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Abstract
Glomerulosclerosis is characterized by excessive deposition of extracellular matrix within the
glomeruli of the kidney, glomerular cell death, and subsequent loss of functional glomeruli. While
in physiological situations the levels of extracellular matrix components are kept constant by a
tight balance between formation and degradation, in the case of injury that results in fibrosis there
is increased matrix deposition relative to its breakdown. Multiple factors control matrix synthesis
and degradation, thus contributing to the development of glomerulosclerosis. This review focuses
primarily on the role of cell-matrix interactions, which play a critical role in governing glomerular
cell cues in both healthy and diseased kidneys. Cell-extracellular matrix interactions are made
possible by various cellular receptors including integrins, discoidin domain receptors, and
dystroglycan. Upon binding to a selective extracellular matrix protein, these receptors activate
intracellular signaling pathways that can either downregulate or upregulate matrix synthesis and
deposition. This, together with the observation that changes in the expression levels of matrix
receptors have been documented in glomerular disease, clearly emphasizes the contribution of
cell-matrix interactions in glomerular injury. Understanding the molecular mechanisms whereby
extracellular matrix receptors regulate matrix homeostasis in the course of glomerular injury is
therefore critical for devising more effective therapies to treat and ideally prevent
glomerulosclerosis.
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Introduction
Glomerulosclerosis, the process by which glomerular tissue is replaced by extracellular
matrix (ECM), is the final common pathway for loss of functioning glomeruli.
Glomerulosclerosis occurs when the normal response to renal injury, characterized by the
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synthesis, degradation, and remodeling of ECM components, is dysregulated such that
matrix deposition prevails on its breakdown.

The glomerulus, the filtering unit of the kidney, has a complex structure which includes: 1) a
capillary bed composed of specialized fenestrated endothelial cells; 2) mesangial cells, the
principal mesenchymal cell type, which maintain the three-dimensional structure of the
capillary bed; 3) terminally differentiated visceral epithelial cells called podocytes; and 4)
the glomerular basement membrane (GBM) that separates the podocytes from the
endothelial cells (Figure 1). The endothelial cells, GBM, and podocytes form the glomerular
filtration barrier. Dysfunction of any of the four major components of the glomerulus due to
genetic disorders, immune complex mediated injury, hemodynamic injury, or direct
cytotoxic injury to specific glomerular cell components can result in glomerulosclerosis.
Thus, it is imperative that we understand the molecular and cellular mechanisms that
contribute to the homeostasis of the glomerular filtration barrier in order to devise new and
more efficient tools to halt the progression of glomerulosclerosis and ideally prevent
glomerular disease.

Although multiple factors contribute to the initiation and progression to glomerulosclerosis
[1], in this review we will focus on the interactions between glomerular cells with the
surrounding ECM, as these interactions play a critical role in regulating the response of the
glomerulus to injury and progression to glomerulosclerosis. We will briefly describe the
major matrix components, namely collagens and laminins, found the in adult glomerulus and
how changes in their expression contribute to glomerular injury. We will then describe the
role of three major matrix receptors, namely integrins, discoidin domain receptors (DDR),
and dystroglycan in the control of glomerular homeostasis in healthy and diseased
glomeruli. Finally, we will discuss the hope and tribulations of targeting these receptors for
the treatment of glomerulosclerosis.

Glomerular extracellular matrix
In the glomerulus, ECM components provide structural stability to the glomerulus and
interact with the three major glomerular cell components described above through integrin
and non-integrin receptors, influencing cellular survival, proliferation, adhesion and matrix
homeostasis [2]. Endothelial cells and podocytes lie on basement membranes, specialized
ECM structures composed primarily by collagen IV and laminins (Figure 1). In addition to
these two major components, matrices such as collagen XV, nidogens, and proteoglycans
(i.e. perlecan, collagen XVIII, and agrin) can also be found in the GBM [1]. Collagen IV is
the major matrix found in the mesangium and separates mesangial cells from each other’s,
as well as mesangial cells from endothelial cells (Figure 1). In this review we describe
briefly the contribution of collagen IV and laminins to glomerular homeostasis, as they are
the two major components upregulated in the course of glomeruli injury and the ligands for
both integrin and non-integrin receptors within the glomerulus.

Collagen IV is comprised of 6 chains, called α1-α6, that assemble in a selective manner
giving rise to trimer molecules [3]. Several networks of collagen IV are present in the adult
glomerulus. The α1α2α1(IV) network is found primarily in the mesangium, the α3α4α5(IV)
network is the main component of the GBM, and the α1α2α1-α5α6α5(IV) network is
present in the Bowman’s capsule [4]. The glomerular α1α2α1(IV) network provides
structural stability and interacts with cellular receptors like integrins and DDRs [5, 6]. The
absence of this network results in embryonic lethality [7], while mutations in the α1(IV)
chain lead to cortical renal cysts, hematuria, basement membrane defects, glomerulopathy,
and decreased glomerular filtration rate [8-10] (Figure 1). Unlike the α1α2α1(IV), the
α3α4α5(IV) network is dispensable for kidney development, but is required for proper
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glomerular filtration, since patients lacking either the α3(IV), α4(IV) or the α5(IV) chain
develop Alport Syndrome, a genetic disorder characterized by glomerulonephritis that
progresses to end stage kidney failure [11] (Figure 1). In addition, production of auto-
antibodies against the non collagenous domain of the α3(IV) or α5(IV) chain leads to
Goodpasture’s disease, an immunological disease characterized by rapidly progressive
glomerulonephritis [12] (Figure 1).

Laminins are glycoproteins composed by the assembly of an α, β and γ subunit [13] and are
highly expressed in GBM [14]. Several laminins are expressed at various stages of
glomerular development, but only laminin-521 is expressed in the adult GBM [15].
Laminin-521 is critical for the glomerular function, as patients with mutations in the laminin
β2 gene develop Pierson syndrome, a genetic disease characterized by glomerulosclerosis
and defects of the GBM [16, 17] (Figure 1). Similarly, mice in which the laminin β2 chain is
deleted develop nephrotic syndrome [18]. Deletion of the laminin α5 chain selectively in
podocytes results in proteinuria that progresses to nephrotic syndrome [19] (Figure 1).

In glomerulosclerosis, changes in the levels of glomerular matrix components include
increased synthesis and deposition of collagen IV [20, 21] as well as ectopic expression of
laminin chains. In this regard, in membranous glomerulonephritis increased expression of
laminin β1 (only expressed during kidney development) in the GBM is evident [22].
Changes in levels or de-novo expression of matrix components have pathological
consequences for the progression of glomerulosclerosis, as they could modify the filtering
properties of the GBM or affect cell-matrix interactions and subsequent glomerular cellular
function.

Integrins and glomerulosclerosis
Integrins are transmembrane receptors for ECM components that consist of two non-
covalently associated α and β subunits. Both integrin subunits have large extracellular
domains which contain the ligand binding site and confer ligand specificity, a single
transmembrane domain, and a cytoplasmic domain which interacts with the cytoskeleton
and regulates intracellular signaling [23, 24]. Integrins influence critical cell functions
including proliferation, survival, migration, as well as matrix homeostasis [1]. In mammals,
18 α subunits associate with 8 β subunits to form 24 distinct integrins. The most widely
expressed integrin subunit is the β1 subunit, which associates with α1-11 and αv subunits
[23]. Global deletion of the integrin β1 subunit results in embryonic lethality [25], thus
making it impossible to determine the role of this receptor in glomerular homeostasis. The
development of conditionally null mice has allowed the selective deletion of integrin
subunits in various cells, including glomerular cells. Selective deletion of the integrin β1
subunit in podocytes using podocin-cre mice results in proteinuria at birth, podocytes loss,
capillary loop and mesangium degeneration, followed by end stage renal disease at 6 weeks
of age [26] (Figure 2). Deletion of the same integrin subunit in podocytes using nephrin-cre
results in a more severe phenotype, including splitting of the GBM [27] (Figure 2). These
findings indicate that β1-containing integrins are required for regulating glomerular cell
functions. In addition to β1, integrin β6, β8 and several α subunits play a role in glomerular
homeostasis and their loss is associated with either progression to or protection from
glomerulosclerosis. The contribution of some of these subunits is described in detail below.

Integrin α3β1
Integrin α3β1 is the main integrin expressed on podocytes and function as the major GBM
receptor in these cells [28]. Global deletion of the integrin α3 subunit in mice results in
death within 24 hours after birth because of severe developmental abnormalities, including
alterations in glomerular capillary loops, a disorganized GBM, and inability of the foot
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processes of the podocytes to mature properly [29] (Figure 2). Selective deletion of the
integrin α3 subunit in podocytes by crossing the integrin α3 flox mice with podocin-cre
leads to massive proteinuria within a week after birth, followed by nephrotic syndrome at
5-6 weeks, and glomerulosclerosis [30]. Interestingly, integrin α3β1 binds CD151 [31], a
member of tetraspanin family and this interaction is proposed to increase the strength of
integrin α3β1-GBM interaction. In support of this hypothesis, patients with a nonsense
mutation in CD151 show glomerular abnormalities, develop glomerulosclerosis, and
progress to end stage kidney disease [32]. In addition, mice globally deleted of CD151
develop GBM abnormalities, podocytes dysfunction and glomerulosclerosis, which results
in renal failure [30, 33] (Figure 2). Finally, it has been recently shown that selective deletion
of CD151 in podocytes reduces integrin α3β1-mediated adhesive strength to laminin in vitro
and leads to glomerular nephropathy in vivo [34]. All together, these studies show that 1)
integrin α3β1 is the major GBM receptor in podocytes; 2) integrin α3β1 is critical for
interactions with matrices (i.e. laminin) or tetraspanin proteins (i.e. CD151); 3) interaction
of integrin α3β1 with CD151 is important for regulating the strength of adhesion to laminin;
and 4) loss of the integrin α3 subunit or CD151 in podocytes leads to severe glomerular
injury and end stage renal disease.

Although integrin α3β1 is the major laminin receptor in podocytes, other laminin receptors
are expressed by glomerular cells, including integrins α6β1 and α6β4. However, the role of
the integrin α6 or β4 subunit in glomerular homeostasis is difficult to determine, as global
integrin α6-null or β4-mice die at birth due to severe skin blistering [35, 36]. The recent
generation of mice lacking the integrin β4 subunit specifically in podocytes has ruled out a
potential role of this subunit in glomerular homeostasis, as these mice do not have any
kidney defects nor show kidney failure [34]. Thus, generation of mice lacking the β4 subunit
in other glomerular cells is therefore necessary to address the potential function of this
laminin receptor in glomerular homeostasis.

Integrin α8β1
Integrin α8β1 is highly expressed by mesangial cells, binds with high affinity to
nephronectin [37] and plays an important role in kidney development and glomerular
homeostasis. In this context, loss of the integrin α8 subunit in mice results in different renal
phenotypes ranging from renal agenesis to slightly reduced kidney size [38]. Examination of
kidneys from integrin α8-null mice revealed hypercellular glomeruli with an increased
number of mesangial cells, increased mesangial matrix deposition, and abnormalities in the
glomerular capillary networks [39]. The evidence that integrin α8β1 might play a protective
role in glomerular injury comes from the observation that hypertensive integrin α8-null mice
show more mesangiolysis than hypertensive wild type mice, suggesting that integrin α8β1 is
important for glomerular capillary stability [40]. Moreover, diabetic integrin α8-null mice
develop more pronounced proteinuria, glomerulosclerosis, mesangial expansion, and
glomerular expression of fibrillar collagens compared to diabetic wild type mice [41]
(Figure 2). In addition to these in vivo findings, in vitro studies suggest that engagement of
integrin α8β1 by fibronectin and vitronectin promotes mesangial cell adhesion, but prevents
migration and proliferation of mesangial cells [42]. Thus, integrin α8β1 could play an
important role in maintaining glomerular tissue integrity by preventing unwanted mesangial
cell proliferation in the course of glomerular injury. Genetic analysis in two different ethnic
groups (European and African descent) has been conducted with the hope to understand not
only the genomic structure, localization and sequence variation of the integrin α8 gene, but
also to possibly enable genetic association studies of integrin α8β1 in kidney disease [43].
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Integrins α1β1 and α2β1
Integrins α1β1 and α2β1 are the two major glomerular collagen receptors and they are
highly expressed by mesangial cells, endothelial cells and podocytes. Integrin α1β1 binds
collagen IV with high affinity, while integrin α2β1 binds preferentially fibrillar collagen,
like collagen I [44]. Loss of the integrin α1 or α2 subunit in mice does not affect renal
development, as integrin α1-null and integrin α2-null mice are born alive with no obvious
renal phenotype [45-47]. However, integrins α1β1 and α2β1 play an important role in the
response of the glomerulus to injury. In this context, integrin α1β1 is overexpressed in the
proliferating mesangium in glomerulonephritis [48, 49]. In addition, anti-integrin α1
antibodies have been successfully used to reduce scarring in rat models of glomerular injury.
This protective effect is achieved by primarily inhibiting integrin α1β1-dependent (VLA-1)
leukocyte function with consequent immune response dampening [50]. In contrast to these
results, integrin α1-null mice develop more severe glomerulosclerosis following injury
characterized by excessive collagen IV deposition and reactive oxygen species (ROS)
generation [20, 21]. This data seems to agree with the finding that in non-glomerular cells,
integrin α1β1 is required to sense extracellular collagen levels and to downregulate
endogenous collagen I synthesis [51]. Using mesangial cell cultures, we showed that
integrin α1β1 is a negative regulator of collagen IV synthesis and it does this by
downregulating the activation of the pro-fibrotic EGF receptor [52]. In addition, integrin
α1β1 exerts its anti-fibrotic role by regulating the level and phosphorylation state of
caveolin-1, a scaffolding protein that negatively regulates EGF receptor activation [53, 54].

Similar to integrin α1β1, the function of the major collagen I receptor in the glomerulus,
integrin α2β1, in glomerulosclerosis is also controversial. Expression of integrin α2β1
increases in the kidneys of patients with diabetic nephropathy [55] and rapidly progressive
glomerulonephritis [56]. However, whether increased expression of this collagen receptor
contributes to or it counteracts the development of glomerulosclerosis, is unclear. Integrin
α2-null mice develop mild proteinuria at 6 months of age and mild glomerular damage due
to increased expression of the pro-fibrotic transforming growth factor (TGF)-β and
connective tissue growth factor (CTGF) [57]. Although this result suggests that integrin
α2β1 is a negative regulator of glomerulosclerosis, in vitro studies with non-renal cells
suggest that integrin α2β1 is a positive regulator collagen I and ROS synthesis [58, 59].
Furthermore, crossing the COL4A3-null mice, a mouse model of Alport disease, with the
integrin α2-null mouse results in increased survival, improved renal function and decreased
glomerular matrix deposition and scarring [O. Gross, J. Reinhardt, M. Martin, S. Koschnick,
M. Weber, G.A. Mueller, R. Girgert. Poster Session: Extracellular Matrix Biology, Fibrosis,
and Cell Adhesion, Poster number [TH-PO447], American Society of Nephrology,
Philadelphia, 2008]. Recently, we examined the role of integrin α2β1 in regulating ROS-
mediated glomerulosclerosis and found that integrin α2-null mice developed significantly
less proteinuria and glomerulosclerosis than wild type mice following adriamycin injection
(Borza and Pozzi, under revision). In agreement with the observation that loss of integrin
α2β1 plays a protective role in glomerular injury, treatment of wild type mice with a
selective integrin α2β1 inhibitor [60], decreases albuminuria and glomerular injury
following adriamycin injection (Borza and Pozzi, under revision).

Taken together, these studies suggest that the collagen receptors integrin α1β1 and α2β1
exert opposite effects in glomerulosclerosis. Integrin α1β1 negatively regulates collagen
synthesis thus preventing excessive glomerular injury, while integrin α2β1 positively
regulates collagen synthesis thus contributing to glomerular injury (Figure 2).
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Integrins αvβ6 and αvβ8
Integrins αvβ6 and αvβ8 regulate glomerular matrix homeostasis by mediating the activation
state of TGF-β. TGF-β is a pro-fibrotic cytokine that influences glomerular cells survival,
proliferation and matrix production, thus leading to mesangial expansion and, ultimately,
glomerulosclerosis. TGF-β is secreted by podocytes and mesangial cells and its expression is
upregulated in various glomerular diseases [61]. Although overexpression of TGF-β alone is
sufficient to induce glomerulosclerosis [62], TGF-β has to be activated in order to exert its
biological activities, as the levels of active rather than total TGF-β are predictive of fibrosis.
TGF-β is usually sequestered in the extracellular matrix in the inactive form and is tightly
bound to latency associated peptide (LAP), which alters its conformation and blocks the
growth factor from interacting with its receptors [63]. One mechanism of latent TGF-β
activation involves interaction of integrins with an RGD sequence in LAP [64]. Although,
several αv containing integrins bind LAP in vitro, the phenotypes of the integrin β6-null and
β8-null mice indicate that αvβ6 and αvβ8 are the main integrins that activate TGF-β in vivo.
TGF-β activation by integrin αvβ6 and αvβ8 is distinct. In the case of integrin αvβ6, TGF-β
release and activation from the LAP/TGF-β complex requires binding of integrin αv to the
RGD sequence in LAP, association of the integrin β cytoplasmic domain with the
cytoskeleton, and contractile force that exposes the active TGF-β [65]. In contrast, integrin
αvβ8 activation of TGF-β requires proteolytic cleavage of LAP by membrane-type matrix
metalloproteinases (i.e. MT1-MMP) which results in the release of active TGF-β in the
surrounding tissue [66].

Integrin αvβ6 is expressed at low levels in epithelial cells, but its expression increases
following injury in various organs including the lungs and the kidneys [67]. Mice that lack
the integrin β6 subunit have significant inflammation in skin and lungs, but no renal
abnormalities [68]. This result suggests that loss of integrin αvβ6 might protect the mice
from renal injury. Consistent with this hypothesis, mice that lack the integrin β6 subunit are
protected from bleomycin-mediated pulmonary fibrosis [65]. In addition, integrin β6-null
mice show reduced renal fibrosis following unilateral ureteral obstruction with concomitant
decreased levels of activated TGF-β [69]. Finally, either blocking integrin αvβ6 or β6
deficiency reduces renal fibrosis in the COL4A3 Alport mice [70]. Overall these studies
suggest that integrin αvβ6, via activation of TGF-β, contributes to fibrosis and blocking this
integrin may be a valuable strategy for the treatment of kidney fibrosis (Figure 2).

In contrast to integrin αvβ6 whose expression increases following renal injury, the
glomerular expression of integrin αvβ8 decreases in mouse models of glomerulosclerosis
[71]. However, whether its downregulation contributes to or it counteracts the disease is
unclear. The observation that integrin β8-null mice develop albuminuria over time suggests
that decreased expression of integrin αvβ8 indeed contributes to glomerular injury [72]. The
increased albuminuria can be explained by the fact that in the absence of integrin αvβ8,
mesangial cells fail to bind and sequester latent TGF-β, thus resulting in increased levels of
secreted active TGF-β. Mesangial cells can prevent activation of TGF-β in two different
ways: 1) they can bind latent TGF-β via integrin αvβ8; and 2) due to the fact that, when
quiescent, they do not express MT1-MMP, they prevent TGF-β activation and release [72].
Despite integrin β8-null mice show increased levels of activated TGF-β and proteinuria, they
do not develop glomerular cell damage. This is because these mice can adapt to increased
levels of activated TGF-β by overexpressing PECAM-1 in glomerular endothelial cells,
which protects them from apoptosis and damage [72] (Figure 2).

In conclusion, in vivo activation of TGF-β by αv containing integrins is complex, tissue and
cell specific, thus making it difficult to design selective anti-integrin and/or anti-TGF-β
therapy for the treatment of renal disease [73].
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Non-integrin receptors and glomerulosclerosis
Non-integrin matrix receptors expressed in the glomerulus include DDRs and dystroglycan.
DDR1 and DDR2 constitute a subfamily of receptor tyrosine kinases that function as
fibrillar and non-fibrillar collagen receptors [74]. DDRs are single-span transmembrane
proteins, with an extracellular domain consisting of an N-terminal discoidin homology
domain [75] followed by a region of ~200 amino acids unique to DDRs. The cytoplasmic
domain contains an unusually large juxtamembrane domain followed by the C-terminal
catalytic tyrosine kinase domain. The DDRs are unique among receptor tyrosine kinases as
1) they are activated by an extracellular matrix component, rather than by growth factors;
and 2) unlike traditional receptor tyrosine kinases, DDR autophosphorylation upon ligand
binding is unusually slow and sustained [76-78]. DDRs display a broad collagen specificity:
whereas both receptors bind fibrillar collagen I, DDR1 preferentially interacts with the non-
fibrillar collagen IV [6, 76, 77], while DDR2 preferentially interacts with fibrillar collagens
II and X [79, 80].

Several tyrosine residues that are phosphorylated upon collagen binding to DDRs serve as
docking sites for adaptor molecules such as Shc and Nck2 [81, 82]. DDRs, like other
receptor tyrosine kinases, regulate multiple cellular processes including proliferation,
migration and survival and extracellular matrix synthesis [83].

In the kidneys DDR1 is expressed in basolateral membranes of specific nephron segments,
from the connecting tubule to the renal papilla [84]. DDR2 is expressed in apical membranes
of specific nephron segments, from the loop of Henle to the macula densa [84].
Interestingly, DDR1 is not detectable in the glomeruli of healthy adult kidney, but its
expression is upregulated in the glomeruli of rodents undergone partial renal ablation [84].
In contrast, the distribution of DDR2 in remnant kidneys is similar to that in controls [84].

The generation of DDR1-null mice has revealed a pro-fibrotic function for this receptor. In
this context, DDR1-null mice are protected from angiotensin II-mediated proteinuria,
glomerular fibrosis, and renal inflammation [85]. Moreover, loss of DDR1 delays renal
fibrosis and inflammation in a mouse model of Alport syndrome by decreasing TGF-β
mediated signaling and reducing the levels of the pro-inflammatory cytokine IL6 [86].
Finally, DDR1-null mice show reduced fibrosis, macrophage infiltration, and pro-
inflammatory cytokine production following unilateral ureteral obstruction-mediated
tubulointerstitial injury [87]. Since kidneys from injured DDR1-null show reduced levels of
pro-inflammatory cytokines and reduced numbers of infiltrating macrophage, it is
conceivable that DDR1 might contribute to glomerular fibrosis either directly by controlling
matrix homeostasis or indirectly by stimulating renal inflammation. In addition, it is also
possible that DDR1 might exert its deleterious functions via cross-talk with integrins. In this
regard, DDR-1 has been reported to inhibit integrin α2β1 function in MDCK cells [88], but
to augment integrin α2β1 function in pancreatic cancer cells [89], suggesting that the cross-
talk between these two receptors is cell type dependent. Whether DDR1 cross-talks with
integrin α2β1 in the kidney and whether this cross-talk contributes to glomerular injury is at
present unexplored. Analysis of double DDR1/integrin α2-null mice should provide the
answer to this question. In conclusion, the studies highlighted above demonstrate that DDR1
activation contributes to kidney injury and suggests that blocking this receptor may have
beneficial therapeutic effects.

Another non-integrin matrix receptor is dystroglycan, which consists of an α and β subunit
and is an integral membrane component of the dystrophin–glycoprotein complex. The β
subunit interacts with the intracellular cytoskeletal proteins, while the α subunit binds to
several extracellular ligands such as laminin, agrin, and perlecan. Dystroglycan has been
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shown to play a major role in the assembly and maintenance of basement membranes [90]
and in vitro studies suggest that preventing dystroglycan-laminin interactions prevent
branching morphogenesis [91]. In the glomerulus, dystroglycan is highly expressed in
podocytes where it facilitates podocyte binding to laminins and agrin in the GBM [92]. As
the expression of dystroglycan decreases in minimal change disease, but is unchanged in
focal segmental glomerulosclerosis [93], it was thought that the expression of this podocyte
receptor could be used as a diagnostic marker to differentiate between glomerular diseases.
However, a more recent study comparing the renal expression of dystroglycan in healthy
individuals and patients with minimal change disease, membranous glomerulopathy, and
lupus nephritis, show no differences in expression between patients vs. control groups [94].

The contribution of this laminin receptor in kidney functions has been recently explored.
Mice lacking fukutin, a glycosyltransferase required for the post-translational modification
of α-dystroglycan, show flattening of podocyte foot processes, and decreased number of
podocytes compared to wild type controls [95]. Although these mice do not develop a severe
kidney phenotype (i.e. focal segmental glomerulosclerosis, proteinuria), this study indicates
that glycosylation of α-dystroglycan is important for the maintenance of podocyte
architecture [95]. This finding agrees with the observation that in two different in vivo
models of podocyte-mediated injury, the levels of α-dystroglycan on podocytes decrease
with concomitant changes in the fibrillar components of the GBM [96]. As this study
suggests that decreased levels of α-dystroglycan might lead to structural changes in the
GBM, dystroglycan flox mice have been used to address this issue. Crossing the mice with
podocin-cre (to delete dystrogycan selectively in podocytes) or with Pax2-cre mice (to
delete dystroglycan in all renal epithelial cells) resulted in mice with no significant renal
morphological or functional abnormalities at baseline or following injury [97]. Although
surprising, this study suggests that integrins, rather than dystroglycans, are responsible for
renal cell stability.

Conclusions
Interactions between glomerular cell receptors with the extracellular matrix are important
modulators of glomerular cell function and glomerular response to injury. Glomerular cells
express matrix receptors that can either promote or suppress matrix synthesis, thus
controlling matrix homeostasis. Although the availability of transgenic mice has allowed us
to identify receptors that predispose to or protect from the development of
glomerulosclerosis, it is quite difficult to target these receptors in renal disease. One
example is offered by integrin α1β1.

Although antibody to integrin α1β1 ameliorates immunologically-mediated glomerular
injury [50], we showed that loss of this receptor predisposes mice to ROS-mediated or
diabetes-mediated glomerular injury [20, 21]. Thus, the cell type expressing integrin α1β1
(immune cells vs. renal resident cells) dictates the severity of injury after insult. In addition,
matrix receptors can cross-talk with growth factor receptors, including the EGF receptor.
Blocking and/or activating a matrix receptor might result in activation of the EGF receptor.
Although EGF receptor-mediated functions are beneficial in acute kidney injury as they
facilitate renal epithelial cell proliferation [98], EGF receptor-mediated functions within the
glomerulus promote a pro-fibrotic response by increasing ROS production and subsequent
collagen synthesis [20, 52]. Finally, depending on the cell type, a matrix receptor can either
up or downregulate another matrix receptor. DDR1, for example, negatively regulates the
pro-fibrotic receptor integrin α2β1 in MDCK cells [88], but enhances integrin α2β1-
mediated functions in pancreatic cancer cells [89]. Thus, is it conceivable that blocking
DDR1 function in the kidney might play both anti- and/or pro-fibrotic action depending on
the renal cell type targeted. Despite these obstacles, a better understanding of how cell-
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matrix interactions regulate glomerulosclerosis is critical for designing strategies to
selectively reduce and ideally prevent this devastating disease.
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Figure 1.
Schematic representation of a glomerulus highlighting the three major cell components and
the two major basement membranes. Diseases or glomerular phenotypes associated to loss
of collagen IV chains (in both mesangial and GBMs), or laminin-521 (in the GBM) are
highlighted. See text for details.
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Figure 2.
List of matrix receptors whose loss has been shown to either promote or protect from the
development of glomerular injury. See text for details.
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