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Abstract
Burst suppression is an electroencephalogram pattern observed in states of severely reduced brain
activity, such as general anesthesia, hypothermia and anoxic brain injuries. The burst suppression
ratio (BSR), defined as the fraction of EEG spent in suppression per epoch, is the standard
quantitative measure used to characterize burst suppression. We present a state space model to
compute a dynamic estimate of the BSR as the instantaneous probability of suppression. We
estimate the model using an approximate EM algorithm and illustrate its application in the
analysis of rodent burst suppression recordings under general anesthesia. Our approach removes
the need to artificially average the ratio over long epochs and allows us to make formal statistical
comparisons of burst activity at different time points. Our state-space model suggests a more
principled way to analyze this key EEG feature that may offer more informative assessments of its
associated brain state.

I. Introduction
Burst suppression is an electroencephalogram (EEG) pattern consisting of alternating high
amplitude bursts and low amplitude or isoelectric periods (see Fig.1). Burst suppression can
be observed in deep state of general anesthesia, coma associated with diffuse brain injuries,
induced hypothermia, epilepsy due to Ohtahara's syndrome [1], and postasphyctic newborn
babies [2]. It is usually caused by physical damage (e.g brain injury, lesions), or reversible
general anesthetic effects. In burst suppression less than 5% of the cortical neurons and less
than 40% of the thalamic neurons are active during suppression [3].

Burst suppression patterns (BSPs) differ in the durations of the alternating periods. For
instance, in the case of subacute sclerosing panencephalitis, the duration between bursts
tends to shorten with the progression of the disease [4]. In the case of general anesthesia,
BSPs produced by different anesthetics show clear differences [5]. The burst suppression
ratio (BSR), a measure of the fraction of time spent in suppression per epoch is traditionally
used to characterize BSPs. The conventions for computing BSR are chosen empirically. The
voltage threshold, which discriminates between low and high amplitude can be set at 15 [6]-
[8] or at 5 [9]-[11] μV , and the minimal suppression time that the EEG has to be isoelecric
is set at 100 milliseconds in some cases [6]-[8] and 0.5 seconds in others [9]-[11]. Likewise,
the length of the epoch over which the fraction of suppression is computed can take values
from 4 [9]-[11] to 15 [6]-[8] seconds. Finally the number of epochs that is averaged is
typically chosen to span 60 seconds [6]-[11] resulting in only one data point per minute. The
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ease of computation and its real-time application make this method appealing. However, it
offers a coarse characterization of the EEG pattern and limits the information extracted from
the data sets. For instance, when analyzing the modulation of the BSP caused by certain
drugs and inferring from it the anesthetic state of the brain, important dynamics taking place
over several seconds can be hidden by averaging. This approach artificially segments the
EEG signal into epochs and averages sequences whereas the signal is continuous and
changes dynamically. Also, because different conventions are used to estimate the BSR,
comparing results across studies is challenging [12]. The need for a more precise definition
of BSR is thus motivated by the interest in inferring the dynamics of brain states from the
relevant variations in BSPs. A more rigorous definition also facilitates achieving consistency
between results across different studies, opening the door for insightful comparisons.

The BSP can be described by a series of 1s (suppression) and 0s (no suppression). This
definition casts the problem in a dynamic Bernoulli process framework. Therefore, we can
analyze it using a state-space model to characterize the burst suppression ratio as the
probability of suppression as a function of time. A Bernoulli probability model is used to
describe the suppression occurrences and a Gaussian state equation describes the
unobservable brain state whose evolution we want to track. We estimate the model using an
approximate expectation maximization (EM) algorithm [13][14], and compute the dynamic
estimate of the BSR. We illustrate our method by computing the BSR before and after the
administration of the cholinergic agonist physostigmine. We show how our approach may be
used to conduct formal statistical analyses of the BSR.

II. Model Definition
A state space model is completely characterized by two equations: a state equation and an
observation equation. The state equation defines the unobservable state process whose
evolution we wish to track over time. The state in our case represents the brain state of the
subject. We define our state to be positively correlated with the BSR. That is as the state
increases the BSR increases and as the state decreases the BSR decreases. The observation
equation describes how the observed data are related to the unobservable state. In our case,
the observed data are the sequence of 1s and 0s which represent the suppression or not of a
burst respectively. We define a burst suppression to be a sequence of low amplitude EEG
voltages over at least a 100 milliseconds. Our objective is thus to estimate the states and the
parameters of the model from the observed data and use these estimates to compute the
dynamic estimate of the BSR with confidence intervals. Our experiment consists of N
discrete time steps indexed 1, ..., N. Let bi be the indicator of the event at time i which is 1 if
the event is suppressed and 0 otherwise. Let pi denote the probability of a suppression at
time i. In our state space model we assume that the probability pi is governed by an
unobservable state variable xi. The observation model can be described by the Bernoulli
probability mass function

(1)

where pi is defined by the logistic equation

(2)

The logistic function is commonly used to model how the probability of an event is affected
by one or many explanatory variables. In our case it ensures that the probability pi is always
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between 0 and 1 as the state xi varies over all real numbers. We define the unobserved state
model by a random walk

(3)

where the εi are independent Gaussian random variables with mean 0 and variance σ2. This
definition of the state model provides a stochastic continuity constraint, which insures that
states that are close in time are close in value. In our case this guarantees continuity of the
burst probabilities. The parameter σ2 governs how rapidly changes can occur between
adjacent states. To estimate the set of states and σ2 we use an expectation maximization
(EM) algorithm for point processes and binary time series [13][14].

III. Estimation Algorithm

Our objective is to estimate the state process xi and the parameter  for i = 1, ..., N. This
will allow us to compute the BSR estimate with its confidence intervals. We treat the initial
condition x0 as a parameter. The states and parameter estimates are computed by
maximizing the expectation of the complete data log likelihood. The complete data
likelihood is

(4)

The EM algorithm iterates between an expectation or E-step and a maximization or M-step.
The expectation step is

A. Expectation Step
At iteration l + 1 we compute in the expectation step the expected value of the complete data

log likelihood given the complete data b1:N and the estimates σ2(l) and  of the parameters
from iteration l:

(5)

We can see upon further expanding the right hand side that we need to estimate three
quantities for i = 1, ..., N

The expectation of the state variable given the data up to time N,

(6)

and the covariances given the data up to time N,

(7)
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and,

(8)

The expectation step consists of three parts. First we compute the estimates of xi|i and 

from the forward filter. Second, we use the backward filter to compute xi|N and . Finally,
we use the state space covariance algorithm to compute the covariances Wi|N and Wi,i–1|N.

1) Forward Filter—Given the parameters estimates from iteration l, this step estimates xi|i

and , meaning that it will estimate the state and the variance at i looking at data from the
start of the experiment up to i using a non linear forward filter algorithm [13][14]. The one
step prediction mean and variance are given by

(9)

(10)

The posterior mode and variance are given by

(11)

(12)

The initial conditions are  and . pi|i corresponds to the mode of the posterior
distribution which we estimate recursively. This filter is non-linear because xi|i appears on
both sides of (11).

2) Backward Filter—Using the posterior estimates, a fixed-interval smoothing algorithm
(FIS) [13][14] gives us the estimates xi|N for i = N – 1, ..., 1 , meaning that the estimate at
time i is based on all the data up to time N. Our final estimate of the state will be thus a

Gaussian distributed variable with mean xi|N and variance . The FIS is

(13)

(14)

(15)

The initial conditions are xN|N and  previously estimated in the filter algorithm.
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3) State Space Covariance Algorithm—Finally, the state space covariance algorithm
[15] gives σi,j|N:

(16)

where 1 < i < j < N. The covariances are thus given by

(17)

and,

(18)

The maximization step is

B. Maximization Step
In the maximization step, the complete data log likelihood is maximized with respect to σ2

and x0. This yields the estimates

(19)

and,

(20)

Dynamic BSR Estimate—The algorithm iterates between the Expectation and
Maximization steps until convergence. The convergence criteria we use are the same as
those developed by [12]. The fixed-interval smoothing algorithm evaluated at the maximum

likelihood estimates x0 and  together with the logistic equation (2) give us the probability
of a suppression at time i for i = 1, ..., N. From there we can compute the probability density
function which corresponds to the dynamic BSR estimate and is given by:

(21)

IV. Results
Fig. 2 illustrates the results of our algorithm. The data used were recorded from a rat under
stable 2% isoflurane for sixty minutes. A four-minute window centered at the time of
physostigmine injection is shown in Fig. 2. We adapted the algorithm of Vijn and colleagues
[6] to extract the burst suppression binary sequence by setting the minimum burst
suppression window and the epoch size to 100 milliseconds. This binary sequence is the
input to our algorithm. The analysis was conducted using the Matlab software (MathWorks,
Natick, MA) available at our website (http://neurostat.mgh.harvard.edu/BehavioralLearning/
Matlabcode).

Panel A in Fig. 2 shows the dynamic BSR curve with its 95% confidence intervals. Prior to
the administration of physostigmine at time 0, the BSR oscillates approximately between 0.2
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and 0.8 with a median value of approximately 0.6. This suggests that the EEG spent the
majority of its time in the suppressed state. After time 0, there is a steep decrease in the
BSR. From this point on the BSR oscillates between 0.05 and 0.10. This is consistent with a
decrease in suppression or equivalently, an increase in arousal. Because we estimated the
joint distribution of the state process we can evaluate Pr(xi > xj) for any 0 ≤ i < j ≤ N which
is equivalent to the probability that the BSR at time i is greater than the BSR at time j
because the transformation between the state variable xi and the probability of a suppression
pi is monotonic. Panel B in Fig.2 is a scatter plot showing the pairwise significant
differences between the BSR across time. The red and black dots correspond to Pr(xi < xj) =
0.975 and Pr(xi > xj) = 0.975 respectively, where i is the index across the x – axis and j is the
index across the y – axis.

To illustrate how to read Fig. 2B, notice that the BSR decreases at time −0.75 min. The red
vertical strip at time −0.75 min show that the BSR at all times from −2 min to −0.75 min are
significantly greater than the BSR at −0.75 min to −0.80 min. In contrast, the black vertical
strip at the −0.5 min shows that all BSR prior to this time are significantly smaller. This
observation is consistent with the BSR estimates in Fig. 2A. The red dots clearly show that
Pr(xi < xj) = 0.975 for i ≥ 0 and j < 0, which means that the BSR after the injection of the
physostigmine is significantly smaller than before the injection. This abrupt drop in the BSR
is expected because physostigmine is a cholinergic agonist that induces increased arousal.

V. Conclusion
We have presented a state space model in which we define BSR dynamically as the
probability of a suppression period as a function of time. We estimated the model using an
approximate EM algorithm and illustrated its application in the analysis of rodent burst
suppression recordings under general anesthesia. Our approach removes the need to average
the ratio over long epochs. It also provides a continuous estimate of the probability of a burst
and the joint distribution of the burst suppression states. The latter allows us to make formal
statistical comparisons between burst activity at any time points. Our state-space model
suggests a more principled way to analyze this key EEG feature that may offer more
informative assessment of this important brain state.
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Fig. 1.
The EEG signals of a rat, awake, under 2.5% and 4 % Isoflurane.
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Fig. 2.
Panel A shows the estimated BSR (red curve) with its 95% confidence intervals (black
curves). The BSR declines appreciably after administration of physostigmine at time 0.
Panel B shows a scatter plot of the significant differences (see text) between points in time.
Red and black dots indicate that the probability of xi being significantly smaller and greater
than xj respectively is 0.975.
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