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Abstract

Purpose—Fetal MRI volumetry is a useful technique but it is limited by a dependency upon
motion-free scans, tedious manual segmentation, and spatial inaccuracy due to thick-slice scans.
An image processing pipeline that addresses these limitations was developed and tested.

Materials and methods—The principal sequences acquired in fetal MRI clinical practice are
multiple orthogonal single-shot fast spin echo scans. State-of-the-art image processing techniques
were used for inter-slice motion correction and super-resolution reconstruction of high-resolution
volumetric images from these scans. The reconstructed volume images were processed with
intensity non-uniformity correction and the fetal brain extracted by using supervised automated
segmentation.

Results—Reconstruction, segmentation and volumetry of the fetal brains for a cohort of twenty-
five clinically acquired fetal MRI scans was done. Performance metrics for volume reconstruction,
segmentation and volumetry were determined by comparing to manual tracings in five randomly
chosen cases. Finally, analysis of the fetal brain and parenchymal volumes was performed based
on the gestational age of the fetuses.

Conclusion—The image processing pipeline developed in this study enables volume rendering
and accurate fetal brain volumetry by addressing the limitations of current volumetry techniques,
which include dependency on motion-free scans, manual segmentation, and inaccurate thick-slice
interpolation.
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Introduction

Background

In-vivo fetal imaging techniques such as ultrasonography and magnetic resonance imaging
(MRI) are of paramount importance in evaluating and determining the development of the
fetus. Biometric normative values for gestational age (GA) have been established in-vitro by
evaluation of fixed brains, and also through measuring large cohorts of same-age fetuses
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using ultrasonography. Fetal MRI is a relatively newer modality, utilized in the evaluation of
high-risk pregnancies in which there is concern for anomalies based on identified risks, such
as advanced maternal age, family history, maternal exposures, and anomalies detected by
routine prenatal ultrasound.

MRI has been useful in evaluating abnormalities of fetal structures which are difficult to
thoroughly assess by prenatal sonography alone, such as those involving the fetal brain,
chest, and airway [1-4]. MRI does not involve ionizing radiation, has no known adverse
effects on either the pregnant patient or the fetus, and has many advantages over
sonography, including that it is less limited by decreased amniotic fluid, maternal obesity, or
difficult fetal position.

Fetal cerebral biometry mainly involves length measures which are assessed by obstetric
imagers on two-dimensional views. The most commonly obtained measures of fetal brain
size include cerebral and skull biparietal diameter (BPD), occipitofrontal diameter (OFD),
and head circumference (HC). Transverse cerebellar diameter, vermian depth and height,
corpus callosal length, and the size and distance between orbits are also frequently measured
[5]. Normative biometric values have been obtained through assessments of very large
cohorts of fetal sonographic images. Reference biometric values for the fetal brain have
been recently obtained based on large sets of MRI images of 589 fetuses [6].

The advanced imaging technologies beyond 2D sonography, i.e. 3D ultrasound and MRI,
lead to more illustrative biometric measures based on the volume and shape of fetal organs
and structures. Fetal brain volumetry is considered to be crucial in the evaluation of fetal
development [7].

Related work

Many articles have addressed fetal brain volumetry using both MRI and 3D ultrasound [7—
16], but little progress has been made in the computation methods used. Most techniques
rely on the (modified) Cavalieri method of unbiased volume estimation. On the basis of the
Cavalieri principle, an unbiased estimation of the mean total volume of an arbitrary-shaped
object can be obtained from the areas on systematic-uniform-random slices (sections).
Several methods exist for estimation of the areas of slices, but the most efficient method is
considered to be point-counting.

Early MRI-based volumetry methods [10,11] relied on slices as thick as 10 mm which
induce too great a measurement error for very small fetal brain sizes (e.g. 50th percentile
normal cerebral BPD is 80 mm for a 35 week GA fetus). Similar volumetry techniques
based on ultrasonography [7,13] also rely on manual tracing and measurement of the area of
8-10 serial coronal cuts. In these studies, the fetal brain volume is estimated by
automatically adding vertical cylindrical slices in between the cuts which resembles a linear
interpolation between thick-slice sections. In another investigation based on ultrasound [16],
a spherical shape was assumed for fetal head and the estimated volumes were compared to
published postmortem data on fetal brain weight matched for GA and the specific gravity of
the brain. An estimation factor was hence obtained for brain volumetry.

In other studies [8,12], brain volumetry was performed by selecting the best original single-
shot fast spin echo (SSFSE) MRI scans obtained during a single scanning session. Volume
calculation was performed in these studies through dedicated software, but again, the
computation was based on MRI scans of 4-5 mm slice thickness and use of manual tracing.
Volumetry was performed for ten fetuses in [12] and for fifty fetuses of 17-37 weeks GA in
[8]. The length of the time required to perform manual tracings has been identified as an
important limitation [8].
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Three critical limitations exist in fetal brain MRI volumetry techniques; first, fetal and
maternal motion may significantly degrade the MRI scans and their suitability for volumetry
calculation. Although high-quality slices are normally obtained by SSFSE due to short slice
acquisition time, severe inter-slice motion-induced differences frequently appear in out-of-
plane views. Therefore, the acquired SSFSE scans can rarely be resampled and translated to
acceptable volumetric images. Second, thick slices (normally 3-5 mm) are acquired in fetal
MRI in order to maintain a high signal-to-noise ratio. This limitation results in considerable
approximation errors in resampling and volumetry, specifically when examining tiny sized
fetal structures. Third, manually tracing and segmenting fetal brain structures is tedious and
time-consuming, significantly reducing interest in the routine use of fetal brain volumetry.

In order to address the limitations of fetal brain MRI volumetry techniques, we have
developed an image processing pipeline based on inter-slice motion correction, super-
resolution volume reconstruction, intensity non-uniformity correction and supervised
segmentation. Our method relies on a recently developed technique for super-resolution
volume reconstruction from slice acquisitions [17,18]. The developed technique provides
high-resolution volumetric images which represent coherent anatomic boundaries that are
not apparent in original SSFSE scans. Therefore, the reconstructed volumetric images
allowed us to develop supervised image segmentation techniques in order to improve the
accuracy and ease of obtaining precise fetal brain volumetry. In the three sections that
follow, the methods are described, experiments and results are reported, and the broad
applications, limitations, and possible improvements are discussed.

Fetal brain MRI involves multiple single-shot fast spin echo (SSFSE) image acquisitions in
the orthogonal views of the fetus [19-21] which normally provide high-resolution and high-
quality slices in the presence of intermittent fetal and maternal motion. However, due to
thick-slice acquisitions and inter-slice motion, these images do not reflect the anatomic
details and coherent tissue boundaries in the three-dimensional views thus cannot be
effectively used for tissue segmentation and precise brain volumetry. In this section, we
present a description of our image processing pipeline based on motion correction, super-
resolution volume reconstruction, and supervised brain tissue segmentation which allows
accurate fetal brain volumetry.

Volume reconstruction

There have been a few recent studies addressing high-resolution volumetric image
reconstruction from multiple multislice MRI scans [22—24]. These techniques rely on inter-
slice motion correction and scattered data interpolation (SDI) for volumetric image
reconstruction. There are technical differences between these techniques based on motion
correction approaches and the SDI methods used [22—24]. Nevertheless, these techniques do
not provide an appropriate mathematical formulation to justify that the reconstructed volume
is a minimum error representation of the underlying anatomy given the acquired thick-slice
scans.

In our recent work on super-resolution volume reconstruction from slice acquisitions
[17,18], we developed a mathematical framework for error minimization based on a slice
acquisition model. This approach considers a physical model for the SSFSE scans as stacks
of thick slices oriented in the three-dimensional space.

The slice acquisition model is a forward model, which describes how the acquired slices are
obtained from the imaged object during the MRI slice acquisition procedure. Figure 1
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depicts a simple diagram of the slice acquisition model. This model incorporates motion of
the imaged object in three-dimensional space and the MRI slice acquisition process which
involves slice selection, signal acquisition, quantization and sampling. The output is a digital
representation of a thick slice of the imaged object.

In the super-resolution volume reconstruction formulation, a discrete version of this model is
considered in which the input is a desired high-resolution volumetric representation of the
imaged object. The input and output images are represented by vectors of the image voxels
in the lexicographical order. All the image operators between the input and the output can be
modeled as matrix operations, thus a linear model representation is achieved. The super-
resolution volume reconstruction is thus defined as the inverse problem of finding the
desired high-resolution representation of the imaged object given a sufficient number of
acquired slice scans. The formulation and solution of this linear inverse problem is
thoroughly discussed in [17] and [18].

It is worth noting that relatively accurate models can be obtained for the blocks associated
with the MRI signal acquisition process (i.e. slice selection, signal acquisition, and
sampling). This is achieved through the physics of MRI. On the other hand, the motion of
the object cannot be physically modeled and should be estimated. The motion estimation
and volume reconstruction problems are considered to be separable, thus it is assumed in
solving the volume reconstruction problem that the motion is accurately estimated. This
assumption may not be always correct. We will briefly discuss about the motion estimation
and its incorporation in the volume reconstruction algorithm in the section that follows.

Slice motion estimation and scattered data interpolation

Slice motion estimation in fetal MRI is quite difficult. We utilize a slice-to-volume
registration technique discussed in [17] and [18]. This technique is similar to the techniques
used in [22] and [23]; however, there are implementation differences based on the cost
functions used and the optimization techniques. In slice-to-volume registration, the motion
parameters of each slice are computed by registering that slice to a reference volume. For
each slice, a 6 degree-of-freedom three-dimensional rigid transformation is computed by
minimizing the mean square intensity differences (MSD) between that slice and the
reference volume. Nevertheless, a high-resolution reference volume is not available for this
purpose. Therefore, an approximation of the reconstructed volumetric image is used as the
reference for registration. This approximation is initially computed as the average of the
resampled SSFSE scans and is improved through iterations of slice motion estimation and
super-resolution volume reconstruction. The iterative algorithm is illustrated in Fig. 2.

After slice-to-volume registration, the slice image voxels will not be on a regular grid and
are considered as scattered data points in the three-dimensional space. Scattered data
interpolation (SDI) is required to obtain a first estimation of the reconstructed volume image
from this data. The SDI approach utilized here is based on local intensity injection through
Gaussian kernels. The scattered data points obtained from motion-corrected slices are
mapped to their nearest neighbor grid points in the reconstructed image space, and their
intensity values are injected into the neighborhood points through Gaussian kernel weights.
This initial estimate of the reconstructed volume is refined through maximum likelihood
super-resolution volume reconstruction developed and discussed in [18]. We refer to this
entire iterative reconstruction algorithm as ML-SVR here, for maximum likelihood super-
resolution volume reconstruction.
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Intensity non-uniformity correction

The correction of intensity non-uniformity is crucial prior to automated image segmentation.
The intensity non-uniformity artifacts can be severe in fetal images due to weak signal, fetal
positioning, cardiac coil placement, and magnetic field bias. We use the fully automatic
entropy minimization approach of Mangin for estimating a smooth multiplicative field for
intensity non-uniformity correction [25]. The idea is to find the parameters of a regular grid
of points with cubic Spline interpolation as a smooth model of the correction field (F,). The
optimal correcting field is defined as the global minimum of a multiterm cost function:

F?ptzarg min[ K, H(F - X)+K,R(F:)+K, M(F.X)] 1)
F.

where Xis the reconstructed volumetric image, H (F X) is the entropy of the corrected
image, R (F,) is a regularization function which measures the field smoothness, and M (F,
X) is a quadratic measure of the distance between the reconstructed volume and the
corrected volume. The weighting constants are set as Ky =1, Kp=0.01, and Ky,= 0.5, and
the grid point spacing was set between 32 and 64 mm in our experiments depending on the
size of the image and the intensity distortions. We refer to [25] and [26] for the details of the
algorithm and implementation.

Segmentation

Segmentation of fetal MRI images is very challenging due to low resolution, low signal
contrast, the differences in developing brain tissue types, and motion and intensity non-
uniformity artifacts. Therefore, most of the studies on fetal brain volumetry rely on manual
tracings for segmentation of original thick-slice SSFSE scans. The super-resolution
reconstruction of high-resolution volumetric images discussed earlier allows us to use
automated segmentation algorithms more effectively. Since our goal is brain volumetry, we
focus on the segmentation of brain tissue and cerebrospinal fluid (CSF). Bone structures
such as skull are hypointense and the CSF is hyperintense on T2-weighted fetal MRI
images, so if the motion artifacts and intensity non-uniformity are effectively corrected by
the algorithms discussed in the previous sections, automated segmentation is feasible.

Nevertheless, due to the complexity and high variability of the developing brain tissue and
the differences in contrast due to clinical imaging parameters and the positioning of the fetal
brain, it is difficult to establish a set of parameters for automated segmentation of fetal
brains for all gestational ages.

In order to eliminate manual tracing, we developed a supervised automated segmentation
algorithm which involves sequential application of intensity-based classification, connected
components labeling, morphological filtering, and geodesic active contours level set
segmentation. We use the implementation of these components in ITK [27]. An algorithmic
overview is shown in Fig. 3. The segmentation is interactively initialized, and no manual
tracing is needed. Prior to intensity-based classification, the intensity non-uniformity
corrected volumetric image (X_) is passed through anisotropic diffusion Gaussian filtering
for edge-preserving noise reduction.

The first step in segmentation is an intensity-based classification based on multiple Otsu’s
histogram thresholding method. This method provides image intensity thresholds that
maximize the between-class variances for multiple intensity-based classifications. We use a
fast multiple thresholding implementation of this method based on [28]. In order to
effectively classify the developing brain tissue types such as gray matter, myelinated and
unmyelinated white matter, germinal matrix, CSF, skull, scalp, etc., we use ten intensity
thresholds in this stage. However, due to the variability of tissue-type contrast and the lack
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of references for different gestational ages, these class labels cannot be automatically
mapped to the tissue types. Therefore, in this stage the user supervises the results and
chooses the labels that represent the brain tissue. This is a simple task that can be done
quickly by a trained user.

The desired labels are then passed to the connected components algorithm. In this stage,
unique labels are assigned to connected structures in the image based on run length encoding
along raster lines. Partial voluming is normally problematic in intensity-based segmentation;
therefore, we use morphological operations for eliminating the effects of partial voluming.
In specific, a thin layer in the boundary of CSF (hyperintensity) and skull (hypointensity) is
often mis-classified as brain parenchyma due on its average intensity value due to partial
voluming. This layer is filtered by a morphological erosion operation of one voxel radius
size on the outer boundary of CSF.

After connected components and morphological filtering we have approximate connected
intensity-based segmentation of different structures of interest. For brain volumetry, two
main classes are extracted; CSF and the brain parenchyma which mainly includes white
matter, gray matter, and germinal matrix. Although our segmentation method allows the
exact computation of CSF and parenchymal volumes separately, the brain volume has in
past practice been computed as the volume enclosed by brain parenchyma, including the
ventricles. The union of segmented ventricular CSF component and the brain parenchyma
undergoes a morphological closing operation (radius of 3 voxels) to achieve a connected
brain volume mask.

The final stage in our segmentation algorithm is based on geodesic active contours level set
segmentation and is used to refine the segmentation from the previous stages. The reader is
referred to [29,30] and [31] for detailed description of the level set image segmentation
techniques. The idea is to formulate the boundary of the segmentation as a moving surface
starting from an initial contour and propagating through the image based on a speed function
(S). The initial contour is defined by the labeled voxels obtained from the previous stages of
segmentation. The problem is then formulated by the time evolution of a level set function
(¢) which is a function of position of the points on the contour (x) and time (9:

¢:+S [V§| =0sgivend(x, 1=0) (2)

The zero level set of this evolving function is always identified with the propagating surface.

The definition of the speed function is very important. The speed of propagation should be
slow in the edge regions of the image structures and fast inside the structures with uniform
intensity values. In the geodesic active contours, the speed function is simply defined as the
edge potential map of the image, which has values close to zero in regions near the edges
and values close to one inside the structures. The edge potential map is computed from the
image gradient obtained from a derivative of Gaussian operator (  * G):

8(Xe)=exp(=(VxG)(Xc))  (3)

We use an implementation of the fast sparse field level set method developed by Whitaker
[32] in ITK [27]. This method performs calculations and updates only in a neighborhood of
the zero level set and is quite fast and efficient.
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Results

Fetal MRI data

Fetal MRI data were obtained from clinical MRI of patients with diagnosed or suspected
cases of fetal anomalies after diagnostic ultrasonography. Clinical fetal MRI was performed
using a 1.5-T TwinSpeed Signa system (GE healthcare) and an 8-channel phased-array
cardiac coil, without maternal sedation or breath-hold, with the mother in left decubitus
position to minimize caval compression. The protocol involved multiple acquisitions in the
fetal sagittal, axial and coronal views using half-Fourier acquisition single-shot fast spin
echo (SSFSE) magnetic resonance imaging with TR varying between 1,000 and 4,500 ms;
TE varying between 80 and 100 ms; variable field of view based on the maternal and fetal
body size (between 24 and 40 cm); variable matrix size between 160 and 512; and slice
thickness of 3 or 4 mm. Clinical fetal MRI at our institution involves SSFSE scans with
different TR and TE values which result in different image contrasts. For the experiments in
this study we only use sets of SSFSE scans with the same contrast.

T2-weighted SSFSE is particularly useful in studying brain structure and structural
abnormalities as it provides very high in-plane resolution and appropriate contrast for the
developing brain in-utero [19,20]. Motion of the fetus does not frequently affect the in-plane
slice quality and resolution of SSFSE, but severe inter-slice motion artifacts pose major
limitations for the reconstruction of volumetric images from these images. Twenty-five
datasets (cases) were obtained from the database. The age range of these fetuses was
between 19.28 and 38.43 weeks (mean 28.03, stdev 6.55). Each dataset of the original
images consisted of 3-11 (mean 5.88, stdev 2.22) SSFSE scans in fetal sagittal, coronal or
axial planes. Table 1 shows the main parameters of these datasets for reconstruction and
analysis in this study. These parameters include the gestational age (GA) of the fetus,
number of input scans (M), number of slices (7), and finally slice thickness (Asy) and matrix
resolution (Ap) in millimeters.

Fetal brain volume reconstruction and segmentation

For the 25 fetal MRI cases shown in Table 1, we reconstructed volumetric images with
uniform spatial resolution of 0.7-0.8 mm depending on the matrix resolution in the original
scans. Figure 4 shows the reconstruction of images for one of the cases (C4). The rows show
slices of three orthogonal views, i.e. axial, coronal, and sagittal views. The first three
columns show three original SSFSE scans acquired in the axial, coronal, and sagittal planes;
Fig. 4d shows the initial estimation of the reconstructed volume based on averaging the
SSFSE scans. This estimation was used as the target for slice-to-volume registration in the
first iteration of the algorithm; Fig. 4e shows the reconstructed volume after 10 iterations of
slice-to-volume registration and reconstruction (ML-SVR algorithm). This volumetric image
has a uniform spatial resolution of 0.8 mm and clearly reflects the underlying continuity of
tissue boundaries in all three planes. Note that due to the effect of inter-slice motion, thick
slice acquisitions, and partial voluming, the original SSFSE scans as well as the initial
reconstructed image do not present coherent tissue boundaries, thus cannot be effectively
used for tissue segmentation and brain volumetry.

For quantitative evaluation of the performance of volume reconstruction technique, we
computed the average root mean square differences (RMSD) of the intensity values between
the motion-corrected slices and the reconstructed volumes. It was observed that RMSD
reduced during iterations of motion correction and volume reconstruction. Lower RMSD
values indicate better slice-to-volume registration (motion correction), which in turn indicate
that better reconstructed volumetric images were used as target (reference) for registration.
For each fetal MRI experiment, we normalized the RMSD values of the final iteration with
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respect to the RMSD values in the first iteration. It was observed that RMSD decreased in
all 25 cases, and the average of normalized values over all cases was 0.86 + 0.08 (when
compared to 1 for the first iterations).

In addition to RMSD, we computed two image sharpness measures, i.e. the intensity
variance measure (M1) and the energy of image gradient measure (M2) for the reconstructed
volumes [18]. Both measures are monotonic and robust to noise [33]. We compared these
measures for the volumetric images obtained from the volume reconstruction algorithm
(ML-SVR) and the averaging of the resampled SSFSE scans, referred to as AVE here. The
values of the sharpness measures were normalized for each case with respect to the values
obtained for the reconstructed volumes obtained from AVE. It was observed that except for
one case for each sharpness measure, the measures were always higher for the volumes
reconstructed using ML-SVR. The average of normalized values over all cases was 1.09 +
0.06 for M1 and 1.33 + 0.21 for M2. This strongly suggests that sharper images were
obtained using the ML-SVR technique which in turn indicates that the motion artifacts were
effectively corrected during the iterations of slice-to-volume registration and volume
reconstruction.

The reconstructed volumetric fetal MRI images were processed by intensity non-uniformity
correction and segmentation algorithms discussed in this article. Figure 5 shows different
stages of segmentation to achieve brain volumetry. These stages involve intracranial
segmentation, tissue classification using multiple intensity-based thresholding, brain
parenchyma segmentation based on the tissue classifications using connected components
algorithm, morphological filtering, and level set segmentation, and finally brain volume
segmentation by adding parenchymal and ventricular volumes processed with morphological
filtering (closing operation) and connected components algorithm. The brain volume is
segmented with this procedure because in practice the brain volume is computed as the
volume enclosed by brain parenchyma including the ventricles. This is shown in Fig. 5d.

In order to quantitatively assess the accuracy of the supervised segmentation algorithm, we
generated manual segmentations of brain parenchyma and brain volume for five randomly
chosen fetal brain MRI cases, i.e. cases C3, C6, C11, C13, and C16. Manual segmentation
was precisely performed on high-resolution reconstructed volumetric images and was used
as the reference for evaluation. We computed the Dice index and the sensitivity and
specificity measures for these cases. These measures are shown in Table 2. The results
indicate that the supervised segmentation algorithm is accurate and eliminates the need for
tedious manual segmentations. In the next section, we will compare the brain volumetry
results based on the automated and manual segmentations for these cases.

Fetal brain volumetry

Once the intracranial mask, brain parenchyma, and brain volume segmentations are obtained
for the fetuses, brain volumes are simply computed by counting the number of labeled
voxels and multiplying to the voxel volumes in milliliters. It is also possible to generate
triangular mesh surface model renderings of the cortex and the brain volumes. Figure 6
shows the surface model of the cortex (in blue) and the intra-cranial volume (brain and CSF)
of two fetuses in 27.86 and 31.71 weeks GA.

In Table 3, we have shown the computed parenchymal volumes (PV) and brain volumes
(BV) based on supervised automated segmentation and the manual segmentations performed
for the five fetuses discussed in the previous section. The percentage errors of PV and BV
have also been reported in this table. Average of these percentage errors are 3.26 and 2.72%
for PV and BV, respectively. These results indicate that brain volumetry based on the
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developed image reconstruction and segmentation algorithm is accurate and is more efficient
than the previous methods based on manual tracing.

The brain volumes (BV) computed for the 25 fetuses in the database are shown versus the
fetuses” GA (in weeks) in Fig. 7. Linear and quadratic model fits have also been shown in
this Figure. Similar analysis was done for intracranial volumes (ICV) and parenchyma
volumes (PV). The coefficient of determination (r2), shown in Table 4, measures the
goodness of fit of the linear, quadratic, and exponential models for this data. These measures
indicate that a quadratic model best describes the ICV, PV, and BV changes versus GA.
This supports the previous studies that suggest a quadratic relationship between the fetal
brain volume and GA, i.e. [15].

Discussion

We have developed image reconstruction and segmentation algorithms that provide high-
resolution volumetric images and models of fetal brain from thick-slice SSFSE scans. The
developed super-resolution reconstruction algorithm is capable of correcting inter-slice
motion artifacts if the slice in-plane quality is preserved. Normally the fetus does not move
too fast during the entire scanning session; therefore, a set of good quality slices can be
obtained for successful super-resolution reconstruction. By incorporating slices from
multiple orthogonal scans in the reconstruction, the volumetric image space can be densely
sampled thus leading to uniform image spacing of 0.7-1.0 mm which is much better than 3—
5 mm slice thickness of the original SSFSE scans. Consequently, the super-resolution
volume reconstruction algorithm effectively addresses two of the main limitations of brain
volumetry techniques; i.e. the dependency on motion-free scans and the inaccuracies due to
thick-slice approximations.

Another important limitation of the volumetry techniques is the need for manual tracing,
which significantly reduces the interest in routine use and evaluation of volumetric
measures. Manual tracing will be much more tedious if it should be done for accurate
segmentation of a high-resolution volumetric image (70 slices with 0.7 mm spacing) instead
of 8-10 cuts with 5mm slice thickness. The multistage supervised segmentation algorithm
that we examined in this study eliminates the need for tedious manual tracing, and although
it is done interactively based on label selection, the time and effort for segmentation are
significantly reduced.

The downside of our technique is that it also depends on the quality of the input scans and
the motion and intensity non-uniformity artifacts. If the range of fetal motion is larger than
the capture range of the registration algorithm, or the number of good quality slices is not
sufficient for effective sampling of the volumetric image space, the reconstruction algorithm
may not perform well. The capture range of our slice-to-volume registration algorithm
depends on several parameters including the quality of the estimated volumetric image used
as registration target, as well as the image features which in turn depends on the GA of the
fetus and the image contrast. In practice we do not expect the algorithm to capture and
correct inter-slice motion of 8 mm or more. If motion artifacts remain in the reconstructed
image or the intensity non-uniformity cannot be restored, the segmentation algorithm may
fail and volumetry may not be accurate. However, it is expected that with better and faster
imaging techniques fetal images of a better quality can be acquired which will lead to
increases in the success rate of our algorithm.

Finally, the developed techniques in this study can be applied to other fetal organs. Here we
report a preliminary reconstruction, segmentation, and rendering experiment for a 33.28-
week fetus which did not move at the time of acquisition. The fetal body has been extracted
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from uterus, and the brain (CSF), spinal cord, orbits, airways, and the lungs are also
segmented and shown in Fig. 8. In addition to brain and organ volumetry, the image
processing techniques developed here can be used for the evaluation and assessment of the
shape and structure of fetal body and organs. An excellent quality view of the fetus face
(nose and lips), as shown in Fig. 8, can also be used for evaluating craniofacial anomalies
such as cleft lip and palate. The most critical issue for the reconstruction of the craniofacial
structures and other fetal organs is the non-rigid nature of the motion in those regions. If the
motion is negligible or if it can be estimated accurately, reconstruction, segmentation, and
visualization will be feasible.
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Block diagram of the slice acquisition model used in volume reconstruction; this model
incorporates motion of the object in the three-dimensional space, slice selection profile,
signal acquisition, and sampling
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Fig. 2.

Block diagram of the developed motion correction and super-resolution volume
reconstruction algorithm; TC represents the termination condition, which is based on the
change in average slice-to-volume registration metrics. When the change in average metric
goes below a threshold, the algorithm is terminated
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Fig. 3.

Block diagram of the post-processing and segmentation algorithm for brain volumetry
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Fig. 4.

Slices of a 27.86 week GA fetus (case C4): axial, coronal, and sagittal views of the acquired
a axial, b coronal, ¢ sagittal SSFSE scans; d the initial estimation of a volumetric image by
averaging the original SSFSE scans, and e the reconstructed volume after iterations of slice-
to-volume registration and super-resolution reconstruction (the ML-SVR technique). a—
Only good representatives of the anatomy in the slice plane views. The volumetric image in
(e) is high-resolution in all plane views, is more accurate and much sharper than (d), and
presents coherent tissue boundaries in all three planes. Due to the discontinuity of tissue
boundaries, the images in (a—d) are not appropriate for automated segmentation or brain
volumetry. On the other hand, the reconstructed volume in (€) clearly shows the brain
structure and can be used for automated segmentation and brain volumetry
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Fig. 5.
Segmentation of a fetal brain MRI: a intracranial mask, b tissue classification using multiple

threshold intensity-based segmentation; ¢ segmentation of brain parenchyma and cerebro-
spinal fluid (CSF) based on tissue classification, connected components algorithm,
morphological filtering, and level set segmentation; and d brain volume segmentation for
fetal brain volumetry obtained by adding parenchymal and ventricular volumes and applying
morphological closing operation and connected components algorithm on (c)
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(a) (b)

Fig. 6.
Surface model rendering of the cortex (brain parenchyma in b/ue color) and the intracranial
volume (brain and CSF) of a 27.86 week (a) and a 31.71 week fetus (b)
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Fig. 7.

Brain volumes measured (in ml) for fetuses in this study versus their GA (in weeks). Linear
and quadratic fits have also been shown for this data. According to the goodness-of-fit
measures, a quadratic model best describes the fetal brain volume changes versus gestational
age

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2013 September 11.



duasnuely Joyiny vVd-HIN 1duosnuey JoyIny vd-HIN

duasnuely Joyiny vd-HIN

Gholipour et al. Page 19

Fig. 8.

Three-dimensional surface model of a fetus body extracted by automated segmentation from
uterus and amniotic fluid and rendered by marching cubes triangulation using VTK [27].
The fetal brain, spinal cord, orbits, airways, and lungs are also segmented and shown in this
picture. Part of the umbilical cord can also be seen around baby’s neck. The parts which are
not shown were not taken by MRI scans due to limited field of view
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Table 4

The coefficient of determination (r2) measures for linear, quadratic, and exponential model fittings to the
volumetry data obtained for the 25 fetuses in this study

r2(ICV) r2(Bv) r2(PV)

Linear fit 0.917 0.930 0.941
Quadratic fit 0.922 0.945 0.953
Exponential fit 0.818 0.826 0.833

The volumetry data involve intracranial volumes (ICV), brain volumes (BV), and parenchymal volumes (PV). This analysis indicates that a
quadratic model best describes the fetal ICV, BV, and PV changes versus gestational age (GA)
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