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Abstract
Neuromyelitis optica (NMO) is an autoimmune demyelinating disease associated with recurrent
episodes of optic neuritis and transverse myelitis, often resulting in permanent blindness and/or
paralysis. The discovery of autoantibodies (AQP4-IgG) that target aquaporin-4 (AQP4) has
accelerated our understanding of the cellular mechanisms driving NMO pathogenesis. AQP4 is a
bidirectional water channel expressed on the plasma membranes of astrocytes, retinal Müller cells,
skeletal muscle, and some epithelial cells in kidney, lung and the gastrointestinal tract. AQP4
tetramers form regular supramolecular assemblies at the cell plasma membrane called orthogonal
arrays of particles. The pathological features of NMO include perivascular deposition of
immunoglobulin and activated complement, loss of astrocytic AQP4, inflammatory infiltration
with granulocyte and macrophage accumulation, and demyelination with axon loss. Current
evidence supports a causative role of AQP4-IgG in NMO, in which binding of AQP4-IgG to
AQP4 orthogonal arrays on astrocytes initiates complement-dependent and antibody-dependent
cell-mediated cytotoxicity and inflammation. Immunosuppression and plasma exchange are the
mainstays of therapy for NMO optic neuritis. Novel therapeutics targeting specific steps in NMO
pathogenesis are entering the development pipeline, including blockers of AQP4-IgG binding to
AQP4 and inhibitors of granulocyte function. However, much work remains in understanding the
unique susceptibility of the optic nerves in NMO, in developing animal models of NMO optic
neuritis, and in improving therapies to preserve vision.
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1. Introduction
1.1 Overview

NMO is a multifocal, inflammatory demyelinating disorder of the central nervous system
that preferentially affects the optic nerves and spinal cord. Isolated optic neuritis (ON) is a
common presenting sign in NMO as well as in the more common demyelinating disorder
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multiple sclerosis (MS). However, while most MS patients recover significant visual acuity
following ON, NMO patients often manifest severe visual loss. The mechanisms producing
these distinct clinical outcomes are beginning to be clarified. The discovery of a highly
specific serum immunoglobulin G autoantibody (AQP4-IgG) that targets AQP4 (Lennon et
al., 2004, 2005), the major plasma membrane water channel on astrocytes, has established
NMO as a distinct clinical entity from MS and suggested AQP4 as a specific immunologic
target in NMO ON. Recent research has demonstrated a pathogenic role of AQP4-IgG and
led to the development of new NMO treatment strategies aimed at preventing AQP4-IgG
binding to AQP4 and downstream mechanisms of neuropathology. Herein, we review the
major clinical aspects of NMO ON, recent progress in elucidating NMO pathogenesis
mechanisms, and emerging therapeutics.

1.2 History
In 1870, Sir Thomas Albutt described the syndrome now known as NMO. Albutt observed
that some patients with co-existent transverse myelitis (TM) and ON tended to have a severe
disease course. In 1894, Eugène Devic and his graduate student, Fernand Gault, summarized
16 patients with unilateral or bilateral vision loss, who within weeks developed spastic
weakness of the limbs, loss of sensation, and incontinence (Devic, 1894; Gault, 1894).
Initially described as a monophasic disorder of bilateral ON and TM, NMO is now
recognized as a relapsing disorder with protean manifestations (O’Riordan et al., 1996;
Wingerchuk et al., 1999; Popescu et al., 2011; Iorio et al., 2011).

2. Optic nerve anatomy
The human optic nerve consists of 1.2 million, parallel cell axons that extend from ganglion
cells in the inner retina. The ganglion cells synapse mostly in the lateral geniculate nucleus
(Figure 1), and to a lesser extent in pretectum and superior colliculus of the midbrain and the
suprachiasmic nuclei of the hypothalamus. The intraorbital portion of the optic nerve is
surrounded by dura, arachnoid, and pia mater. The dura (the outmost sheath) is continuous
with the sclera anteriorly and fuses with the periosteum and annulus of Zinn at the orbital
apex. In the orbit, the optic nerve tissue is perfused by centripetally penetrating capillaries
that are contained within connective tissue invested by the pia that divides the intraorbital
optic nerve into septae. The blood supply of the optic nerve may be of particular importance
in NMO because major pathology occurs in the perivascular space.

Posterior to the collagenous lamina cribrosa, oligodendrocytes wrap optic nerve axons
concentrically with myelin, similar to white matter tracts in the brain and spinal cord.
Astrocytes are abundant throughout the optic nerve and their characteristics vary by region.
Filamentous astrocytes of the unmyelinated optic nerve head have weak AQP4 expression,
whereas fibrous astrocytes, which extend posteriorly from the lamina, strongly express
AQP4 (Triviño et al., 1996; Nagelhus et al., 1998; Oyama et al., 2006). Retrolaminar
astrocytes serve as the scaffolding that protects myelinated axons by forming end-feet over
blood vessels and preventing contact with connective pial septae. Some astrocytes extend
transverse processes across the full width of the optic nerve, while others project
longitudinal processes in parallel with axons (Sun et al., 2009). Astrocytes express AQP4,
the target of AQP4-IgG. Astrocyte disruption precedes the profound demyelination and
neuronal damage observed in some NMO lesions (Parratt and Prineas, 2010).

3. Clinical features of NMO
3.1 Epidemiology

NMO has a low prevalence, estimated at 0.3–4.4 per 100,000. NMO accounts for a small
proportion of demyelinating disease in Caucasians (1–2%), but a much larger percentage in
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Asians (20–48%) (Kira, 2003; Cabre et al., 2005; Cabrera-Gomez et al., 2009; Asgari et al.,
2011; Cossburn et al., 2012). In the United States, patients of African descent are also
overrepresented, making up over one-third of cases (Mealy et al., 2012). Women are
preferentially affected with a female: male ratio of nearly 10:1. The age of onset varies
widely, with 1/6 of AQP4-IgG seropositive cases occurring in pediatric and elderly patients
(Quek et al., 2012). The median age of onset of NMO is about 40 years (Wingerchuk et al.,
2007; Mealy et al., 2012). As with other autoimmune disorders, there are potential complex
genetic contributions to NMO. Several HLA variants and other polymorphisms have been
identified in association with NMO (Zéphir et al., 2009; Wang et al., 2011; Asgari et al.,
2012), and about 3% of patients have affected relatives (Matiello et al., 2010). NMO is
associated 10–40% of the time with other autoimmune disorders, including myasthenia
gravis, systemic lupus erythematous, Sjögren’s syndrome, and celiac disease (Pittock et al.,
2008; Bergamaschi et al., 2009; Wandinger et al., 2010; Jarius et al., 2011; Leite et al.,
2012).

3.2 Neuro-ophthalmic manifestations
Approximately one-half of NMO patients present with isolated ON, of which about 20% is
bilateral (Wingerchuk et al., 1999; Papais-Alvarenga et al., 2008). Profound and persistent
visual loss is a hallmark of ON in NMO, but not in MS (Beck et al., 1992). Eighty percent of
NMO eyes experience severe loss of visual acuity (< 20/200) during an acute attack,
compared with 36% in MS. Sixty percent of NMO patients experience unilateral or bilateral
blindness at a median of 7.7 years after disease onset, compared with 4% of MS ON patients
at 15-year follow up (Wingerchuk et al., 1999; Optic Neuritis Study Group, 2008). In NMO,
the median time from the onset of ON to ipsilateral blindness is 2 years, and to contralateral
ON is 3 years (Merle et al., 2007). Deterioration of visual acuity in pediatric patients may be
more rapid than in adult NMO patients (Collongues et al., 2010).

NMO ON may be distinguished from MS ON by imaging and functional measures. While
magnetic resonance imaging (MRI) shows changes typical of acute ON, such as optic nerve
enlargement, T2 hyperintensity, and gadolinium enhancement, the lesions are often more
extensive and likely to involve the optic chiasm or adjacent hypothalamus (Figure 2A; Li et
al., 2008). NMO ON generally causes more severe visual field defects than MS ON
(Fernandes et al., 2012a), and, given its potential to involve the optic chiasm and tracts, may
manifest with bitemporal or homonymous visual field defects (Raz et al., 2010; Costa et al.,
2007; Romero et al., 2012). With the more routine serologic testing of individuals with acute
optic neuritis, the spectrum of visual symptoms associated with NMO ON may expand over
time.

Optical coherence tomography (OCT) shows more substantial peripapillary retinal nerve
fiber layer (RNFL) loss in NMO than MS in both monophasic and recurrent ON (Figure 2B;
Merle et al., 2008; Ratchford et al., 2009; Naismith et al., 2009; Green and Cree, 2009). In
contrast to the temporal RNFL loss that is typical of MS, substantial atrophy is seen in the
superior and inferior quadrants in NMO (Naismith et al., 2009). More recent OCT studies
have evaluated macular thinning as an additional indirect measure of axonal loss. The
macular nerve fiber and retinal ganglion cell layers show similar atrophy in NMO and MS,
consistent with the loss of temporal RNFL fibers seen in both disorders. However, the inner
nuclear layer manifests significant thickening in NMO compared to MS (Fernandes et al.,
2012b; Monteiro et al., 2012). This finding, together with the recognition of inner retinal
microcystic changes in 25% of NMO patients (Gelfand et al., 2012; Sotirchos et al., 2012),
may suggest concurrent retinal pathology. Similar findings have been observed in MS ON
and other non-inflammatory optic neuropathies; therefore further characterization of this
pathology will be needed to identify an underlying mechanism (Gelfand et al., 2012; Saidha
et al., 2012; Barboni et al., 2013).
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3.3 Diagnostic criteria and testing
According to the current criteria (Wingerchuk et al., 2006), definite NMO requires the
presence of ON and TM, and at least two of three supportive criteria that enhance diagnostic
specificity (MRI evidence of a contiguous spinal cord lesion in at least 3 segments; brain
MRI not diagnostic of MS; and AQP4-IgG seropositivity). These criteria allow the diagnosis
of definite NMO without detectable AQP4-IgG. Current flow cytometry and cell-based
immunofluorescence assays for AQP4-IgG have high sensitivity (73–77%) and specificity
(approaching 100%) (Waters et al., 2012). The existence of seronegative NMO may be due
to the limited sensitivity of currently available antibody detection assays and/or the presence
of alternative disease-causing autoantibodies (Jarius et al., 2012). Autoantibodies to myelin
oligodendrocyte glycoprotein have been identified in some pediatric patients with recurrent
ON, and in some NMO patients that are seronegative for AQP4-IgG (Mader et al., 2011;
Rostasy et al., 2012).

Seropositive patients with isolated ON or TM are currently classified as having NMO
spectrum disorder (NMOSD), which carries a high risk of eventual conversion into definite
NMO (Wingerchuk et al., 2007). In one series, more than 50% of seropositive patients who
initially presented with TM developed either ON (and thus definite NMO) or recurrent TM
within one year (Weinshenker et al., 2006). Several studies report a short interval between
the sentinel and subsequent clinical attacks in AQP4-IgG seropositive NMO patients
(O’Riordan et al., 1996; Wingerchuk et al., 1999; Merle et al., 2007; Rivera et al., 2008).

Debate exists about the role for routine AQP4-IgG serum testing in patients with acute
monosymptomatic ON given the low frequency (3–5%) of AQP-IgG positivity in this group
(Jarius et al., 2010a; Petzold et al., 2010; Costa et al., 2012). Because NMO carries a poor
prognosis and warrants aggressive immunotherapy, identifying patients with NMOSD could
potentially enable earlier treatment. Furthermore, standard MS therapeutics such as
interferons, fingolimod and natalizumab might be deleterious in NMO (Palace et al., 2010;
Kleiter et al., 2012; Min et al., 2012). It is generally recommended that serologic testing be
performed at minimum in those ON patients with MRI changes atypical of MS, with
bilateral or recurrent ON, with poor visual recovery, or with ON associated with
autoimmune disease (Galetta and Cornblath, 2010). Additional characteristics of acute ON
attacks, include the presence of longitudinally extensive enhancement on MRI and the
absence of pain, may provide additional rationale for obtaining AQP4-IgG testing (Papais-
Alvarenga et al., 2008; Daily et al., 2013).

3.4 Current therapy
To date, no acute therapy has demonstrated significant benefit in improving visual outcome
in NMO or preventing optic nerve atrophy. Most OCT studies have demonstrated that RNFL
loss in NMO accrues from discrete attacks of ON in the absence of additional demyelination
in the optic radiations or visual cortex, whereas in MS there may be gradual visual decline
due to repeated subclinical injury in these regions during the relapsing and secondary
progressive phases of disease (Ratchford et al., 2009; Popescu et al., 2010; Syc et al., 2012).
These distinct patterns of retinal neuronal loss suggest that effective treatment of acute
NMO ON might ameliorate vision loss and improve outcomes.

Current treatment regimens for acute attacks of ON include corticosteroids and plasma
exchange (PE). In the Optic Neuritis Treatment Trial, high dose intravenous
methylprednisolone (IVMP) (1000 mg daily for 3 days) resulted in faster recovery,
enhanced contrast sensitivity, and improved color vision in patients with idiopathic acute
ON at 6 months; however, the improvement was not maintained at 1 year. While high dose
IVMP has shown no benefit in reducing post-inflammatory optic atrophy following
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idiopathic ON (Hickman et al., 2003), one study suggested that early administration of
IVMP might limit optic atrophy following NMO ON (Nakamura et al., 2010).

Clinical observations have suggested benefit for PE following high-dose IVMP in cases of
refractory vision loss or following NMO exacerbations (Ruprecht et al., 2004; Watanabe et
al., 2007). A recent nonrandomized study of NMO/NMOSD patients treated early after onset
of inaugural ON demonstrated long-term visual acuity gains and preservation of
peripapillary RNFL in patients treated with sequential IVMP and PE compared to IVMP
alone (Merle et al., 2012). The benefit of PE may be due in part to reduced circulating
AQP4-IgG, though seropositivity is not critical to PE effectiveness (Jarius et al., 2008;
Merle et al., 2012). Anecdotal evidence suggests that PE might stabilize the clinical course
in patients with steroid-refractory NMO (Khatri et al., 2012).

Intravenous immunoglobulin, which is frequently used in other antibody-mediated
neurological diseases, has not demonstrated clear benefit in treating acute or chronic vision
loss associated with ON (Noseworthy et al., 2001; Roed et al., 2005; Magraner et al., 2012).
Immunosuppressive drugs such as azathioprine, mycophenolate mofetil, and rituximab are
used as long-term preventative NMO therapies, but are generally not used to treat acute
attacks (Jacob et al., 2008, 2009; Costanzi et al., 2011; Kim et al., 2011).

4. Pathogenesis mechanisms
4.1 Overview

An expanding body of evidence supports a pathogenic role of AQP4-IgG in NMO. NMO
lesions show perivascular deposition of immunoglobulin and complement, corresponding to
areas of high AQP4 expression. Binding of AQP4-IgG to AQP4 on astrocytes activates
antibody effector function, resulting in astrocyte destruction. Early human NMO lesions
show loss of AQP4 and glial fibrillary acidic protein (GFAP) in the absence of significant
myelin loss, suggesting early and isolated astrocyte damage. Release of inflammatory
factors, including cytokines and chemokines, results in disruption of the blood-brain barrier
and infiltration by neutrophils, eosinophils, and macrophages. Secondary injury to
oligodendrocytes results in demyelination, axonal injury, and, ultimately, cavitation,
necrosis, and gliosis (Mandler et al., 1993; Lucchinetti et al., 2002; Misu et al., 2007; Parratt
and Prineas, 2010). The chronology of astrocyte injury leading to secondary myelin loss is
supported by data from mouse models (Saadoun et al., 2010). Though complement
dependent cytotoxicity (CDC) is probably the major initiating mechanism in NMO, other
pathogenic mechanisms triggered by AQP4-IgG have been proposed, as discussed below.

4.2 AQP4, the target of AQP4-IgG
AQP4 is a water-transporting integral membrane protein that was cloned in 1994 from rat
lung (Hasegawa et al., 2004) and deleted in mice in 1997 (Ma et al., 1997) (Figure 3). X-ray
structure analysis shows that each AQP4 monomer contains 6-helical, membrane-spanning
domains and two short helical segments surrounding a narrow aqueous pore (Ho et al.,
2009). AQP4 monomers form stable tetramers, which further aggregate in cell plasma
membranes to form supramolecular assembles called orthogonal arrays of particles (OAPs)
(Yang et al., 1996; Rossi et al., 2012a). Human AQP4 is expressed in two isoforms: a long
(M1) isoform with translation initiation at Met-1, and a short (M23) isoform with translation
initiation at Met-23 (Yang et al., 1995). Astrocytes express both isoforms, which coassemble
in heterotetramers (Tajima et al., 2010). AQP4 assembly into OAPs is driven by
intermolecular N-terminus interactions between M23-AQP4 monomers involving residues
just downstream of Met-23 (Crane and Verkman, 2009). AQP4 OAP assembly appears to be
crucial in NMO pathogenesis, as AQP4-IgG generally binds to OAPs with much greater
affinity than to individual AQP4 tetramers (Crane et al., 2011), and AQP4 OAPs greatly
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enhance CDC through multivalent binding of complement protein C1q to clustered AQP4-
IgG bound to OAPs (Phuan et al., 2012).

AQP4 is expressed in astrocytes throughout the CNS, including brain, spinal cord and optic
nerve, as well as in skeletal muscle and in epithelial cells in kidney (collecting duct),
stomach (parietal cells), airways (surface epithelia) and glands (acinar epithelia) (Frigeri et
al., 1995). In brain, AQP4 is concentrated in astrocyte end-feet at pial and ependymal
surfaces in contact with the CSF and blood vessels (Nielsen et al., 1997). AQP4 is weakly
expressed in the non-myelinated optic nerve head compared with the myelinated
retrolaminar optic nerve (Li et al., 2002; Mizokami et al., 2011). AQP4 is also highly
expressed in astrocyte-like Müller cells in the inner retina and in the ciliary epithelium
(Hamann et al., 1998).

The biological roles of AQP4 have been elucidated from phenotype analysis of transgenic
mice lacking AQP4. Though AQP4 knockout mice have normal appearance, survival,
growth and neuroanatomy, they manifest interesting phenotypes when stressed. Outside of
the CNS they manifest a mild defect in maximum urinary concentrating ability (Ma et al.,
1997), but normal skeletal muscle, lung and gastric functions (reviewed in Verkman, 2011).
AQP4 knockout mice also manifest electrophysiological evidence of defective auditory (Li
et al., 2001) and olfactory (Lu et al., 2008) signal transduction. In brain, AQP4 is involved
in water movement and brain edema (Manley et al., 2000; Papadopoulos et al., 2004),
neuroexcitation (Binder et al., 2006), astrocyte migration (Saadoun et al., 2005; Auguste et
al., 2007) and neuroinflammation (Li et al., 2011). The water transporting function of AQP4
in astrocytes is probably responsible for each of these functions. AQP4 knockout mice show
reduced b-wave amplitude and latency by electroretinography, without demonstrable
abnormalities in retinal or optic nerve morphology (Li et al., 2002).

4.3 Cellular consequences of AQP4-IgG binding to AQP4
In general, antibody binding to its cellular target can cause: (i) altered target function; (ii)
target internalization; (iii) CDC; and/or (iv) antibody-dependent cell-mediated cytotoxicity
(ADCC). AQP4 functions as a bidirectional, water-selective transporter. A recent study
reported reduced AQP4 water permeability following AQP4-IgG binding (Hinson et al.,
2012); however, data from our lab (Rossi et al., 2012b) and others (Nicchia et al., 2009;
Melamud et al., 2012;) showed no inhibition of AQP4 water permeability. AQP4-IgG can
induce AQP4 internalization in transfected cell cultures and some astrocyte culture models
(Hinson et al., 2008), but does not cause internalization in mouse brain in vivo (Ratelade et
al., 2011a); AQP4 internalization, if it occurred, would be a protective during lesion
formation.

Though CDC is probably a major mechanism in NMO pathogenesis, the importance of
ADCC has become apparent. AQP4-IgG together with NK cells cause death of AQP4-
transfected cells and astrocyte cultures through ADCC. In ADCC, NK or other effector cells
bind to the Fc region of AQP4-IgG, resulting in release of toxic perforins and granzymes.
Intracerebral injection of AQP4-IgG and NK-cells in mice produced NMO-like lesions with
astrocyte injury, but without myelin loss (Ratelade et al., 2012). Though NK-cells are rarely
seen in human NMO lesions (Saadoun et al., 2012a), neutrophils, eosinophils and
macrophages are abundant in NMO lesions. Each of these cell types can cause ADCC, as
well as participate in complement-dependent cell-mediated cytotoxicity (CDCC) through
enhanced phagocytosis and activated complement (anaphalotoxin)-induced degranulation.
Anaphalotoxins produced in NMO lesions by CDCC are potent chemoattractants for
circulating granulocytes, monocytes, and macrophages. Studies in mouse models and spinal
cord slice cultures have implicated the involvement of neutrophils (Zhang et al., 2011;
Saadoun et al., 2012b) and eosinophils (Zhang and Verkman, 2013) in exacerbating NMO
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pathology through the release of neutrophil proteases and eosinophil granule toxins. These
studies support an important role for ADCC in NMO pathogenesis, suggesting that therapies
targeting CDC exclusively may have limited efficacy.

Microglia/macrophages are activated in the optic nerve and retina following optic nerve
inflammation or injury (Wohl et al., 2010; Fairless et al., 2012; Roh et al., 2012), producing
a variety of potentially destructive cytokines and trophic factors (reviewed in Cui et al.,
2009). In mouse experimental autoimmune encephalomyelitis (EAE), for example, marked
microglial activation in optic nerve coincides with onset of visual dysfunction (Matsunaga et
al., 2012). In spinal cord slice cultures, microglia are not essential for lesion formation;
however, addition of macrophages or TNF-α (a cytokine that is synthesized and released
from astrocytes and microglia in the CNS), or pre-treatment with LPS (which activates
endogenous microglia), greatly potentiated NMO lesions (Zhang et al., 2011). Microglial
activation might thus represent another cellular mechanism of optic nerve damage in NMO.

4.4 Functional consequences of astrocyte cytotoxicity
While the antibody- and complement-dependent cellular mechanisms described above can
produce secondary oligodendrocyte and axonal toxicity in NMO lesions, disrupted astrocyte
function might also contribute to neuronal and oligodendrocyte damage. Astrocytes support
neurotransmission by clearing extracellular potassium and water, especially near the non-
myelinated nodes of Ranvier, where electrical excitation is concentrated. Alexander disease,
the prototype genetic disorder of astrocytes caused by mutations in GFAP and associated
with intracellular accumulation of GFAP (known as Rosenthal fibers), is remarkable for
diffuse demyelination with relative axonal preservation (Brenner et al., 2001; Mignot et al.,
2004; Sawaishi, 2009). Interestingly, aged mice that lack GFAP manifest impaired optic
nerve and spinal cord myelination (Liedtke et al., 1996), suggesting an important role for
astrocytes in the maintenance of myelination. Astrocytes are involved in an extensive glial
network involving astrocyte-astrocyte and astrocyte-oligodendrocyte coupling through
homotypic and heterotypic connexin (Cx) gap junction proteins, respectively.

Gap junctions might represent important mediators of myelin and axonal damage in NMO
and other astrocyte-mediated diseases (reviewed in Cotrina and Nedergaard, 2012).
Astrocyte Cx30 and Cx43, which are responsible for astrocyte-astrocyte and astrocyte-
oligodendrocyte coupling, are lost at the glia limitans in NMO-like white matter lesions in
animal models (Sharma et al., 2010). Still-myelinated human NMO optic nerve lesions also
manifest vacuolated edema within myelin (Parratt and Prineas, 2010), similar to the gross
myelin vacuolization in double-knockout mice lacking the heterotypic astrocyte-
oligodendrocyte gap junction proteins Cx32 and Cx47 (Menichella et al., 2003). In these
mice, neuronal activity was implicated in the development of myelin vacuoles. Increasing
retinal ganglion cell activity (with intraocular cholera toxin) exacerbated vacuole formation,
whereas inhibiting activity (with intraocular tetrodotoxin) reduced vacuole formation
(Menichella et al., 2006). The high metabolic demands of ganglion cells resulting from their
constant activity, high surface area-to-volume ratio, and their need for efficient transport
along long myelinated optic nerve fibers, might exacerbate lesion pathology in NMO ON.
NMO lesions are notably prevalent in other highly active white matter regions, including the
descending respiratory motor tracts of the spinal cord, the corpus callosum, and axon
bundles that lie adjacent to circumventricular organs.

Several studies have demonstrated the vulnerability of optic nerve oligodendrocytes and
myelination to glutamate excitotoxic mechanisms (Micu et al., 2006; Domercq et al., 2005;
Wilke et al., 2004; Matule, 1998). Of relevance to NMO, one study concluded that AQP4-
IgG indirectly promotes internalization of glutamate transporter EAAT2 and hence
glutamate excitotoxicity (Hinson et al., 2008); however, a subsequent report failed to
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observe this mechanism (Ratelade et al., 2011a). Nonetheless, astrocyte damage may
produce a toxic bystander effect on oligodendrocytes given the critical role of astrocytes in
extracellular glutamate removal. Finally, the generation of free radical oxygen species
appears to represent an important downstream mechanism limiting remyelination of injured
axons. Oxidative stress has been shown to promote astrogliosis and inhibit oligodendrocyte
regeneration by altering transcription through the bone morphogeneic protein, Wnt, and
Notch development signaling pathways (John et al., 2002; Ara et al., 2008; Fancy et al.,
2011; Reid et al., 2012).

4.5 Sensitivity of the optic nerve to NMO pathology
As mentioned above and diagrammed in Figure 4, it is thought that complement-mediated
astrocyte damage is an initiating event in NMO, followed by granulocyte infiltration,
oligodendrocyte death, and ultimately neuron death. It remains unclear why NMO lesions
localize to the central nervous system, and the optic nerve in particular, and why peripheral
AQP4-expressing organs are spared. AQP4-IgG concentration in serum is more than 500-
fold greater than in CSF (Jarius et al., 2010b). Regional differences in blood-brain barrier
integrity might be involved in the predilection of the optic nerve in NMO (Hofman et al.,
2001; Liu et al., 2008). It has been proposed that non-specific inflammation may open the
blood-brain barrier for transient passage of serum AQP4-IgG and plasma blasts secreting
AQP4 autoantibodies. Interestingly, various gastrointestinal and other infections are reported
in 25–30% of NMO exacerbations, which may provide the initial stimulus for AQP4-IgG
entry into the central nervous system or for lymphocyte recruitment (Koga et al., 2011).
Recent data suggests that NMO attacks might be triggered by Helicobacter and/or
Clostridium infections (Li et al., 2009; Varrin-Doyer et al., 2012).

Optic nerve-specific pathology in NMO, however, is unlikely to be due solely to enhanced
AQP4-IgG access. Restricted diffusion of AQP4-IgG and soluble pro-inflammatory factors
(such as complement proteins) in the optic nerve may increase their concentration and
contact time. Greatly slowed solute diffusion across white matter tracts in spinal cord has
been found by elliptical photobleaching (Papadopoulos et al., 2005). The long, thin
cylindrical dimension of the optic nerve is unique among myelinated tracks, and provides a
potential mechanism for enhancing lesion formation due to restricted diffusion and clearance
of debris (Ludwin, 1990; Hickman et al., 2004).

Optic nerve susceptibility in NMO might also arise from the high AQP4 expression in optic
nerve compared to brain (Saini et al., 2010) and the abundance of large OAPs in
perivascular astrocytic end-feet of optic nerve (Bäuerle and Wolburg, 1993; Amiry-
Moghaddam et al., 2004; Nicchia et al., 2008), which enhance AQP4-IgG binding and CDC,
as mentioned above. The presence of plasma blasts in the CSF secreting AQP4-IgG locally
(Bennett et al., 2009) and/or regional variations in regulators of complement (CD46 and
CD59) may also be involved in the unique susceptibility of the optic nerve in NMO. Finally,
retinal Müller cell AQP4 could represent a second pathogenic ocular target of AQP-IgG as
suggested by observations of focal retinal vascular attenuation, inner nuclear layer
thickening, and microcystic edema in NMO patients (Green and Cree, 2009; Gelfand et al.,
2012; Sotirchos et al., 2012).

4.6 Animal models of NMO
An animal model of NMO should recapitulate the key pathological features of human NMO
lesions, and, ideally, manifest an AQP4-IgG autoimmune response with spontaneous
development of NMO pathology in optic nerve and spinal cord. However, despite
considerable effort there are no good models of AQP4-IgG-positive NMO. Challenges in the
development of NMO animal models include differences in murine and human complement
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activity (Bergman et al., 2000), and in the ratio of astrocytes to neurons in central nervous
system tissues (Jacobson, 1978).

The CSF plasma cell repertoire in NMO displays features of an antigen-driven, T cell-
mediated germinal center humoral immune response (Bennett et al., 2009). As such, some
investigators are exploring possible NMO animal models based on direct immunization with
AQP4 peptide fragments or adoptive transfer of AQP4-sensitized T cells, possibly in
combination with CNS exposure to AQP4-IgG. Combining adoptive transfer of AQP4-
specific rat T cells and peripheral infusion of AQP4-IgG-containing patient serum induced
lesions in rat spinal cord and brain, but not in optic nerve (Pohl et al., 2011).

AQP4-specific T cells exhibit a differentiation bias toward the Th17 sub-type, driven by the
cytokines interkleuken-6, -21, and -23 and TGF-β (Varrin-Doyer et al., 2012). One mouse
model involving both T and B cell activation against myelin oligodendrocyte glycoprotein
manifests a Th17 bias and selective optic nerve and spinal cord pathology reminiscent of
NMO (Bettelli et al., 2006). Interestingly, a mouse model of EAE induced by Th17 (but not
Th1) cells demonstrated neutrophilic infiltration in optic nerves and spinal cord,
recapitulating several aspects of NMO (Herges et al., 2012). Although EAE is associated
with inflammatory demyelination in optic nerve, brain and spinal cord, the underlying
mechanism, a T-cell response against myelin-derived peptides, is quite different from the
antibody-dependent astrocytopathy in NMO.

In support of a pathogenic role of AQP4-IgG include several studies showing that
administered AQP4-IgG can alter the pathology of pre-existing EAE in rats to that of NMO
(Bennett et al., 2009; Bradl et al., 2009). However, the background hyper-inflammatory
environment and presence of myelin-reactive T cell preclude an unambiguous conclusion
about the sufficiency of AQP4 antibodies for lesion formation. Compelling evidence of a
pathogenic role of AQP4-IgG in seropositive NMO came from passive transfer of AQP4-
IgG and human complement via intracerebral injection in mice. This model reproduced the
major features of human NMO lesions, including loss of AQP4 and GFAP, granulocyte
infiltration, perivascular deposition of activated complement, and demyelination (Saadoun et
al., 2010). Pathology was not seen in key control studies, including injection of complement
with IgG from non-NMO humans or with AQP4-IgG depleted NMO serum, injection of
AQP4-IgG in the absence of complement, or injection of AQP4-IgG and complement in
AQP4-knockout mice. Human complement was used in this model because of the very low
endogenous activity of mouse complement.

The intracerebral injection model has been used to study the role of specific immune cells
(Saadoun et al., 2011; Saadoun et al., 2012b; Ratelade et al., 2012; Zhang and Verkman,
2013) and potential therapeutics (Tradtrantip et al., 2012a, 2012b, 2013). Attempts to create
NMO disease by intravenous administration of AQP4-IgG to naïve rodents have thus far
been unsuccessful (Ratelade et al., 2011b). An optic nerve-specific animal model, perhaps
involving optic nerve exposure to AQP4-IgG, would be useful in studying NMO ON.

Ex vivo organ culture models of NMO ON and spinal cord pathology have been developed
(Zhang et al., 2011) and used to test the role of inflammatory cells and soluble factors and
potential therapeutics. Organ culture models allow exposure of tissues to defined conditions
and factors. The ex vivo model of NMO ON involves culture of mouse optic nerve culture
for 1 day, in which NMO pathology, with loss of AQP4 and GFAP, was produced by
incubation of optic nerve cultures with AQP4-IgG and complement (Figure 5). For ex vivo
culture of spinal cord, 300 μm-thick vibratome-cut transverse slices of mouse spinal cord
were cultured on transwell porous supports, which preserved basic spinal cord architecture
and cellular structure, including astrocytes, microglia, neurons and myelin. After 7 days in
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culture, spinal cord slices were exposed to AQP4-IgG and complement for 2–3 days and
analyzed by immunofluorescence. Exposure to AQP4-IgG and complement produced
marked loss of GFAP, AQP4 and myelin, and deposition of activated complement and
microglial cell activation. In key controls, lesions were not seen in optic nerve and spinal
cord slice cultures cultured with either AQP4-IgG or complement alone, or in tissues from
AQP4 null mice exposed to AQP4-IgG and complement together.

Issues of oxygen diffusion present difficulty in maintaining viable optic nerve organotypic
cultures for the period (3–5 days) necessary to study the predicted sequence of events in
NMO ON. Protocols involving optic nerve explants cultured with their retinas attached may
prolong the viability of rodent optic nerves ex vivo (Azim et al., 2011; Fu and Sretavan,
2012). Notwithstanding technical challenges in maintaining optic nerve cultures, further
optimization of this model is warranted to address questions that are not easily investigated
using in vivo models.

5. Emerging therapeutics
Current abortive and preventative therapies for NMO ON, such as immunosuppression and
immunomodulation are non-selective and hence can have off-target side effects such as
infections and malignancy. An ideal NMO therapy would target specific NMO pathogenesis
mechanism(s) with high precision. Recent advances in understanding NMO pathogenesis
mechanisms suggest potential therapeutic targets. As diagrammed in Figure 6, NMO
therapies can target AQP4-IgG producing immune cells, AQP4-IgG effector functions,
access of AQP4-IgG across the BBB, components involved in CDC or ADCC, binding of
AQP4-IgG to AQP4 on astrocytes, AQP4 cell surface expression or supramolecular
assembly, and/or specific immune cells and soluble factors.

Some of these potential targets are being exploited to develop a new generation of NMO
therapeutics. An attractive target is the binding of AQP4-IgG to AQP4 on astrocytes, which
is the major initiating event in NMO. Several blocking strategies have been introduced to
prevent AQP4-IgG binding to AQP4. One blocking strategy utilizes a non-pathogenic, high-
affinity monoclonal antibody (called ‘aquaporumab’) that binds tightly to AQP4, but is
mutated to eliminate its CDC and ADCC effector functions (Tradtrantip et al., 2012b).
Aquaporumab prevented the binding of AQP4-IgG in NMO patient sera to AQP4, resulting
in reduced pathology in cell culture, organ culture and mouse models of NMO.

A variation of this strategy is enzymatic deglycosylation of patient AQP4-IgG by the IgG-
selective enzyme endoglycosidase S (Tradtrantip et al., 2013). Treatment of NMO patient
serum with endoglycosidase S converts pathogenic AQP4-IgG to therapeutic blocking
antibodies, as AQP4-IgG deglycosylation does not interfere with its binding to AQP4.
Blocking antibodies or small molecules might be delivered by systemic, intraocular or
intrathecal routes; enzymatic deglycosylation might be accomplished by therapeutic
apheresis in which blood is passed over surface-immobilized endoglycosidase S. An
alternative blocking strategy under development utilizes small-molecule drugs that interfere
with AQP4-IgG binding to AQP4, which have been identified by high-throughput screening
(Tradtrantip et al., 2012a).

The involvement of neutrophils and eosinophils in NMO pathogenesis has suggested that
granulocyte-targeted therapies may be beneficial. Neutropenia greatly reduced pathology in
a mouse model of NMO, while neutrophilia increased NMO pathology (Saadoun et al.,
2012a). In one case report, inadvertent administration of granulocyte colony stimulating
factor to an NMO patient produced neutrophilia and greatly exacerbated NMO clinical
disease (Jacob et al., 2012). Neutrophil elastase inhibitors, including Sivelastat, greatly
reduced pathology in mouse and spinal cord slice culture models of NMO (Zhang et al.,
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2011; Saadoun et al., 2012a). Sivelastat is approved in Japan for therapy of lung
inflammation associated with respiratory distress syndrome. Eosinophils have also been
shown to exacerbate AQP4-IgG-dependent NMO pathology, and certain second-generation
antihistamines with eosinophil-stabilizing actions reduced NMO pathology in spinal cord
slice and mouse models (Zhang and Verkman, 2013). The repurposing of existing
granulocyte-targeted drugs may thus have utility for NMO therapy.

Various other approved drugs are under consideration for repurposing in NMO, including
the complement inhibitor eculizumab (Laino, 2012) and the interleuken-6 receptor inhibitor
tocilizumab (Araki et al., 2012). Other NMO targets remain theoretical possibilities,
including tolerizing therapies targeting immune cells, inhibitors of AQP4 expression or
supramolecular assembly, and modulators of astrocyte complement inhibitor proteins.

6. Future directions
Though substantial recent progress has been made in the pathogenesis and treatment of ON
in NMO, many fundamental questions remain unanswered. How is NMO initiated and is the
antigenic target restricted to AQP4? Why does the disease manifest ON and spinal cord
specificity? What are the roles of granulocytes, macrophages, lymphocytes and
inflammatory cytokines, and how do they contribute to optic nerve astrocytopathy and
retinal ganglion cell injury? Is Müller cell AQP4 a significant target of AQP-IgG? Animal
models of AQP4-IgG pathology in the anterior visual system will be important in addressing
these questions. Improvement in NMO prognosis is anticipated, as new compounds and
monoclonal antibodies are entering the therapeutics pipeline, and approved drugs are
repurposed for NMO therapy. However, the relative rarity of NMO and its highly variable
course remain challenges in the evaluation of new therapeutics and the optimization of
existing therapies.
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ADCC antibody-dependent cell-mediated cytotoxicity

AQP4 aquaporin-4

BBB blood-brain barrier

CDC complement-dependent cytotoxicity

CDCC complement-dependent cell-mediated cytotoxicity

CSF cerebral spinal fluid

Cx connexin

GFAP glial fibrillary acidic protein

IVMP intravenous methylprednisone

MRI magnetic resonance imaging

MS multiple sclerosis

NK natural killer
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NMO neuromyelitis optica

NMOSD neuromyelitis optica spectrum disorder

OAP orthogonal arrays of particles

OCT optical coherence tomography

ON optic neuritis

PE plasma exchange

RNFL retinal nerve fiber layer

TM transverse myelitis
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Figure 1.
Schematic of optic nerve anatomy. Top left, axial view of the brain through the visual
pathway. The majority of ganglion cells synapse in the lateral geniculate nucleus, as
illustrated. Center, longitudinal section through the posterior pole of the globe and optic
nerve. Inner retinal Müller cells express AQP4 (green), whereas astrocytes of the
unmyelinated optic nerve head do not. Behind the lamina cribosa, astrocytes express AQP4,
especially around branches of pial vessels and the central retinal artery. Astrocytes separate
myelinated axons from pial surfaces and from one another. Bottom left, cross-section
through retrolaminar optic nerve, showing fascicles of parallel myelinated axons (yellow)
surrounded by AQP4-expressing astrocytes (green). Right, retrolaminar astrocytes protect
myelinated axons by forming end-feet (with high AQP4 expression) over blood vessels.
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Figure 2.
MRI and OCT imaging of NMO optic neuritis. A. Axial and coronal post-contrast T1-
weighted images of acute NMO optic neuritis demonstrate acute inflammation of the
prechiasmatic right optic nerve (arrows). B. Spectral domain OCT of the peripapillary
RNFL and macula of eyes affected by MS- and NMO-associated ON. Note the increased
retinal thinning in the macula affected by NMO ON despite a comparable amount of
peripapillary RNFL loss (red: < 1st percentile; yellow: < 5th percentile; green: 5th–95th

percentile). Thickness shown in microns.
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Figure 3.
AQP4, the target of AQP4-IgG autoantibodies. A. Amino acid sequence of human AQP4
showing Met-1 and Met-23 translation inhibition sites (black), residues involved in
intermolecular N-terminus associations to form OAPs (pink); residues preventing OAP
formation by M1-AQP4 (light green); cysteines involved in palmitoylation-regulated OAP
assembly (blue); and C-terminus PDZ domain (dark green). B. CDC requires AQP4
assembly in OAPs. Multivalent binding of C1q to Fc regions of clustered AQP4-IgG on
AQP4 OAPs. AQP4 tetramers shown with a generic IgG antibody and C1 on the same size
scale. C. Crystal structure of human AQP4 (PDB, 3GD8).
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Figure 4.
Mechanisms of optic nerve damage in NMO. Lesions of different ages are depicted in a
longitudinal section through myelinated retrolaminar optic nerve. A. Pre-lesion, showing
AQP4-IgG accessing and binding to AQP4 on perivascular astrocytes. B. Acute early lesion,
showing AQP4-IgG deposition and complement activation (purple discs, membrane attack
complexes) and astrocyte damage. Cytokine release and recruitment of granulocytes into
perivascular space is also shown. C. Subacute lesion, showing neutrophil and eosinophil
degranulation that exacerbate astrocytotoxicity. Secondary oligodendrocyte loss results from
disruption of glial tight junction networks and oxidative stress. Myelination is relatively
preserved, albeit with prominent vacuolization. D. Older lesion, showing fragmentation and
loss of myelin and appearance of activated macrophages and resident microglia. Axonal
injury may arise from both failed remeylination and inflammatory damage.
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Figure 5.
Ex vivo optic nerve culture model of NMO. Top, schematic showing mouse optic nerves
cultured for 24 h in CO2/O2-bubbled artificial cerebrospinal fluid, with human complement
(HC) and/or AQP4-IgG. Bottom, immunofluorescence for GFAP (green) and AQP4 (red)
and myelin basic protein (MBP) (red) in wildtype (AQP4+/+) and AQP4 knockout
(AQP4−/−) mice. ‘Control’ indicates no added AQP4-IgG or HC.
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Figure 6.
Approaches to treat NMO optic neuritis. Schematic of NMO pathogenesis showing AQP4-
IgG production by lymphocytes, penetration through the BBB, binding to AQP4 on
astrocytes, CDC (complement-dependent cytotoxicity) and ADCC (antibody-dependent cell-
mediated cytotoxicity), and the inflammatory reaction. Purple boxes, current NMO
therapies; blue box, therapy in clinical trials; red boxes, therapies in pre-clinical
development; green boxes, alternative possible therapeutic targets.
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