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Image registration is typically formulated as an optimization problem with multiple tunable,
manually set parameters. We present a principled framework for learning thousands of parameters
of registration cost functions, such as a spatially-varying tradeoff between the image dissimilarity
and regularization terms. Our approach belongs to the classic machine learning framework of
model selection by optimization of cross-validation error. This second layer of optimization of
cross-validation error over and above registration selects parameters in the registration cost
function that result in good registration as measured by the performance of the specific application
in a training data set. Much research effort has been devoted to developing generic registration
algorithms, which are then specialized to particular imaging modalities, particular imaging targets
and particular postregistration analyses. Our framework allows for a systematic adaptation of
generic registration cost functions to specific applications by learning the “free” parameters in the
cost functions. Here, we consider the application of localizing underlying cytoarchitecture and
functional regions in the cerebral cortex by alignment of cortical folding. Most previous work
assumes that perfectly registering the macro-anatomy also perfectly aligns the underlying cortical
function even though macro-anatomy does not completely predict brain function. In contrast, we
learn 1) optimal weights on different cortical folds or 2) optimal cortical folding template in the
generic weighted sum of squared differences dissimilarity measure for the localization task. We
demonstrate state-of-the-art localization results in both histological and functional magnetic
resonance imaging data sets.

Index Terms
Cross validation error; functional magnetic resonance imaging (fMRI); histology; ill-posed; leave
one out error; local maxima; local minima; model selection; objective function; parameter tuning;
registration parameters; regularization; space of local optima; tradeoff

I. Introduction
IN medical image analysis, registration is necessary to establish spatial correspondence
across two or more images. Traditionally, registration is considered a preprocessing step
[Fig. 1(a)]. Images are registered and are then used for other image analysis applications,
such as voxel-based morphometry and shape analysis. Here, we argue that the quality of
image registration should be evaluated in the context of the application. In particular, we
propose a framework for learning the parameters of registration cost functions that are
optimal for a specific application. Our framework is therefore equivalent to classic machine
learning approaches of model selection by optimization of cross-validation error [33], [43],
[58].

A. Motivation
Image registration is typically formulated as an optimization problem with a cost function
that comprises an image dissimilarity term and a regularization term [Fig. 1(a)]. The
parameters of the cost function are frequently determined manually by inspecting the quality
of the image alignment to account for the characteristics (e.g., resolution, modality, signal-
to-noise ratio) of the image data. During this process, the final task is rarely considered in a
principled fashion. Furthermore, the variability of the results due to these tunable parameters
is rarely reported in the literature. Yet, recent work has shown that taking into account the
tradeoff between the regularization and similarity measure in registration can significantly
improve population analysis [40] and segmentation quality [10], [79].
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In addition to improving the performance of applications downstream, taking into account
the end-goal of registration could help resolve ambiguities and the ill-posed nature of image
registration.

1. The variability of the folding pattern in the human cerebral cortex is well-
documented (see e.g., [45]). Fig. 2(a) shows postcentral sulci of two different
subjects. Note the differences in topology between the two sulci. When matching
cortical folds, even neuroanatomical experts disagree on whether to join the ends of
the broken sulcus or to break up the uninterrupted sulcus.

2. In population studies of human brain mapping, it is common to align subjects into a
single coordinate system by aligning macroanatomy or cortical folding patterns.
The pooling of functional data in this common coordinate system boosts the
statistical power of group analysis and allows functional findings to be compared
across different studies. However, substantial cytoarchitectonic [3], [4], [18] and
functional [41], [62]–[64], [77], [78] variability is widely reported. One reason for
this variability is certainly misregistration of the highly variable macroanatomy.
However, even if we perfectly align the macroanatomy, the underlying function
and cellular architecture of the cortex will not be aligned because the cortical folds
do not completely predict the underlying brain function [54], [62]. To illustrate this,
Fig. 2(b) shows nine Brodmann areas (BAs) projected onto the cortical surfaces of
two different subjects, obtained from histology. BAs define cytoarchitectonic
parcellation of the cortex closely related to brain function [9]. Here, we see that
perfectly aligning the inferior frontal sulcus [Fig. 2(b)] will misalign the superior
end of BA44 (Broca’s language area). If our goal is to segment sulci and gyri,
perfect alignment of the cortical folding pattern is ideal. However, it is unclear that
perfectly aligning cortical folds is optimal for function localization.

In this paper, we propose a task-optimal registration framework that optimizes parameters of
any smooth family of registration cost functions on a training set, with the aim of improving
the performance of a particular task for a new image [Fig. 1(b)]. The key idea is to introduce
a second layer of optimization over and above the usual registration. This second layer of
optimization assumes the existence of a smooth cost function or cross-validation error
metric [g in Fig. 1(b)] that evaluates the performance of a particular task given the output of
the registration step for a training data set. The training data provides additional information
not present in a test image, allowing the task-specific cost function to be evaluated during
training. For example, if the task is segmentation, we assume the existence of a training data
set with ground truth segmentation and a smooth cost function (e.g., Dice overlap measure)
that evaluates segmentation accuracy. If the registration cost function employs a single
parameter, then the optimal parameter value can be found by exhaustive search [79]. With
multiple parameters, exhaustive search is not possible. Here, we establish conditions for
which the space of local minima is locally smooth and demonstrate the optimization of
thousands of parameters by gradient descent on the space of local minima, selecting
registration parameters that result in good registration local minima as measured by the task-
specific cost function in the training data set.

We validate our framework on two datasets. The first dataset consists of 10 ex vivo brains
with the BAs of each subject obtained via histology [4], [84] and mapped onto the cortical
surface representation of each subject obtained via MRI [18]. The second dataset consists of
42 in vivo brains with functional region MT+ (V5) defined using functional magnetic
resonance imaging (fMRI). Here, our task is defined to be the localization of BAs and MT+
in the cortical surface representation via the registration of the cortical folding pattern.
While it is known that certain cytoarchitectonically or functionally-defined areas, such as V1
or BA28, are spatially consistent with respect to local cortical geometry, other areas, such as
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BA44, present a challenge for existing localization methods [18], [20].We learn the weights
of the weighted sum of squared differences (wSSD) family of registration cost functions
and/or estimate an optimal macroanatomical template for localizing the cytoarchitectural
and functional regions using only the cortical folding pattern. We demonstrate improvement
over existing methods [18].

B. Related Work
An alternative approach to overcome the imperfect correlation between anatomy and
function is to directly use the functional data for establishing across-subject functional
correspondence [54], [56]. However, these approaches require extra data acquisition (such
as fMRI scans) of all future test subjects. In contrast, our method aims to learn the
relationship between macro-anatomy and function (or cytoarchitectonics) in a training data
set containing information about both macro-anatomy and function (or cytoarchitectonics).
We use this information to localize function (or cytoarchitectonics) in future subjects, for
which only macro-anatomical information is available.

Our approach belongs to the class of “wrapper methods” for model or feature selection in
the machine learning literature [27], [34]. In particular, our model selection criterion of
application-specific performance is equivalent to the use of cross-validation error in various
model selection algorithms [33], [43], [58]. Unlike feature selection methods that operate in
a discrete parameter space, we work in a continuous parameter space. Consequently,
standard algorithms in the “wrapper methods” literature do not apply to this problem.

Instead, our resulting optimization procedure borrows heavily from the mathematical field
of continuation methods [2]. Continuation methods have been recently introduced to the
machine learning community for computing the entire path of solutions of learning problems
(e.g., SVM or Lasso) as a function of a single regularization parameter [16], [28], [46]. For
example, the cost function in Lasso [67] consists of the tradeoff between a least-squares
term and a L1 regularization term. Least-angles regression (LARS) allows one to compute
the entire set of solutions of Lasso as a function of the tradeoff parameter [16]. Because we
deal with multiple (thousands of) parameters, it is impossible for us to compute the entire
solution manifold. Instead, we trace a path within the solution manifold that improves the
task-specific cost function. Furthermore, registration is not convex (unlike SVM and Lasso),
resulting in several theoretical and practical conundrums that we have to overcome, some of
which we leave for future work.

The wSSD similarity measure implicitly assumes an independent Gaussian distribution on
the image intensities, where the weights correspond to the precision (reciprocal of the
variance) and the template corresponds to the mean of the Gaussian distribution. The
weights can be set to a constant value [6], [31] or a spatially-varying variance can be
estimated from the intensities of registered images [19]. However, depending on the wSSD
regularization tradeoff, the choice of the scale of the variance is still arbitrary [79]. With
weaker regularization, the training images will be better aligned, resulting in lower variance
estimates.

Recent work in probabilistic template construction resolves this problem by either
marginalizing the tradeoff under a Bayesian framework [1] or by estimating the tradeoff
with the minimum description length principle [71]. While these methods are optimal for
“explaining the images” under the assumed generative models, it is unclear whether the
estimated parameters are optimal for application-specific tasks. After all, the parameters for
optimal image segmentation might be different from those for optimal group analysis. In
contrast, Van Leemput [74] proposes a generative model for image segmentation. The
estimated parameters are therefore Bayesian-optimal for segmentation. When considering
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one global tradeoff parameter, a more direct approach is to employ cross-validation of
segmentation accuracy and to perform an exhaustive search over the values of the tradeoff
parameter [79]. This is infeasible for multiple parameters.

By learning the weights of the wSSD, we implicitly optimize the tradeoff betweeen the
dissimilarity measure and regularization. Furthermore, the tradeoff we learn is spatially
varying. Previous work on learning a spatially varying regularization prior suffers from the
lack of ground truth (nonlinear) deformations. For example, [10], [25], [35] assume that the
deformations obtained from registering a set of training images can be used to estimate a
registration regularization to register new images. However, a change in the parameters of
the registration cost function used by these methods to register the training images would
lead to a different set of training deformations and thus a different prior for registering new
images. Furthermore, the methods are inconsistent in the sense that the learned prior applied
on the training images will not result in the same training deformations obtained previously.

While there has been efforts in obtaining ground truth human-annotated deformation fields
[37], the images considered typically have well-defined correspondences, rather than for
example, the brain images of two different subjects. As suggested in the previously
presented examples (Fig. 2), the concept of “ground truth deformations” may not always be
well-defined, since the optimal registration may be a function of the application at hand. In
contrast, image segmentation is generally better defined in the sense that ground truth
segmentation is usually known. Our problem therefore differs from recent work on learning
segmentation cost functions [42], [70], [83]. In this paper, we avoid the need for ground
truth deformations by focusing on the application of registration-based segmentation, where
ground truth segmentations are better defined and available. However, our framework is
general and can be applied whenever a postregistration application can be well quantified by
a smooth application-specific performance cost function.

This paper is organized as follows. In the next section, we introduce the task-optimal
registration framework. We specialize the framework to align hidden labels in Section III.
We present localization experiments in Section IV and discuss outstanding issues in Section
V. This paper extends a previously presented conference article [80] and contains detailed
derivations, discussions and experiments that were omitted in the conference version.

1. We present a framework for learning the parameters of registration cost functions
with respect to specific applications. We present an algorithm sufficiently efficient
for optimizing thousands of parameters.

2. We specialize the framework for the alignment of hidden labels, which are not
necessarily well-predicted by local image features.

3. We apply the framework to localizing cytoarchitectural and functional regions
using only the cortical folding pattern and demonstrate improvements over existing
localization methods [18].

II. Task-Optimal Framework
In this section, we present the task-optimal registration framework for learning the
parameters of a registration cost function. Given an image I, let f (w, Γ) denote a smooth
registration cost function, with parameters w and a spatial transformation Γ. For example

(2.1)

where T is the template image, λ is the tradeoff between the image dissimilarity measure and
the regularization on the transformation Γ, I ∘ Γ denotes the deformed and resampled image
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I. f is therefore also a function of the image I, which we suppress for conciseness. The
optimal transformation Γ* minimizes the cost function for a given set of parameters w

(2.2)

We emphasize that Γ* is a function of w since a different set of parameters w will result in a
different solution to (2.2) and thus will effectively define a different image coordinate
system.

The resulting deformation Γ* is used to warp the input image or is itself used for further
tasks, such as image segmentation or voxel-based morphometry. We assume that the task
performance can be measured by a smooth cost function (or cross-validation error metric) g,
so that a smaller value of g (Γ*(w)) corresponds to better task performance. g is typically a
function of additional input data associated with a subject (e.g., manual segmentation labels
if the task is automatic segmentation), although we suppress this dependency in the notation
for conciseness. This auxiliary data is only available in the training set; g cannot be
evaluated for the new image.

Given a set of N training subjects, let  denote the solution of (2.2) for training subject n
for a fixed set of parameters w and gn( ) denote the task performance for training
subject n using the deformation  and other information available for the nth training
subject. A different set of parameters w would lead to different task performance gn( ).
We seek the parameters w* that generalize well to a new subject: registration of a new
subject with w* yields the transformation Γ*(w*) with a small task-specific cost g(Γ*(w*)).
One approach to solve this functional approximation problem [17] is regularized risk
minimization. Let Reg(w) denote regularization on w and define

(2.3)

Regularization risk minimization seeks

(2.4)

The optimization is difficult because while we assume gn to be smooth, the input to gn (·) is
itself the local minimum of another nonlinear cost function f. Furthermore, evaluating the
cost function G for only one particular set of parameters w requires performing N different
registrations!

A. Characterizing the Space of Local Minima
In this section, we provide theoretical characterizations of the optimization problem in (2.4).
If Γ*(w) is defined strictly to be a global registration optimum, then Γ*(w) is clearly not a
smooth function of w, since a small change in w can result in a big change in the global
registration optimum. This definition is also impractical, since the global optimum of a
nonlinear optimization problem cannot be generally found in practice. Instead, we relax the
definition of Γ*(w) to be a local minimum of the registration cost function for fixed values
of w. Here, we derive conditions in which Γ*(w) is locally a smooth function of w, so we
can employ gradient descent to optimize (2.4).

Let Γ*(w0) denote a local minimum of the registration cost function for a fixed w = w0.
Suppose we perturb w by an infinitestimally small δw, so that Γ*(w0) is no longer the
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registration local minimum for w = w0 + δw. We consider two representations of this change
in local minimum.

Additive deformation models arise when the space of deformations is a vector space, such as
the space of displacement fields or positions of B-spline control points. At each iteration of
the registration algorithm, deformation updates are added to the current deformation
estimates. The additive model is general and applies to many non-convex, smooth
optimization problems outside of registration. Most registration algorithms can in fact be
modeled with the additive framework.

In some registration algorithms, including that used in this paper, it is more natural to
represent deformation changes through composition rather than additions [7], [61], [75]. For
example, in the diffeomorphic variants of the demons algorithm [75], [81], [82], the
diffeomorphic transformation Γ is represented as a dense displacement field. At each
iteration, the transformation update is restricted to be a one parameter subgroup of
diffeomorphism parameterized by a stationary velocity field. The diffeomorphic
transformation update is then composed with, rather than added to, the current estimate of
the transformation, thus ensuring that the resulting transformation is diffeomorphic.

1) Addition Model—Let Γ*(w0 + δw) = Γ*(w0) + δΓ*(w0, δw) denote the new locally
optimal deformation for the updated set of parameters w0 + δw. The following proposition
characterizes the existence and uniqueness of δΓ*(w0, δw) as δw is varied. In particular, we
show that under some mild conditions, δΓ*(w0, δw) is a well-defined smooth function in the

neighborhood of (w0, Γ*(w0)). In the remainder, we use  and  to denote the
corresponding partial derivatives.

Proposition 1: If the Hessian1  is positive definite at Γ = Γ*(w0), then there exists
an ε > 0, such that for all δw, ‖δw‖ < ε, a unique continuous function δΓ*(w0, δw) exists
with δΓ*(w0, 0) = 0. Furthermore, δΓ* has the same order of smoothness as ∂Γ f.

Proof: We define the vector-valued function h(w, Γ) ≜ ∂Γ f (w, Γ). Since Γ*(w0) is a local
minimum of f(w0,Γ), we have

(2.5)

At (w0, Γ*(w0)), the Hessian matrix  is positive definite by the
assumption of the proposition and is therefore invertible. By the Implicit Function Theorem
[51], there exists an ε > 0, such that for all δw, ‖δw‖ < ε, there is a unique continuous
function δΓ*(w0, δw) such that h(w0 + δw, Γ*(w0) + δΓ*(w0, δw)) = 0 and δΓ*(w0, 0) = 0.
Furthermore, δΓ*(w0, δw) has the same order of smoothness as h.

Because the Hessian of f is smooth and the eigenvalues of a matrix depend continuously on
the matrix [72], there exists a small neighborhood around (w0, Γ*(w0)) in which the eigen-

values of  are all greater than 0. Since both sufficient conditions for a local
minimum are satisfied (zero gradient and positive definite Hessian), Γ*(w0) + δΓ*(w0, dw)
is indeed a new local minimum close to Γ*(w0).

Observe that the conditions in Proposition 1 are stronger than those of typical nonlinear
optimization problems. In particular, we do not just require the cost functions f and g to be

1Here, we assume that the transformation Γ is finite dimensional, such as the parameters of affine transformations, positions of spline
control points or dense displacement fields defined on the voxels or vertices of the image domain.
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smooth, but also that the Hessian  be positive definite at the local minimum. At

(w0, Γ*(w0)), by definition, the Hessian  is positive semi-definite, so the positive
definite condition in Proposition 1 should not be too restrictive. Unfortunately, degeneracies
may arise for local minima with a singular Hessian. For example, let Γ be the 1 × 2 vector [a
b] and f (Γ, w) = (ab − w)2. Then for any value of w, there is an infinite number of local
minima Γ*(w) corresponding to ab = w. Furthermore, the Hessian at any local minimum is
singular. In this case, even though f is infinitely differentiable, there is an infinite number of
local minima near the current local minimum Γ*(w0), i.e., δΓ*(w0, δw) is not a well-defined
function and the gradient is not defined. Consequently, the parameters w of local registration
minima whose Hessians are singular are also local minima of the task-optimal optimization
(2.4). The proof of Proposition 1 follows the ideas of the Continuation Methods literature
[2]. We include the proof here to motivate the more complex composition of deformations
model.

2) Composition Model—Let Γ*(w0) be the registration local minimum at w0 and δΓ (υ)
denote an update transformation parameterized by υ, so that δΓ (0) corresponds to the
identity transform. For example, υ could be a stationary [75], [81], [82], nonstationary [8]
velocity field parameterization of diffeomorphism, positions of spline control points [52] or
simply displacement fields [59]. In the composition model, Γ*(w0) is a local minimum if
and only if there exists an ε > 0, such that f (w0, Γ*(w0)) < f (w0, Γ*(w0) ∘ δΓ (υ)) for all
values of ‖υ‖ < ε.

Let Γ*(w0) ∘ δΓ(υ*(w0, δw)) denote the new locally optimal deformation for the new
parameters w0 + δw. In general, there might not exist a single update transformation
δΓ(υ*(w0, δw)) that leads to a new local minimum under a perturbation of the parameters w,
so that there is no correponding version of Proposition 1 for the general composition model.
However, in the special case of the composition of diffeomorphisms model [75], [81], [82]
employed in this paper, the following proposition characterizes the existence and uniqueness
of υ*(w0, δw) as δw is varied.

Proposition 2: If the Hessian  is positive definite at υ = 0, then there
exists an ε > 0, such that for all δw, ‖δw‖ < ε, a unique continuous function υ*(w0, δw)
exists, such that υ*(w0, δw) is the new local minimum for parameters w0 + δw and υ*(w0, 0)
= 0. Furthermore, υ*(w0, δw) has the same order of smoothness as f.

Proof: The proof is a more complicated version of Proposition 1 and so we leave the details
to Appendix A.

Just like in the case of the additive deformation model, the parameters w of local registration
minima that do not satisfy the conditions of Proposition 2 are also local minima of the task-
optimal optimization (2.4). In the next section, we derive exact and approximate gradients of
G.

B. Optimizing Registration Parameters w
We now discuss the optimization of the regularized task performance G.

1) Addition Model—In the previous section, we showed that at (w0, Γ*(w0)) with a
positive definite Hessian, δΓ*(w0, δw) is a smooth well-defined function such that Γ*(w0) +
δΓ*(w0, δw) is the new local minimum at w0 + δw. Therefore, we can compute the
derivatives of Γ*(w) with respect to w at w0, allowing us to traverse a curve of local optima,
finding values of w that improve the task-specific cost function for the training images. We
first perform a Taylor expansion of ∂Γ f (w, Γ) at (w0, Γ*(w0))
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(2.6)

where we dropped the term ∂Γ f (w, Γ)w0, Γ*(w0) = 0. For δΓ = δΓ*(w0,δw), the left-hand
side is equal to 0 and we can write

(2.7)

Therefore, by taking the limit δw ℩ 0, we get

(2.8)

Equation (2.8) tells us the direction of change of the local minimum at (w0, Γ*(w0)). In
practice, the matrix inversion in (2.8) is computationally prohibitive for high-dimensional
warps Γ. Here, we consider a simplification of (2.8) by setting the Hessian to be the identity

(2.9)

Since −∂Γ f is the direction of gradient descent of the cost function (2.2), we can interpret
(2.9) as approximating the new local minimum to be in the same direction as the change in
the direction of gradient descent as w is perturbed.

Differentiating the cost function in (2.4), using the chain rule, we obtain

(2.10)

(2.11)

(2.12)

We note the subscript n on f indicates the dependency of the registration cost function on the
nth training image.

2) Composition Model—In the previous section, we have shown that at (w0, Γ*(w0)),
assuming the conditions of Proposition 2 are true, υ*(w0, δw) is a smooth well-defined
function such that Γ*(w0) ∘ δΓ (υ*(w0, δw)) is the new local minimum. Therefore, we can
compute the derivatives of υ* with respect to w. As before, by performing a Taylor
expansion, we obtain

(2.13)

(2.14)
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Appendix B provides the detailed derivations. Differentiating the cost function in (2.4),
using the chain rule, we get

(2.15)

(2.16)

Once again, the subscript n on f indicates the dependency of the registration cost function on
the nth training image.

Algorithm 1 summarizes the method for learning the task-optimal registration parameters.
Each line search involves evaluating the cost function G multiple times, which in turn
requires registering the training subjects, resulting in a computationally intensive process.
However, since we are initializing from a local optimum, for a small change in w, each
registration converges quickly.

Algorithm 1

Task-Optimal Registration

Data: A set of training images {In}

Result: Parameters w that minimize the regularized task performance G [see (2.4)]

Initialize w0.

repeat

  Step 1.

Given current values of w, estimate , fn (w, Γn), i.e., perform registration of each
training subject n.

  Step 2. Given current estimates (w, {Γn (w)}), compute the ∂wG gradient using either

1 (Eq. 2.12) via ∂wΓ* in (2.9) for the addition model or

2 (Eq. 2.16) via ∂wυ* in (2.14) for the composition model.

  Step 3. Perform line search in the direction opposite to ∂wG [47].

Since nonlinear registration is dependent on initialization, the current estimates (w, Γ*(w)),
which were initialized from previous estimates, might not be achievable when initializing
the registration with the identity transform. The corresponding parameters w might therefore
not generalize well to a new subject, which are typically initialized with the identity
transform. To put this more concretely, suppose our current estimates of w and the
registration local minima are (w = 5, Γ* (5) = 2). Next, we perform the gradient decent step
and update w accordingly. For argument’s sake, let our new estimates of w and the
registration local minima be (w = 5.1, Γ* (5.1) = 1.9). Note that this particular value of Γ*
(5.1) = 1.9 is achieved by initializing the registration with Γ = 2. Had we initialized the
registration with the identity transform (such as for a new subject), then Γ* (5.1) might
instead be equal to 2.1, with possibly poorer application performance than (w = 5, Γ* (5) =
2). To avoid this form of overfitting, after every few iterations, we reregister the training
images by initializing with the identity transform, and verify that the value of G is better
than the current best value of G computed with initialization from the identity transform.
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The astute reader will observe that the preceding discussion on “Addition Model” makes no
assumptions specific to the task-optimal registration problem. The framework can therefore
also be applied to learn the cost functions in other applications that are formulated as
nonlinear optimization problems solved by gradient descent.

III. Learning wSSD for Hidden Label Alignment
We now instantiate the task-optimal registration framework for localizing hidden labels in
images. We demonstrate schemes for either 1) learning the weights of the wSSD family of
registration cost functions or 2) estimating an optimal template image for localizing these
hidden labels. We emphasize that the optimal template is not necessarily the average of the
training images, since the goal is not to align image intensities across subjects, but to
localize the hidden labels.

Suppose we have a set of training images {In} with some underlying ground truth structure
manually labeled or obtained from another imaging modality (e.g., Brodmann areas from
histology mapped onto cortical surface representations). We define our task as localizing the
hidden structure in a test image. In the traditional pairwise registration approach [Fig. 3(a)],
a single training subject is chosen as the template. After pairwise registration between the
template and test images, the ground truth label of the template subject is used to predict that
of the test subject. The goal of predicting the hidden structure in the test subject is typically
not considered when choosing the training subject or registration algorithm. For hidden
labels that are poorly predicted by local image intensity (e.g., BA44 discussed in Section I-
A), blind alignment of image intensities lead to poor localization.

In contrast, we pick one training subject as the initial template and use the remaining
training images and labels [Fig. 3(b)] to learn a registration cost function that is optimal for
aligning the labels of the training and template subjects—perfect alignment of the labels lead
to perfect prediction of the labels in the training subjects by the template labels. After
pairwise registration between the template and test subject using the optimal registration
cost function, the ground truth label of the template subject is used to predict that of the test
subject.

We limit ourselves to spherical images (i.e., images defined on a unit sphere), although it
should be clear that the discussion readily extends to volumetric images. Our motivation for
using spherical images comes from the representation of the human cerebral cortex as a
closed 2-D mesh in 3-D. There has been much effort focused on registering cortical surfaces
in 3-D [14], [15], [24], [30], [65]. Since cortical areas—both structure and function—are
arranged in a mosaic across the cortical surface, an alternative approach is to warp the
underlying spherical coordinate system [19], [48], [60], [66], [69], [73], [79], [81]. Warping
the spherical coordinate system establishes correspondences across the surfaces without
actually deforming the surfaces in 3-D. We assume that the meshes have already been
spherically parameterized and represented as spherical images: a geometric attribute is
associated with each mesh vertex, describing local cortical geometry.

A. Instantiating Registration Cost Function f
To register a given image In to the template image T, we define the following cost function:
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where transformation Γn maps a point xi on the sphere S2 to another point Γn (xi) ε S2. The
first term corresponds to the wSSD image similiarity. The second term is a percentage
metric distortion regularization on the transformation Γn where i is a predefined
neighborhood around vertex i and dij is the original distance between the neighbors dij = ‖xi
− xj‖ [79]. The weights {λi}’s are generalizations of the tradeoff parameter λ, allowing for a
spatially-varying tradeoff between the image dissimilarity term and regularization: a higher

weight  corresponds to placing more emphasis on matching the template image at spatial

location xi relative to the regularization. The parameterization of the weights as  ensures
nonnegative weights.

In this work, we consider either learning the weights  or the template T for localizing BA
labels or functional labels by aligning cortical folding pattern. Since the weights of the
wSSD correspond to the precision of the Gaussian model, by learning the weights of wSSD,
we are learning the precision of the Gaussian model and hence the uncertainty of the sulcal

geometry. Optimizing  leads to placing nonuniform importance on matching different
cortical folds with the aim of aligning the underlying cytoarchitectonics or function. For
example, suppose there is a sulcus with functional regions that appear on either side of the
sulcus depending on the subject. The algorithm may decide to place low weight on the
“poorly predictive” sulcus. On the other hand, optimizing T corresponds to learning a
cortical folding template that is optimal for localizing the underlying cytoarchitectonics or
functional labels of the training subjects. In the case of the previously mentioned
“unpredictive sulcus,” the algorithm might learn that the optimal cortical folding template
should not contain this sulcus.

We choose to represent the transformation Γn as a composition of diffeomorphic warps {Φk}
parameterized by a stationary velocity field, so that Γn = Φ1 ∘ … ∘ ΦK [75], [81], [82]. We
note that our choice of regularization is different from the implicit hierarchical
regularization used in Spherical Demons [81] since the Demons regularization is not
compatible with our derivations from the previous section. Instead of the efficient 2-Step
Spherical Demons algorithm, we will use steepest descent. The resulting registration
algorithm is still relatively fast, requiring about 15 min for registering full-resolution meshes
with more than 100k vertices, compared with 5 min of computation for Spherical Demons
on a Xeon 2.8-GHz single processor machine.

In general, a smooth stationary velocity field υ parameterizes a diffeomorphism Φ via a
stationary ODE: ∂tΦ(x,t) = υ⃗(Φ(x, t)) with an initial condition Φ(x,0) = x. The solution at t =
1 is denoted as Φ(x,1) = Φ(x) = exp(υ⃗)(x), where we have dropped the time index. A
solution can be computed efficiently using scaling and squaring [5]. This particular choice
of representing deformations provides a computationally efficient method of achieving
invertible transformations, which is a desirable property in many medical imaging
applications. In our case, the velocity field υ⃗ is a tangent vector field on the sphere S2 and
not an arbitrary 3-D vector field.

B. Optimizing Registration Cost Function f

To register subject n to the template image T for a fixed set of parameters w, let  be the
current estimate of . We seek an update transformation exp (υ⃗) parameterized by a
stationary velocity field υ⃗

(3.1)
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Let υ⃗i be the velocity vector tangent to vertex xi, and υ⃗ = {υ⃗i} be the entire velocity field.
We adopt the techniques in the Spherical Demons algorithm [81] to differentiate (3.1) with
respect to υ⃗, evaluated at υ⃗ = 0. Using the fact that the differential of exp (υ⃗)at υ⃗ = 0 is the
identity [44], i.e., [D exp(0)]υ⃗ = υ⃗, we conclude that a change in velocity υ⃗i at vertex xi does

not affect exp(υ⃗)(xn) for n ≠ i up to the first order derivatives. Defining  to be the

1 × 3 spatial gradient of the warped image In ( ) at xi and  to be the 3 × 3

Jacobian matrix of  at xi, we get the 1 × 3 derivative

(3.2)

We can perform gradient descent of the registration cost function fn using (3.2) to obtain ,
which can be used to evaluate the regularized task performance G to be described in the next
section. We also note that (3.2) instantiates ∂υ⃗ fn within the mixed derivatives term in the
task-optimal gradient (2.16) for this application.

C. Instantiating Regularized Task Performance G
We represent the hidden labels in the training subjects as signed distance transforms on the
sphere {Ln} [36]. We consider a pairwise approach, where we assume that the template
image T has a corresponding labels with distance transform LT and set the task-specific cost
function to be

(3.3)

A low value of gn indicates good alignment of the hidden label maps between the template
and subject n, suggesting good prediction of the hidden label.

We experimented with a prior that encourages spatially constant weights and template, but
did not find that the regularization lead to improvements in the localization results. In
particular, we considered the following smoothness regularization on the registration
parameters depending on whether we are optimizing for the weights λi or the template T:

(3.4)

(3.5)

A possible reason for this lack of improvement is that the reregistration after every few line
searches already helps to regularize against bad parameter values. Another possible reason is
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that the above regularization assumes a smooth variation in the relationship between
structure and function, which may not be true in reality. Unfortunately, the relationship
between macro-anatomical structure and function is poorly understood, making it difficult to
design a more useful regularization that could potentially improve the results. In the
experiments that follow, we will discard the regularization term of the registration
parameters (i.e., set Reg(w) = 0). We also note that Reg(w) is typically set to 0 in machine
learning approaches of model selection by optimization of cross-validation error [33], [43],
[58].

D. Optimizing Task Performance G
To optimize the task performance G over the set of parameters w, we have to instantiate the
task-optimal gradient specified in (2.16). We first compute the derivative of the task-specific
cost function with respect to the optimal update υ⃗*. Once again, we represent υ⃗* as the

collection , where  is a velocity vector at vertex xi. Defining  to be the 1
× 3 spatial gradient of the warped distance transform of the nth subject Ln  at xi, we
get the 1 × 3 derivative

(3.6)

Weight Update: To update the weights {λj} of the wSSD, we compute the derivative of the
registration local minimum update υ⃗* with respect to the weights. Using the approximation
in (2.14), we obtain the 3 × 1 derivative of the velocity update υ⃗ with respect to the weights
of the wSSD cost function

(3.7)

(3.8)

(3.9)

(3.10)

Here δ (k, i) if k = i and is zero otherwise. Since (3.10) is in the same direction as the first

term of the gradient descent direction of registration [negative of (3.2)], increasing  will
improve the intensity matching of vertex xk of the template. Substituting (3.10) and (3.6)
into (2.16) provides the gradient for updating the weights of the wSSD cost function.

Template Update: To update the template image T used for registration, we compute the 3 ×
1 derivative of the velocity update υ⃗ with respect to the template T

(3.11)

(3.12)
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(3.13)

(3.14)

Since (3.14) is in the same direction as the first term of the gradient descent direction of
registration [negative of (3.2)], when T (xk) is larger than In , increasing the value T
(xk) of will warp vertex xk of the template further along the direction of increasing intensity
in the subject image. Conversely, if T (xk) is smaller than In , decreasing the value of
T (xk) will warp vertex xk of the template further along the direction of decreasing intensity
in the subject image. Substituting (3.14) and (3.6) into (2.16) provides the gradient for
updating the template used for registration. Note that the template subject’s hidden labels are
considered fixed in template space and are not modified during training.

We can in principle optimize both the weights {λi} and the template T. However, in
practice, we find that this does not lead to better localization, possibly because of too many
degrees-of-freedom, suggesting the need to design better regularization of the parameters. A
second reason might come from the fact that we are only using an approximate gradient
rather than the true gradient for gradient descent. Previous work [82] has shown that while
using an approximate gradient can lead to reasonable solutions, using the exact gradient can
lead to substantially better local minima. Computing the exact gradient is a challenge in our
framework. We leave exploration of efficient means of computing better approximations of
the gradient to future work.

IV. Experiments
We now present experiments on localizing BAs and fMRI-defined MT+ (V5) using macro-
anatomical cortical folding in two different data sets. For both experiments, we compare the
framework with using uniform weights [31] and FreeSurfer [19].

A. BA Localization
We consider the problem of localizing BAs in the surface representations of the cortex using
only cortical folding patterns. In this study, ten human brains were analyzed histologically
postmortem using the techniques described in [57] and [84]. The histological sections were
aligned to postmortem MR with nonlinear warps to build a 3-D histological volume. These
volumes were segmented to separate white matter from other tissue classes, and the
segmentation was used to generate topologically correct and geometrically accurate surface
representations of the cerebral cortex using a freely available suite of tools [21]. Six
manually labeled BA maps (V1, V2, BA2, BA44, BA45, MT) were sampled onto the
surface representations of each hemisphere, and errors in this sampling were manually
corrected (e.g., when a label was erroneously assigned to both banks of a sulcus). A
morphological close was then performed on each label to remove small holes. Finally, the
left and right hemispheres of each subject were mapped onto a spherical coordinate system
[19]. The BAs on the resulting cortical representations for two subjects are shown in Fig.
2(b). We do not consider BA4a, BA4p, and BA6 in this paper because they were not
histologically mapped by the experts in two of the ten subjects in this particular data set
(even though they exist in all human brains).

As illustrated in Fig. 2(c) and discussed in multiple studies [3], [4], [18], we note that V1,
V2, and BA2 are well-predicted by local cortical geometry, while BA44, BA45, and MT are
not. For all the BAs however, a spherical morph of cortical folding was shown to improve
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their localization compared with only Talairach or nonlinear spatial normalization in the
Euclidean 3-D space [18]. Even though each subject has multiple BAs, we focus on each
structure independently. This allows for an easier interpretation of the estimated parameters,
such as the optimal template example we provide in Section IV-A3. A clear future direction
is to learn a registration cost function that is jointly optimal for localizing multiple
cytoarchitectural or functional areas.

We compare the following algorithms.

1. Task-Optimal. We perform leave-two-out cross-validation to predict BA location.
For each test subject, we use one of the remaining nine subjects as the template
subject and the remaining eight subjects for training. When learning the weights of
the wSSD, the weights {λj} are globally initialized to 1 and the template image T is
fixed to the geometry of the template subject. When learning the cortical folding
template T, the template image is initialized to that of the template subject and the
weights {λj} are globally set to 1.

Once the weights or template are learned, we use them to register the test subject
and predict the BA of the test subject by transferring the BA label from the
template to the subject. We compute the symmetric mean Hausdorff distance
between the boundary of the true BA and the predicted BA on the cortical surface
of the test subject—smaller Hausdorff distance corresponds to better localization
[13]. The symmetric mean Hausdorff distance between two curves is defined as
follows. For each boundary point of the first curve, the shortest distance to the
second curve is computed and averaged. We repeat by computing and averaging
the shortest distance from each point of the second curve to the first curve. The
symmetric mean Hausdorff distance is obtained by averaging the two values. We
consider all 90 possibilities of selecting the test subject and template, resulting in a
total of 90 trials and 90 mean Hausdorff distances for each BA and for each
hemisphere.

2. Uniform-Weights. We repeat the process for the uniform-weight method that fixes
the template T to the geometry of the template subject, and sets all the weights {λj}
to a global fixed value λ without training. We explore 14 different values of global
weight λ, chosen such that the deformations range from rigid to flexible warps. For
each BA and each hemisphere, we pick the best value of λ leading to the lowest
mean Hausdorff distances. Because there is no cross-validation in selecting the
weights, the uniform-weight method is using an unrealistic oracle-based version of
the strategy proposed in [79].

3. FreeSurfer. Finally, we use FreeSurfer [19] to register the 10 ex vivo subjects to
the FreeSurfer Buckner40 atlas, constructed from the MRI of 40 in vivo subjects
[21]. Once registered into this in vivo atlas space, for the same 90 pairs of subjects,
we can use the BAs of one ex vivo subject to predict another ex vivo subject. We
note that FreeSurfer also uses the wSSD cost function, but a more sophisticated
regularization that penalizes both metric and areal distortion. For a particular
tradeoff between the similarity measure and regularization, the Buckner40 template
consists of the empirical mean and variance of the 40 in vivo subjects registered to
template space. We use the reported FreeSurfer tradeoff parameters that were used
to produce prior state-of-the-art BA alignment [18].

We note that both the task-optimal and uniform-weights methods use a pairwise registration
framework, while FreeSurfer uses an atlas-based registration framework. Under the atlas-
based framework, all the ex vivo subjects are registered to an atlas (Fig. 4). To use the BA of
a training subject to predict a test subject, we have to compose the deformations of the
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training subject to the atlas with the inverse deformation of the test subject to the atlas.
Despite this additional source of error from composing two warps, it has been shown that
with carefully constructed atlases, using the atlas-based strategy leads to better registration
because of the removal of template bias in the pairwise registration framework [6], [23],
[26], [31], [32], [39], [79].

We run the task-optimal and uniform-weights methods on a low-resolution subdivided
icosahedron mesh containing 2562 vertices, whereas FreeSurfer results were computed on
high-resolution meshes of more than 100k vertices. In our implementation, training on eight
subjects takes on average 4 h on a standard PC (AMD Opteron, 2GHz, 4GB RAM). Despite
the use of the low-resolution mesh, we achieve state-of-the-art localization accuracy. We
also emphasize that while training is computationally intensive, registration of a new subject
only requires one minute of processing time since we are working with low-resolution
meshes.

1) Quantitative Results—Fig. 5 displays the mean and standard errors from the 90 trials
of leave-two-out. On average, task-optimal template performs the best, followed by task-
optimal weights. Permutation tests show that task-optimal template outperforms FreeSurfer
in five of the six areas, while task-optimal weights outperforms FreeSurfer in four of the six
areas after corrections for multiple comparisons (see Fig. 5 for more details). For the
Broca’s areas (BA44 and BA45) and MT, this is not surprising. Since local geometry poorly
predicts these regions, by taking into account the final goal of aligning BAs instead of
blindly aligning the cortical folds, our method achieves better BA localization. FreeSurfer
and the uniform-weights method have similar performance because a better alignment of the
cortical folds on a finer resolution mesh does not necessary improve the alignment of these
areas.

Since local cortical geometry is predictive of V1, V2, and BA2, we expect the advantages of
our framework to vanish. Surprisingly, as shown in Fig. 6, task-optimal template again
achieve significant improvement in BAs alignment over the uniform-weights method and
FreeSurfer. Task-optimal weights is also significantly better than the uniform-weights
method, but only slightly better than FreeSurfer. Permutation tests show that task-optimal
template outperforms FreeSurfer in five of the six areas, while task-optimal weights is
outperforms FreeSurfer in three of the six areas after corrections for multiple comparisons
(see Fig. 6 for more details). This suggests that even when local geometry is predictive of
the hidden labels and anatomy-based registration achieves reasonable localization of the
labels, tuning the registration cost function can further improve the task performance. We
also note that in this case, FreeSurfer performs better than the uniform-weights method on
average. Since local cortical folds are predictive of these areas, aligning cortical folds on a
higher resolution mesh yields more precise alignment of the cortical geometry and of the
BAs.

We note that the FreeSurfer Buckner40 atlas utilizes 40 in vivo subjects consisting of 21
males and 19 females of a wide-range of age. Of these, 30 are healthy subjects whose ages
range from 19 to 87. 10 of the subjects are Alzheimer’s patients with age ranging from 71 to
86. The average age of the group is 56 (see [12] for more details). The T1-weighted scans
were acquired on a 1.5T Vision system (Siemens, Erlangen Germany), with the following
protocol: two sagittal acquisitions, FOV = 224, matrix = 256 × 256, resolution = 1 × 1 ×
1.25 mm, TR = 9.7 ms, TE = 4 ms, Flip angle = 10°, TI = 20 ms and TD = 200 ms. Two
acquisitions were averaged together to increase the contrast-to-noise ratio. The histological
data set includes five male and five female subjects, with age ranging from 37 to 85 years
old. The subjects had no previous history of neurologic or psychiatric diseases (see [4] for
more details). The T1-weighted scans of the subjects were obtained on a 1.5T system
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(Siemens, Erlangen, Germany) with the following protocol: flip angle 40°, TR = 4 ms, TE =
5 ms and resolution = 1 × 1 × 1.17 mm. While there are demographic and scanning
differences between the in vivo and ex vivo data sets, the performance differences between
FreeSurfer and the task-optimal framework cannot be solely attributed to this difference. In
particular, we have shown in previous work that FreeSurfer’s results are worse when we use
an ex vivo atlas for registering ex vivo subjects ([81,Table III]). Furthermore, FreeSurfer’s
results are comparable with that of the uniform-weights baseline algorithm, as well as
previously published results [18], where we have checked for gross anatomical
misregistration. We emphasize that since the goal is to optimize Brodmann area localization,
the learning algorithm might take into account the idiosyncrasies of the registration
algorithm in addition to the relationship between macro-anatomy and cytoarchitecture.
Consequently, it is possible that the performance differences are partly a result of our
algorithm learning a registration cost function with better local minima, thus avoiding
possible misregistration of anatomy.

2) Qualitative Results—Fig. 7 illustrates representative localization of the BAs for
FreeSurfer and task-optimal template. We note that the task-optimal boundaries (red) tend to
be in better visual agreement with the ground truth (yellow) boundaries, such as the right
hemisphere BA44 and BA45.

3) Interpreting the Template—Fig. 8 illustrates an example of learning a task-optimal
template for localizing BA2. Fig. 8(a) shows the cortical geometry of a test subject together
with its BA2. In this subject, the central sulcus is more prominent than the postcentral
sulcus. Fig. 8(b) shows the initial cortical geometry of a template subject with its
corresponding BA2 in black outline. In this particular subject, the postcentral sulcus is more
prominent than the central sulcus. Consequently, in the uniform-weights method, the central
sulcus of the test subject is incorrectly mapped to the postcentral sulcus of the template, so
that BA2 is misregistered. Fig. 8(b) also shows the BA2 of the test subject (green) overlaid
on the cortical geometry of the template subject after registration to the initial template
geometry. During task-optimal training, our method interrupts the geometry of the
postcentral sulcus in the template because the uninterrupted postcentral sulcus in the
template is inconsistent with localizing BA2 in the training subjects. The final template is
shown in Fig. 8(c). We see that the BA2 of the subject (green) and the task-optimal template
(black) are well-aligned, although there still exists localization error in the superior end of
BA2.

In the next section, we turn our attention to a fMRI data set. Since the task-optimal template
performed better than the task-optimal weights, we will focus on the comparison between
the task-optimal template and FreeSurfer.

B. fMRI-MT+ Localization
We now consider the application of localizing fMRI-defined functional areas in the cortex
using only cortical folding patterns. Here, we focus on the so-called MT+ area localized in
42 in vivo subjects using fMRI. The MT+ area defined functionally is thought to include
primarily the cytoarchitectonically-defined MT and a small part of the medial superior
temporal (MST) area (hence the name MT+). The imaging paradigm involved subjects
viewing an alternating 16 s blocks of moving and stationary concentric circles. The
structural scans were processed using the FreeSurfer pipeline [21], resulting in spherically
parameterized cortical surfaces [11], [19]. The functional data were analyzed using the
general linear model [22]. The resulting activation maps were thresholded by drawing the
activation boundary centered around the vertex with maximal activation. The threshold was
varied across subjects in order to maintain a relatively fixed ROI area of about 120 mm2

Yeo et al. Page 18

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 September 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(±5%) as suggested in [68]. The subjects consist of 10 females and 32 males, with age
ranging from 21 to 58 years old. 23 of the 42 subjects are clinically diagnosed with
schizophrenia, while the other 19 subjects are healthy controls. Imaging took place on a 3T
MR scanner (Siemens Trio) with echoplanar (EP) imaging capability. Subjects underwent
two conventional high-resolution 3-D structural scans, constituting a spoiled GRASS
(SPGR) sequence (128 sagittal slices, 1.33 mm thickness, TR = 2530 ms, TE = 3.39 ms, Flip
angle = 7°, voxel size = 1.3 × 1 × 1.3 mm). Each functional run lasted 224 s during which
T2*-weighted echoplanar (EP) images were acquired (33 × 3-mm-thick slices, 3 × 3 × 3 mm
voxel size) using a gradient echo (GR) sequence (TR = 2000 ms; TE = 30 ms; Flip angle =
90°). To maximize training data, no distinction is made between the healthy controls and
schizophrenia patients.

1) Ex Vivo MT Prediction of In Vivo MT+—In this experiment, we use each of the 10
ex vivo subjects as a template and the remaining nine subjects for training a task-optimal
template for localizing MT. We then register each task-optimal template to each of the 42 in
vivo subjects and use the template subject’s MT to predict that of the test subjects’ MT+.
The results are 420 Hausdorff distances for each hemisphere. For FreeSurfer, we align the
42 in vivo subjects to the Buckner40 atlas. Once registered in this space, we can use MT of
the ex vivo subjects to predict MT+ of the in vivo subjects.

Fig. 9 reports the mean and standard errors of the Hausdorff distances for both methods on
both hemispheres. Once again, we find that the task-optimal template significantly
outperforms the FreeSurfer template (p < 10−5 for both hemispheres). We note that the
errors in the in vivo subjects (Fig. 9) are significantly worse than those in the ex vivo
subjects (Fig. 5). This is not surprising since functionally defined MT+ is slightly different
from cytoarchitectonically defined MT. Furthermore, the ex vivo surfaces tend to be noisier
and less smooth than those acquired from in vivo subjects [81]. Since our framework
attempts to leverage domain specific knowledge about MT from the ex vivo data, one would
expect these mismatches between the data sets to be highly deterimental to our framework.
Instead, FreeSurfer appears to suffer more than our framework.

2) In Vivo MT Prediction of In Vivo MT+—To understand the effects of the training set
size on localization accuracy, we perform cross-validation within the fMRI data set. For
each randomly selected template subject, we consider 9, 19, or 29 training subjects. The
resulting task-optimal template is used to register and localize MT+ in the remaining 32, 22,
or 12 test subjects, respectively. The cross-validation trials were repeated 100, 200, and 300
times, respectively, resulting in a total of 3200, 4400, and 3600 Hausdorff distances. This
constitutes thousands of hours of computation time. For FreeSurfer, we perform a pairwise
prediction of MT+ among the in vivo subjects after registration to the Buckner40 atlas,
resulting in 1722 Hausdorff distances per hemisphere.

Fig. 10 reports the mean and standard errors of the Hausdorff distances for FreeSurfer and
task-optimal template on both hemispheres. We see that the FreeSurfer alignment errors are
now commensurate with the ex vivo results (Fig. 5). However, the task-optimal template
still outperforms FreeSurfer (p < 10−5 for all cases).We also note that the accuracy of MT+
localization improves with the size of the training set. The resulting localization error with a
training set of 29 subjects is less than 7 mm for both hemispheres. For all training set sizes,
the localization errors are also better than the ex vivo MT experiment (Fig. 5).

V. Discussion and Future Work
The experiments in the previous section demonstrate the feasibility of learning registration
cost functions with thousands of degrees-of-freedom from training data. We find that the

Yeo et al. Page 19

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 September 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



learned registration cost functions generalize well to unseen test subjects of the same
(Sections IV-A and IV-B2), as well as different imaging modality (Section IV-B1). The
almost linear improvement with increasing training subjects in the fMRI-defined MT+
experiment (Fig. 10) suggests that further improvements can be achieved (in particular in the
histological data set) with a larger training set. Unfortunately, histological data over a whole
human hemisphere is difficult to obtain, while fMRI localization experiments tend to focus
on single functional areas. Therefore, a future direction of research is to combine
histological and functional information obtained from different subjects and imaging
modalities during training.

Since our measure of localization accuracy uses the mean Hausdorff distance, ideally we
should incorporate it into our task-specific objective function instead of the SSD on the
distance transform representing the BA. Unfortunately, the resulting derivative is difficult to
compute. Furthermore, the gradient will be zero everywhere except at the BA boundaries,
causing the optimization to proceed slowly. On the other hand, it is unclear how aligning the
distance transform values far from the boundary helps to align the boundary. Since distance
transform values far away from the boundary are larger, they can dominate the task-specific
objective function g. Consequently, we utilize the distance transform over the entire surface
to compute the gradient, but only consider the distance transform within the boundary of the
template BA when evaluating the task performance criterion g.

The idea of using multiple atlases for segmentation has gained recent popularity [29], [49],
[50], [53], [55], [76]. While we have focused on building a single optimal template, our
method can complement the multiatlas approach. For example, one could simply fuse the
results of multiple individually-optimal templates for image segmentation. A more
ambitious task would be to optimize for multiple jointly-optimal templates for segmentation.

In this work, we select one of the training subjects as the template subject and use the
remaining subjects for training. The task-specific cost function g evaluates the localization
of the hidden labels via the template subject. During training (either for learning the weights
or template in the registration cost function), the Brodmann areas of the template subject are
held constant. Because the fixed Brodmann areas are specific to the template subject, the
geometry of the template subject should in fact be the best and most natural initialization. It
does not make sense to use the geometry of another subject (or average geometry of the
training subjects) as initialization for the template subject’s Brodmann areas, especially
since the geometry of this other subject (or average geometry) is not registered to the
geometry of the template subject. However, the use of a single subject’s Brodmann (or
functional) area can bias the learning process. An alternative groupwise approach modifies
the task-specific cost function g to minimize the variance of the distance transforms across
training subjects after registration. In this case, both the template geometry and Brodmann
(functional) area are estimated from all the training subjects and dynamically updated at
each iteration of the algorithm. The average geometry of the training subjects provided a
reasonable template initialization. However, our initial experiments in the ex vivo data set
do not suggest an improvement in task performance over the pairwise formulation in this
paper.

While this paper focuses mostly on localization of hidden labels, different instantiations of
the task-specific cost function can lead to other applications. For example, in group analysis,
the task-specific cost function could maximize differences between diseased and control
groups, while minimizing intra-group differences, similar to a recent idea proposed for
discriminative Procrustes alignment [38].
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VI. Conclusion
In this paper, we present a framework for optimizing the parameters of any smooth family of
registration cost functions, such as the image dissimilarity-regularization tradeoff, with
respect to a specific task. The only requirement is that the task performance can be evaluated
by a smooth cost function on an available training data set. We demonstrate state-of-the-art
localization of Brodmann areas and fMRI-defined functional regions by optimizing the
weights of the wSSD image-similarity measure and estimating an optimal cortical folding
template. We believe this work presents an important step towards the automatic selection of
parameters in image registration. The generality of the framework also suggests potential
applications to other problems in science and engineering formulated as optimization
problems.
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Appendix A

Proof of Proposition 2

In this appendix, we prove Proposition 2: If the Hessian  is positive
definite at υ = 0, then there exists an ε > 0, such that for all δw, ‖δw‖ < ε, a unique
continuous function υ*(w0, δw) exists, such that υ*(w0, δw) is the new local minimum for
parameters w0 + δw and υ*(w0, 0) = 0. Furthermore, υ*(w0, δw) has the same order of
smoothness as f.

In the next section, we first prove that the Hessian  is equal to

the mix-derivatives matrix  under the
composition of diffeomorphisms model [75], [81], [82]. We then complete the proof of
Proposition 2.

A. Proof of the Equivalence Between the Hessian and Mix-Derivatives Matrix for the
Composition of Diffeomorphisms Model

We will only provide the proof for when the image is defined in ℝ3 so as not to obscur the
main ideas behind the proof. To extend the proof to a manifold (e.g., S2), one simply need to
extend the notations and bookkeeping by the local parameterizing the velocity fields υ1 and
υ2 using coordinate charts. The same proof follows.

Let us define some notations. Suppose the image and there are M voxels. Let x⃗ be the ℝ3M

rasterized coordinates of the M voxels. For conciseness, we define for the fixed parameters
w0

(A.1)

Yeo et al. Page 21

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 September 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Therefore, p is a function from ℝ3M to ℝ. Under the composition of diffeomorphisms
model, δΓ (υ) is the diffeomorphism parameterized by the stationary velocity field υ defined
on the M voxels, so that δΓ (υ)(·) is a function from ℝ3M to ℝ. To make the dependence of
δΓ (υ) on υ explicit, we define

(A.2)

and so ϒ is a function from ℝ3M × ℝ3M to ℝ3M. In other words, we can rewrite

(A.3)

and

(A.4)

Now that we have gotten the notations out of the way, we will now show that

(A.5)

Hessian: We first compute the 1× 3M Jacobian via the chain rule

(A.6)

From the above equation, we can equivalently write down the jth component of the 1 × 3M
Jacobian

(A.7)

where ϒn and  denote the nth and j th components of ϒ and υ1, respectively. Now, we
compute the (i, j) th component of the 3M × 3M Hessian using the product rule

(A.8)

(A.9)

(A.10)

Because ∂υ1 ϒ|υ1=0 is the identity matrix and the 1 × 3M Jacobian ∂υ1 p(ϒ(υ1, x⃗))|υ1=0 =
(∂ϒp)(∂υ1 ϒ)|υ1=0 = 0 (because derivative is zero at local minimum), we get ∂ϒp |υ1=0 = 0,
and so the second term in (A.10) is zero.

To simplify the first term of (A.10), we once again use the fact that ∂υ1 ϒ|υ1=0 is the identity
matrix, and so the summand is zero unless k = i and n = j. Consequently, (A.10) simplifies to

(A.11)

Yeo et al. Page 22

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 September 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



or equivalently

(A.12)

Mix-Derivatives Matrix: We first compute the 1 × 3M Jacobian via the chain rule

(A.13)

(A.14)

From the above equation, we can equivalently write down the jth component of the 1 × 3M
Jacobian

(A.15)

Now, we compute the (i, j)th component of the 3M × 3M mix-derivatives matrix using the
product rule

(A.

16)

(A.17)

Like before, we have ∂ϒp|υ1=υ2=0 = 0, and so the second term is zero. Because ∂υ1 ϒ|υ1=0 is

the identity,  is zero unless k = i. Since , is also equal to zero
unless n = j. Therefore, we get

(A.18)

or equivalently

(A.19)

B. Completing the Proof of Proposition 2
We now complete the proof of Proposition2. Let h(w, υ1) ≜ ∂υ2 f (w, Γ*(w0) ∘ δΓ (υ1) ∘ δΓ
(υ2))|υ2=0. Since δΓ(0) = Id, we have

(A.20)

(A.21)

(A.22)
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where the last equality comes from the definition of Γ*(w0) being a local minimum for the
composition model.

Since the mix-derivatives matrix ∂υ1 h(w, υ1)|υ1=0 is invertible by the positive-definite
assumption of this proposition, by the Implicit Function Theorem, there exists an ε > 0, such
that for all δw, ‖δw‖ < ε, there is a unique continuous function υ* (w0, δw), such that h(w0 +
δw, υ* (w0, δw)) = 0 and υ* (w0, 0) = 0. Furthermore, υ* (w0, δw) has the same order of
smoothness as f.

Let . Then k (w0, 0) is positive definite at υ1 =
0 by the assumption of the proposition. By the smoothness of derivatives and continuity of
eigenvalues, there exists a small neighborhood around (w0, υ1 = 0) in which the eigenvalues
of k (w, υ1) are all greater than zero. Therefore, Γ*(w0) ∘ δΓ (υ*(w0, δw)) does indeed define
a new local minimum close to Γ*(w0).

Appendix B

Computing the Derivative∂w υ*
To compute ∂w υ*, we perform a Taylor expansion

(B.

1)

(B.

2)

and rearranging the terms for υ1 = υ*, we get

(B.3)
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Fig. 1.
Traditional and proposed frameworks for image registration.{In} indicates a collection of
images. In image registration, we seek a deformation  for each image In. The resulting
deformations  are then used for other applications, such as segmentation or group
analysis. The registration cost function typically contains multiple parameters, such as the
tradeoff parameter λ and the template T. Changes in these parameters alter the deformations

 and thus the outcomes of downstream applications. In our framework (b), we assume a
training data set, which allows us to evaluate the quality of the registration as measured by
the application performance (or cross-validation error metric) gn for each training subject.
This allows us to pick the best parameters that result in good registration as measured by
{gn}. Subsequent new subjects are registered using these learned parameters.
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Fig. 2.
Examples of ambiguities in image registration, which can potentially be resolved by taking
the application at hand into account. (a) Postcentral sulci with different topology. (b) BAs
overlaid on cortical surfaces.
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Fig. 3.
Illustration of the differences between our approach and the pairwise registration approach.
In our approach, we use training images and labels to learn an optimal cost function that is
optimal for aligning the labels of the training and template subjects. This cost function is
then used to register and predict the hidden label in a new subject. (a) Pairwise registration
without training using ground truth labels. (b) Task-optimal registration framework.
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Fig. 4.
FreeSurfer’s atlas-based registration approach. Training and test subjects are registered to an
atlas. The BA of a training subject can then be used to predict that of the test subject.
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Fig. 5.
Mean Hausdorff distances over an entire range of harmonic energy for BA44, BA45, and
MT. First row corresponds to left hemisphere. Second row corresponds to right hemipshere.
* indicates that task-optimal template is statistically significantly better than FreeSurfer. †
indicates that task-optimal weights is statistically significantly better than FreeSurfer.
Statistical threshold is set at 0.05, FDR corrected with respect to the 24 statistical tests
performed in this section. FreeSurfer is not statistically better than either of the task-optimal
methods in any of the Brodmann areas. (a) Left BA44 *, †. (b) Left BA45 *, †. (c) Left MT.
(d) Right BA44 *. (e) Right BA45 *, †. (f) Right MT*, †.
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Fig. 6.
Mean Hausdorff distances over an entire range of harmonic energy for V1, V2, and BA2.
First row corresponds to left hemisphere. Second row corresponds to right hemisphere. *
indicates that task-optimal template is statistically significantly better than FreeSurfer. †
indicates that task-optimal weights is statistically significantly better than FreeSurfer.
Statistical threshold is set at 0.05, FDR corrected with respect to the 24 statistical tests
performed in this section. FreeSurfer is not statistically better than either of the task-optimal
methods in any of the Brodmann areas. (a) Left V1 *. (b) Left V2 *, †. (c) Left BA2 *, †. (d)
Right V1 *. (e) Right V2 *, †. (f) Right BA2.
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Fig. 7.
Representative BA localization in 90 trials of leave-two-out for FreeSurfer and task-optimal
template. Yellow indicates ground truth boundary. Green indicates FreeSurfer prediction.
Red indicates Task-Optimal prediction. The representative samples were selected by finding
subjects whose localization errors are close to the mean localization errors for each BA.
Furthermore, for a given BA, the same subject was selected for both methods to simplify the
comparison.
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Fig. 8.
Template estimation in the task-optimal framework improves localization of BA2. (a)
Cortical geometry of test subject with corresponding BA2 (in green). (b) Initial cortical
geometry of template subject with corresponding BA2 (in black). In (b), we also show the
BA2 of the test subject (in green) after registration to the intial template. (c) Final cortical
geometry of template subject after task-optimal training. BA2 of the test subject (in green)
after registration to the task-optimal template demonstrates significantly better alignment
with the BA2 of the template subject.

Yeo et al. Page 36

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 September 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 9.
Mean Hausdorff distances using ex vivo MT to predict MT+ in in vivo scans. Permutation
testing shows that the differences between FreeSurfer and task-optimal template are
statistically significant (p < 10−5).
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Fig. 10.
Plot of mean hausdorff errors for MT+ from cross-validation of the fMRI data set using
either FreeSurfer or in vivo trained task-optimal template. For the task-optimal framework,
we tried different number of training subjects. Test errors decrease as we go from 9 to 19 to
29 training subjects. Once again, permutation testing shows that the differences between
FreeSurfer and task-optimal template are statistically significant (p < 10−5).
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