2(a, b)) =∏ j
i=1(ai (ai + 1)/(ai + bi )(ai + bi + 1)). Fan (1991) has shown that this method works fairly well by

comparing the first 10 moments of this beta distribution to the first 10 moments of the true distribution of
BP(a, b) for several examples. Modification of the method to cases with ai = 0 or bi = 0 is straightforward.

6. EXTENSIONS

6.1 Confidence procedures on quantiles

Once we have a CI procedure for S(t) for any t , say (Lt , Ut ), we can invert that procedure to provide CIs for
quantiles (Barber and Jennison, 1999). A 100(1 − α)% CI for S(t0) can represent a test of H0 : S(t0) = q0,
where we fail to reject the null hypothesis if q0 ∈ (Lt0 , Ut0). For most of this paper we have fixed t0, but
we could alternatively have fixed q0. Since S(t0) = q0 and S−1(q0) = t0 are equivalent, a 100(1 − α)%
confidence procedure for S−1(q0) is the set of all t for which q0 ∈ (Lt , Ut ).

6.2 MUE of survival

Because we have a confidence procedure that is defined for all confidence levels, we can create an MUE
of the survival from the confidence procedure (Read, 1985). Specifically, the MUE of S(t) is motivated
by letting α → 1, and is defined as

S̃(t) = 1
2 Lt (Z, 0.5) + 1

2Ut (Z, 0.5).

We performed a simple simulation. Let n = 25 and suppose that the failure times are distributed exponen-
tially with mean 1 and the censoring times are distributed uniformly on (0, 5). We simulated this 10 000
times. Because the Kaplan–Meier is not defined after the largest observation if it is censored, we define it in
three ways after the last observation: KML defines it as 0, KMH defines it as the Kaplan–Meier at the last
value, and KMM=0.5*KML+0.5*KMH. The simulated mean squared error (MSE) for S̃(t) was between
2.6% and 5.5% less than the MSE for all three Kaplan–Meier methods for values not at the extremes (when
S(t) = 0.9, 0.75, 0.5, or 0.25), and was between 22% and 28% less than the Kaplan–Meier methods at
S(t) = 0.1; however, the MSE for S̃(t) at S(t) = 0.99 was higher than the three Kaplan–Meier estimators,
and at S(t) = 0.01 was higher than KML and KMM. Simulated MSE details are in supplementary material
available at Biostatistics online (Section E).

To gain intuition for this result, we examine the case of no censoring. Let t ∈ (X( j), X( j+1)), so the
Kaplan–Meier at t is Ŝ(t) = (n − j)/n. The survival estimator that is the best invariant one for monotonic

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt016/-/DC1
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt016/-/DC1
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt016/-/DC1
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transformations under the squared error loss function is Š(t) = (n − j + 1)/(n + 2), which pulls the
Kaplan–Meier estimator toward 1

2 (see, e.g. Ferguson, 1967, Section 4.8). Our MUE is

S̃(t) = 1
2 Q(0.5, n − j + 1, j) + 1

2 Q(0.5, n − ( j + 1) + 1, j + 1).

For large n, the beta distribution approaches the normal distribution and the median approaches the mean,
so our MUE is approximately

S̃(t) ≈ 1

2

(
n − j + 1

n + 1

)
+ 1

2

(
n − j

n + 1

)
= n − j + 1/2

n + 1
.

In other words, it is approximately halfway between Š(t) and the Kaplan–Meier estimator Ŝ(t). For small
n, we would expect our estimator to be between those two estimators, and hence S̃(t) extends this appealing
shrinkage to censored data (see also Borkowf, 2005, on shrinkage estimators for Kaplan–Meier).

For situations with extreme censoring toward the end of follow-up with few additional failures (see, e.g.
Figure 3), the MUE will decrease substantially over time, implying that there is real information about a
survival decrease at those time points, when in fact the MUE decrease may be caused only by the lack of
confidence in the estimator. However, the MUE can be appealing in the middle part of the survival curve
as shown by our simulation.
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Fig. 3. National Wilms Tumor Study Group, third and fourth clinical trials (Breslow and Chatterjee, 1999). The black
middle curve is the Kaplan–Meier estimator for time to relapse for the n = 4028 children included in the dataset in the
R survival package (Therneau, 2012). Thick gray lines are standard CIs (Greenwood variance using log transformation)
and the black CIs are the BPCP intervals.
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7. SIMULATIONS

We conducted a simulation study to evaluate coverage of the BPCP compared with competing methods
under a range of scenarios. For this simulation, we studied both BPCPMM and BPCPMC (using 100 000
Monte Carlo samples). The competing asymptotic methods were as follows: Greenwood (log), Greenwood
variance assuming normality on log(Ŝ(t)) (default in Therneau (2012)); Modified GW (log), same as
previous but for the lower limit multiply the variance at t by a factor of Y (Tj )/Y (t), where Tj is the largest
observed survival less than or equal to t (Therneau, 2012, conf. lower option); Borkowf (log), a differ-
ent modification that also gives wider intervals with more censoring and assumes normality on log(Ŝ(t))
(Borkowf, 2005); Borkowf (log,shrink), which uses a shrinkage estimator of the Kaplan–Meier estima-
tor with a hybrid variance estimator (Borkowf, 2005); Strawderman–Wells (see Strawderman and others,
1997, Equation (9)), an Edgeworth expansion method; Thomas–Grunkemeier (Thomas and Grunkemeier,
1975), an empirical likelihood ratio method; Constrained Beta (Barber and Jennison, 1999); Boot-
strap, a non-parametric bootstrap method (Efron, 1981; Akritas, 1986); and Constrained Bootstrap
(Barber and Jennison, 1999), where the last two methods use 1000 bootstrap samples. Finally, we also
considered the inefficient binomial approach which guarantees coverage, but only includes individu-
als whose censoring times are known to be greater than or equal to the test time (BinomialC). Unlike
the other methods, BinomialC requires knowledge of the censoring times even for individuals with
observed failures. However, there are real-life situations where this information would be available. For
example, consider a staggered entry trial where all censoring occurs at the end of the trial and we
wish to test at four years. To use the BinomialC method, we only include patients who began the trial
at least 4 years prior to the end, so that censored observations will not be included nor will failures
for patients enrolled after 4 years prior to the end. Because all the methods have asymmetric cover-
age, instead of presenting results in terms of coverage, we present rejection rates for both one-sided
tests.

We first simulated the size of the tests. We let n = 30 subjects, where the failure times are exponential
with a mean of 10 and the independent censoring times are uniform on 0–5. We ran 100 000 replications. We
tested at times 1–4 and, for each time, list the survival, the simulated average number of observed failures
(which we write as Ê(N (t))), and the simulated number at risk (Ê(Y (t))). The simulation results are given
in Table 1 as the percent error on each side of the 95% CI, so guaranteed central coverage would have 2.5%
or less. Overall, we see that the asymptotic methods (the first nine rows) have some situations where the
lower limit is too high, giving error rates larger than 2.5%. At t = 1 when there are few observed failures,
seven of the asymptotic methods have 6.7% error rates for the lower bound. Note the Greenwood (log)

has up to 11.2% simulated lower error rates. Among the asymptotic methods, the Constrained Bootstrap
is best (and most computationally time consuming), but it still has a case where the error rate is about
twice what it should be (at t = 4 the simulated lower error rate is 4.9%). None of the upper limits appear
much higher than 2.5%. Some of the methods which can have much larger upper intervals than the BCPC
(see Figure 1), have much lower simulated size on the high end than the BPCP. Importantly, the BPCP and
BinomialC methods are the only ones that retain the proper coverage for both sides.

We repeated simulations using a mixture of exponentials to mimic the Nash and others (2007) data (see
Section 8.1), and the results were similar although slightly less extreme (the maximum lower error rates for
the asymptotic methods ranged from 3.8% to 7.0%); see supplementary material available at Biostatistics
online (Section F). The problems with a type I error rate are more severe in the exponential simulation
than in the mixture of exponentials. This is presumably because the model based on the Nash and others
(2007) data has a flatter survival curve during the time when there is much censoring, so that failure to
address the censoring between events is less critical than for the simple exponential model.

Since both the BPCP methods and the BinomialC method have proper simulated coverage for both
sides, we compare them by checking the power (i.e. testing null hypotheses that are different from the
true values). We used the same simulation set-up as in Table 1, except that we test two different false null

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt016/-/DC1
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt016/-/DC1
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Table 1. Simulated size, n = 30 with X ∼ Exponential(mean = 10) and C ∼
U (0, 5)

t = 1 t = 2 t = 3 t = 4
S(t) = 0.90 S(t) = 0.82 S(t) = 0.74 S(t) = 0.67

Ê(N (t)) = 2.6 Ê(N (t)) = 4.4 Ê(N (t)) = 5.6 Ê(N (t)) = 6.2
Ê(Y (t)) = 21.7 Ê(Y (t)) = 14.7 Ê(Y (t)) = 8.9 Ê(Y (t)) = 4.0

Low High Low High Low High Low High

Greenwood (log) 6.7 0.2 10.0 0.3 9.3 0.2 11.2 0.1
Modified lower 6.7 0.2 7.3 0.3 5.6 0.2 3.7 0.1
Borkowf (log) 6.7 0.1 6.8 0.2 5.3 0.2 3.9 0.0
Borkowf (log, shrink) 6.7 0.2 4.7 0.2 3.7 0.2 2.8 0.0
Strawderman–Wells 6.7 2.6 4.1 2.0 4.6 1.8 6.5 1.4
Thomas–Grunkemeier 6.7 2.1 3.8 2.3 4.1 2.4 5.6 2.4
Constrained Beta 0.0 1.4 3.6 1.9 4.6 2.1 6.0 2.5
Bootstrap 6.7 1.2 6.4 1.3 6.2 1.5 7.5 1.3
Constrained Bootstrap 0.0 2.7 2.2 2.4 3.2 2.3 4.9 1.9
BinomialC 0.0 1.4 0.7 1.4 0.5 1.4 0.1 1.0
BPCP (MM) 0.0 1.3 0.3 1.4 0.1 1.3 0.0 1.1
BPCP (MC) 0.0 1.3 0.3 1.4 0.1 1.5 0.0 1.3

Simulation had 100 000 replications. Percent error on each side of 95% interval (nominal is 2.5%).

Table 2. Simulated power, n = 30 with X ∼ Exponential(mean = 10) and C ∼ U (0, 5)

t = 1 t = 2 t = 3 t = 4
S(t) = 0.90 S(t) = 0.82 S(t) = 0.74 S(t) = 0.67

Ê(N (t)) = 2.6 Ê(N (t)) = 4.4 Ê(N (t)) = 5.6 Ê(N (t)) = 6.2
Ê(Y (t)) = 21.7 Ê(Y (t)) = 14.7 Ê(Y (t)) = 8.9 Ê(Y (t)) = 4.0

S0 = 0.67 S0 = 0.99 S0 = 0.45 S0 = 0.98 S0 = 0.30 S0 = 0.97 S0 = 0.20 S0 = 0.96

BinomialC 73.0 56.5 86.4 65.5 81.1 64.3 53.4 49.3
BPCP (MM) 76.3 50.9 92.5 83.8 90.4 87.0 65.9 90.3
BPCP (MC) 76.1 51.6 92.2 83.7 89.2 88.0 60.6 90.9

Percent rejected for testing H0 : S(t) = S0(t) = S0.

hypotheses for each time point t , the null that S(t) is exponential with mean equal to either 2.5 (lower than
the truth) or 100 (higher than the truth). In Table 2, we give the percent rejection rates for the three methods
that have at least proper coverage. The results exhibited in Table 2 show that the BPCP typically has better
power than BinomialC, and, not surprisingly, this advantage improves as censoring increases. We note
that when the first year survival is tested against S0(1) = 0.99, the binomial has superior power to BPCP
methods. This may be a function of luck and due to the fact that the power for exact binomial tests is not
monotonically increasing in the sample size due to the discreteness of the tests (see, e.g. Chan and Bohidar,
1998, Table II). Typically, the BPCP methods will have larger power since they will use more of the
data.

Finally, note that in both simulation tables the BPCP (MM) and the BPCP (MC) methods generally
match quite well. Thus, the MM implementation can be recommended for routine use since it is much
faster computationally.
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8. APPLICATIONS

8.1 Pilot study of treatment in severe systemic sclerosis

Between 1997 and 2005, a cohort of 34 patients with severe systemic sclerosis was enrolled in a single-
arm pilot study of high-dose immunosuppressive therapy and autologous hetapoietic cell transplantation
(Nash and others, 2007). The entry criteria were such that the expected 5-year mortality rate with conven-
tional treatment would be about 0.50. The median follow-up for this study was 4 years.

Figure 1 presents the Kaplan–Meier estimator for all-cause mortality in this cohort, along with point-
wise 95% CIs using BPCPMM, as well as some of the competing methods. Since the patient population was
selected to have approximately 0.50 mortality rate at 5 years with conventional therapy, it would be natural
to assess how the results at the same time point with this alternate regimen compare. The survival estimate
in the new cohort at 5 years is 0.636, suggesting an improved survival. Nonetheless, all methods include
0.50 in their 5-year 95% CIs, and the BP CI (0.411, 0.809) has the lowest lower bound of all the methods.
The methods are relatively similar at the 5-year point since there was a death just prior at 4.93 years. The
methods are especially divergent at 6.3 years, a point where most patients who were at risk at the prior
death have now been censored, so there are only four patients remaining at risk; at this time, the BP CI is
(0.271, 0.809), whereas the Greenwood is (0.479, 0.845). We know from simulations that only the BPCP
is likely to have proper coverage (see, e.g. Table 1). We also note that there is no censoring during the first 2
years, and at any point in that time period the BPCP is a Clopper–Pearson interval. Across time, the upper
bound of the BP CI is the lowest of all methods except Strawderman–Wells and Thomas–Grunkemeier,
and the lower bound of the BPCP is the lowest throughout.

As shown in simulations, unlike competing methods, our procedure would allow us to test whether the
survival at 5 years is greater than 0.50 with the type I error rate less than or equal to 0.025. If we had used
the Greenwood CI or other competing CIs, we would not have been assured control of the type I error rate
at 0.025.

The median survival time estimated by Kaplan–Meier is 6.35 years and the BPCP 95% CI on the median
is (4.14,∞). The upper limit is infinity because there is no value of t for which Ut < 0.5.

8.2 National Wilms Tumor Study

To emphasize that the differences in the BPCPMM and the Greenwood (log) method are slight when
the sample size is large, we plot in Figure 3 the Kaplan–Meier estimator with the two types of CIs
for 4028 children in the third and fourth clinical trials of the National Wilms Tumor Study Group
(Breslow and Chatterjee, 1999; Therneau, 2012). The event is time until relapse and there were 571 who
relapsed, but only 1 who relapsed after 10 years. We see that the two types of CIs match well early in the
study when there are a large number of individuals at risk, but at the end of the follow-up, when there
are fewer individuals still at risk, we see the substantial differences between the methods. This application
points to an undesirable aspect of the MUE as discussed at the end of Section 6.2.

9. DISCUSSION

We have proposed a pointwise CI for right-censored data, and have shown that it guarantees central cover-
age when the data are uncensored or censored with Progressive Type II censoring. For independent censor-
ing, we have shown that our BPCP is asymptotically correct, and simulations have shown that it maintains
proper coverage. The BPCP for survival can be inverted to get CIs for quantiles of the survival distribution,
and the good coverage properties of the BPCP for survival are expected to carry over to its inversion as well.
The calculations needed to do the BPCP (method of moments implementation) are straightforward and can
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be done quickly using the bpcp R package. The full range of CIs for the National Wilms Tumor Study
(n = 4028) of Figure 3 took less than a second to calculate on a standard PC (1.8 GHz, 3.25 GB RAM).

The BPCP offers protection in settings where other methods fail, and it essentially matches the other
methods when they succeed. Thus, we believe BPCP should be the preferred method for constructing
pointwise CIs for the Kaplan–Meier curve.

10. SOFTWARE

An R package called bpcp is available online at http://cran.r-project.org. The package includes software
and documentation to calculate the BPCP methods and most of the competing methods.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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