Skip to main content
. 2013 Aug 26;2013:239628. doi: 10.1155/2013/239628

Table 4.

F-score of various classification methods on eight datasets, where bold represents the best result, underline denotes the second best, and italic labels the worst one in each column, respectively.

Methods Brain_Tumor1 Brain_Tumor2 Leukemia1 Leukemia2 Lung_Cancer SRBCT 11_Tumors 14_Tumors
SVM-OAA 0.6524 0.6358 0.9542 0.9328 0.9068 0.9994 0.8468 0.4799
SVM-OAO 0.6732 0.6302 0.9430 0.9315 0.8976 0.9842 0.8322 0.4581
SVM-DDAG 0.6459 0.6420 0.9297 0.9162 0.8762 0.9976 0.8106 0.4564
SVM-ECOC 0.6538 0.6286 0.9418 0.9473 0.9018 0.9902 0.8528 0.4632
SVM-OAA(THR) 0.6251 0.6845 0.8665 0.9602 0.8621 0.9804 0.8453 0.5096
SVM-OAA(RUS) 0.6832 0.6732 0.9352 0.9559 0.9062 0.9992 0.8569 0.5124
EnSVM-OAA 0.6458 0.6437 0.9598 0.9437 0.8975 1.0000 0.8664 0.4907
MCSVM 0.6726 0.6388 0.9562 0.9306 0.9011 0.9782 0.8229 0.4752
Ramp-MCSVM 0.6918 0.7032 0.9478 0.9375 0.9128 0.9718 0.8776 0.4948
AdaBoost.NC 0.7014 0.6959 0.9724 0.9596 0.9216 1.0000 0.8456 0.4749
EnSVM-OAA(THR) 0.6325 0.7448 0.9457 0.9774 0.9022 0.9924 0.8768 0.5869
EnSVM-OAA(RUS) 0.7345 0.7029 0.9648 0.9617 0.9214 1.0000 0.8952 0.5637