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Abstract

The development of therapeutic strategies that promote functional recovery is a major goal of

multiple sclerosis (MS) research. Neuroscientific and methodological advances have improved our

understanding of the brain’s recovery from damage, generating novel hypotheses for potential

targets or modes of intervention and laying the foundation for the development of scientifically

informed strategies promoting recovery in interventional studies. This Review aims to encourage

the transition from characterization of recovery mechanisms to the development of strategies that

promote recovery in MS. We discuss current evidence for functional reorganization that underlies

recovery and its implications for development of new recovery-oriented strategies in MS.
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Promotion of functional recovery requires an improved understanding of recovery mechanisms

modulated by interventions and the development of reliable measures of therapeutic effects. As

imaging methods can be used to measure functional and structural alterations associated with

recovery, this Review discusses their use as reliable markers to measure the effects of

interventions.

Introduction

Inflammatory demyelination and axonal loss are considered major determinants of

neurological deficits in Multiple Sclerosis (MS)1. Functional recovery in MS is achieved

and sustained by repair of damage through remyelination with resolution of inflammation

and functional reorganisation. Remyelination is an important mechanism of restoration of

axonal function after acute inflammatory demyelination2. Functional reorganisation relies

on molecular and cellular mechanisms to induce changes in systems-level functional

responses, which are the proximal effectors of perception, action and cognition. This review

focuses on systems-level adaptive functional reorganisation in MS as measured by

functional MRI (fMRI), discussing mechanisms of functional recovery and ways to enhance

them.

The overall aim of this Review is to stimulate progress from studies characterising recovery

mechanisms to studies developing strategies to promote recovery in MS. In the first section,

we summarize evidence from imaging studies that shows adaptation of functional systems to

damage to emphasise principles of adaptive functional reorganization. In the second section,

we propose ways in which this understanding can be translated into new recovery-oriented

strategies for MS, supported by related findings in other neurological conditions. As our

understanding of recovery mechanisms and the development of interventions are influenced

by our ability to measure the desired effects, the third section discusses the opportunities and

limitations of imaging methods that are used to measure neuroplasticity underlying

functional recovery in order to improve their application as reliable and quantitative

measures of therapeutic interventions3,4. This will extend opportunities for neurorepair to

other disabling neurological conditions.

Adaptive functional reorganization in MS

Evidence for reorganisation of brain function underlying functional recovery comes from

studies of focal ischaemic brain damage, where systems-level reorganisation reflects

molecular, synaptic and cellular events and constitutes post-injury brain plasticity5,6.

Perilesional remapping of cortical representations, functional reorganisation in intact regions

of the damaged hemisphere and activation of cortical areas in the undamaged hemisphere

accompany functional recovery after stroke5. Several lines of evidence show that such

reorganization is behaviourally relevant for stroke recovery as (a) it is associated with

preserved or completely recovered behaviour7; (b) the extent of functional changes

correlates with the associated pathology8; (c) similar changes can be induced through

learning or rehabilitation9; (d) potential for recovery increases with facilitated

reorganization9; (e) functional impairment results from interference with such processes10

(Box 1). Evidence across brain systems supports a similar adaptive role of functional
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reorganization in MS despite widespread pathology by showing that functional

reorganization accompanying recovery in this disease limits the impact of damage on

behaviour11-17.

Evidence across functional systems

In this section, we focus on three psychological domains of perception, action and cognition

to discuss evidence for functional reorganization leading to functional recovery in MS.

Perception—Visual recovery after acute demyelinating optic neuritis typically occurs

within weeks despite permanent axonal loss18,19. Plasticity in the visual system contributes

to recovery, as the effects of lesions on the optic nerve spread both pathologically20-22 and

functionally23-30 through the visual pathway. fMRI studies in patients following onset of

optic neuritis show reduced activation in the visual cortex in response to visual stimulation

of the affected eye23,24,26-31. Consistent with adaptive functional reorganization that

promotes clinical recovery28,32, this cortical response increases within 2–6 weeks of disease

onset, but remains below that of the unaffected eye28.

Adaptive functional reorganization occurs at various levels along the visual pathways.

During the early period after onset of optic neuritis, activation of the lateral geniculate

nucleus (LGN) and visual cortical areas is lower in response to visual stimulation of the

affected eye compared with that of the unaffected eye31. Later, during recovery, this

difference progressively diminishes in both the LGN and the visual cortex31. These changes

may reflect remyelination of the optic nerve that re-establishes a normal visual input or

functional reorganization within LGN that compensates for an impaired optic nerve input to

the primary visual cortex. Adaptive changes in early or higher visual areas can also assist in

maintaining normal visual function29-31. Cortical reorganization within extrastriate visual

areas occurs early after onset of optic neuritis and is associated with better visual function28

and longer-term visual outcome32. This early reorganization is associated with recovery

independently of other markers of damage in anterior or posterior visual pathways32.

Orbitofrontal and lateral temporal cortices can be transiently involved in recovery after optic

neuritis as part of a dynamic reorganization of visual function in the occipital cortex28.

Action—Altered functional patterns of sensorimotor activation constitute a disease trait

across different forms of MS33-35. The extent and type of motor reorganization varies across

phases12,36,37 and stages38,39 of the disease. After a clinically isolated syndrome (CIS),

patients show more widespread recruitment of sensorimotor networks than do healthy

volunteers38. This functional pattern persists in patients who progress to clinically definite

MS37 and characterizes the acute phases of the disease12,36. As the disease advances

towards secondary progression, patterns of functional reorganization show an increasingly

bilateral distribution and, even for simple motor tasks, involve higher-control sensorimotor

areas that in healthy controls are recruited for novel or complex tasks39.

The magnitude and extent of functional reorganization depends on the extent and severity of

lesional13,40 and extralesional11,41 brain and spinal cord42 damage. In patients with normal

motor function, greater lesion volume and microstructural damage are associated with more-

widespread activation of brain areas11,13,43. The increased, bilateral recruitment of
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sensorimotor areas may represent an adaptive mechanism that limits the functional impact of

MS damage11. Alternatively, such changes may be a consequence of reduced ipsilateral

deactivation with impaired interhemispheric inhibition owing to callosal damage40,44. In

either case, the bilateral pattern of sensorimotor recruitment re-lateralises on the

contralateral (affected) hemisphere with functional recovery after a relapse. A persistent

recruitment of sensorimotor cortex on the ipsilateral (unaffected) hemisphere is associated

with poor clinical recovery36. Lateralized brain activity with preservation of motor function

is a consistent finding across age groups in MS33. In addition to the hemispheric re-

lateralization, adaptive functional reorganization seems to follow a hierarchy within the

motor system, with primary sensorimotor regions being recruited in the benign forms34 and

in the initial stages39 of MS, whereas secondary motor45 and multimodal nonmotor35 areas

are involved in the progressive forms of the disease. While damage prompts adaptive

functional changes17,43, disability is associated with a specific altered pattern of hand

movement that can reflect maladaptation17.

Cognition—Deficits in cognitive performance46-52 and their evolution53,54 correlate with

MS damage. Functional studies investigating cognitive processes such as memory,

efficiency of information processing, attention and executive functions55 have consistently

shown that these processes are associated with the activity of wider and more bilateral

networks of task-specific regions in patients with MS than in healthy individuals56-58. The

extent of this recruitment increases progressively with an increased cognitive load59-61 and

becomes more prominent as MS progresses59, when activity can involve regions outside the

specific cognitive domain. Compared with healthy individuals, the magnitude of activation

of task-specific networks in patients with MS is reported to be greater in some studies62, but

lower in others63. Within cognitive networks, changes in perfusion64-66 and metabolism67,

as well as in functional and structural connectivity63,68,69 correlate with cognitive

performance. Stronger interhemispheric functional and structural interactions are observed

in patients than in controls63,68,69. This increased strength of connectivity is associated with

damage to specific, task-relevant white matter tracts69.

Factors influencing adaptive functional reorganization

In MS, individual-specific and disease-related factors influence adaptive functional

reorganization and its measurements with imaging methods. Age at disease onset may

influence the premorbid cognitive functional reserve61. After disease onset, a different

capacity for brain plasticity70 and remyelination71 may help to explain the effect of age on

cortical reorganisation and functional connectivity33,72 that underlie recovery in MS. Sex of

the patient also affects damage and repair mechanisms in MS73 through the effects of sex

hormones74,75 and helps to explain clinically relevant sex-specific differences in brain

functional connectivity that are observed in MS76.

The type12,36,37, location13,30,42,77, extent34,39 and severity11,50,78 of MS damage influences

adaptive reorganization. Acute inflammation alters functional brain responses12,28,36,38, with

magnitudes that vary depending on the functional system involved12,28,36,38, as well as on

the role of individual brain regions within networks40,44. These altered responses return to

baseline activity with resolution of inflammation12,36,37, but a chronic inflammatory state
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can produce sustained reorganization of function across brain systems39 through interference

with local mechanisms of brain plasticity79. Depending on its location, damage can either

interfere with80 or initiate13,28,42,77,81 functional reorganization. The extent of brain damage

affects substrates for functional functional reorganization39, potentially with clinically

relevant consequences34,82. The extent of damage can also affect the regional and network

efficiency83,84. Clinically, this may be apparent with a higher occurrence of cognitive

deficits in the progressive phase of the disease55,61. Whereas factors related to brain damage

initiate functional reorganization11, more extensive and irreversible tissue loss is associated

with reduced capacity for functional reorganization12,78,85, which is reflected in a worse

clinical outcome86,87.

Functional reorganization can be maladaptive6. Maladaptation with chronic limb disuse

contributes to disability17 and may explain the functional differences that are observed

among clinical stages39,88 and among forms34,80 of MS, beyond the adaptive functional

reorganization. Maladaptive plasticity triggered and sustained by disuse may involve

multiple functional systems and contribute to disability in multiple functional domains89.

Although maladaptation may contribute to disability, establishing whether insufficient

adaptive reorganization is the basis for disability, and distinguishing between insufficient

and maladaptive plasticity is difficult. Future interventional studies that interfere with

cortical function or studies assessing concurrent structural changes may disambiguate the

relative contributions of maladaptation versus insufficient adaptive plasticity.

Promotion of functional reorganization in MS

Adaptive brain plasticity offers a flexible substrate for functional reorganization in MS

through local re-mapping of cortical representation13, increased activation in relevant

higher-order areas28,30,77,90 and a shift in interhemispheric lateralization towards the

ipsilateral hemisphere90,91. A substantial preservation of brain structural architecture allows

these mechanisms to act, although at lower efficiency83, even when MS damage or task

demand increase92-94.

Neuroplasticity offers a substrate for interventions that promote functional recovery in MS,

but stability of networks is also necessary for adaptive patterns to be retained70. Different

functional changes are observed in the motor system in childhood-onset versus adult-onset

MS, which could be explained by age-related differences in the plastic properties of the

brain functional systems72. In addition, distinct neural systems can have different

requirements for plasticity versus stability across the lifespan70. Functional reorganisation in

the extra-striate cortex after ON provides an example of this phenomenon within the visual

system30,70.

Interventions to drive adaptive functional reorganisation

Interventions to drive adaptive plasticity can promote functional restoration by inducing

adaptive changes or by predisposing functional systems to plasticity (Figure 1 and Figure 2).

Stroke recovery research suggests that functional recovery after brain damage is associated

with normalization of patterns of functional reorganization95-97. Despite the effects of
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chronic inflammation on brain plasticity98, this situation holds true in MS recovery, in both

the short-term14,28,36,37 and the longer-term14,34.

Training-based interventions—Interference with maladaptation caused by learned

disuse17,99 may be the mechanism through which physical therapy can limit the impact of

MS disability14,100. Short-term right-hand practice (over minutes) of visuomotor tasks in

patients with MS can induce performance improvements that are associated with functional

reorganization of ipsilateral (right) sensorimotor regions14, whose activity is associated with

clinical disability17. This finding suggests that plasticity changes spreading across functional

systems in MS may reflect maladaptation that sustains disability and may be a therapeutic

target for recovery-oriented interventions. Longer-term practice (over weeks) of visuomotor

tasks also induces performance improvements in patients with MS14. The improvements are

associated with functional reorganization in cognitive systems that are not involved in

visuomotor performance improvements in healthy controls.

Constraint-induced movement therapy is based on overcoming learned disuse. This

approach is under evaluation in the treatment of MS101, supported by its successful

application in stroke recovery102, where it can induce behaviourally meaningful functional

changes in the sensorimotor regions of the hemisphere contralateral to the hand moved9. The

preserved potential for neuroplasticity14 and motor performance improvements94 even at

higher levels of disease burden suggests that patients with MS patients could benefit from

neurorehabilitation irrespective of the initial severity of motor dysfunction14 (Figure 1),

although cognitive systems different from those acting for the same practice in healthy

subjects likely contribute to this plasticity in patients14.

Studies on cognitive rehabilitation in MS that compared the effects of a specific versus a

nonspecific cognitive treatment have reported conflicting results103,104. However, evidence

that brain functional patterns subserving an increasing load of cognitive performance before

and after cognitive training are comparable in patients with mild or severe cognitive

impairment105 suggests that cognitive training can be beneficial in MS15 irrespective of the

severity of cognitive dysfunction. This finding also suggests that functional plasticity can be

enhanced by neuropsychological intervention. Beyond the effect on cognitive dysfunction,

such interventions may have the potential to expand the brain’s functional reserve61,

especially in childhood MS106.

Other forms of intervention have been tested in recovery from CNS damage107-110. Motor

imagery practice (MIP) involves mental repetition of movements, with the aim of improving

motor execution111. The rationale for MIP is evidence that mentally simulated and

physically executed actions, both simple and complex112, share similar mechanisms of

motor control111. Through this overlap of neural substrates, MIP may predispose the motor

system to the effects of physical therapy113. In stroke recovery, MIP provides sufficient

repetitive practice to increase use of the affected arm 110 and to change patterns of brain

function114. Although factors in MS such as cognitive dysfunction and limb disuse could

reduce the capacity for mentally simulated actions115,116, the ability of MIP to drive

reorganization of sensorimotor function independently of movement117 may find clinical

application in disabling forms of the disease, in which motor output is severely impaired.
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Application of device-based therapies, such as neuroprosthesis for recovery of motor

function and computer-based interfaces for cognitive rehabilitation, to rehabilitation of

complex behaviours and severe forms of disability is becoming increasingly

feasible15,104,118. Substantial preservation of brain plasticity in patients across levels of

disease burden14,94 encourages use of these devices for rehabilitation in MS.

Pharmacological and electrical modulation—The rationale for pharmacological and

electrical modulation in MS rehabilitation lies in the substrates and mechanisms of brain

plasticity119. A rich network of intracortical connections can support many organizational

structures, allowing for formation of new cortical representations with learning120,121 or for

functional remapping with recovery13,122. Persistent changes in the efficacy of intra-cortical

connections require a stable form of synaptic modification that is achieved through activity-

dependent alteration of the excitatory-inhibitory synaptic balance. These changes constitute

synaptic plasticity123, which permits neuronal interconnections to be continuously adjusted

as a consequence of their exposure to particular activity patterns. Synaptic plasticity is the

basis of network plasticity. Induction of plastic processes depends critically on changes

within glutamatergic and γ-aminobutyric acid (GABA)-ergic interneurons124,125. Although

neuromodulators induce little or no change in basal neuronal activity, they can potentiate or

attenuate responses evoked by such neurotransmitters126.

Pharmacological interventions in recovery strategies can increase or prolong the efficacy of

rehabilitation by increasing the susceptibility of relevant nodes or systems to the effects of

physical or cognitive interventions107. Modulation of glutamatergic activity with potassium-

channel blockers enhances the excitability of the motor cortex and conduction along

corticospinal pathways in patients with MS127,128, providing a rationale for testing the

effects of modulation of glutamatergic tone in motor recovery129. Cholinergic agonism

modulates synaptic plasticity in the hippocampus130,131. Modulation of cholinergic tone

through acetylcholinesterase inhibition enhances cognitive function in MS patients with

memory deficits132. Functional changes in the prefrontal cortex, as well as changes in its

functional connectivity, may underlie the efficacy of this intervention16,133 (Figure 2).

Dopamine modulates cortical excitability via changes in synaptic plasticity134 that are

relevant for motivational and motor aspects of learning135. As in stroke recovery136,

modulation of dopaminergic frontal projections in MS might potentiate aspects of motor

recovery and memory consolidation135. Serotonin also regulates synaptic plasticity and

cortical excitability137-140. Use of serotonin-reuptake inhibitors in association with physical

therapy has produced beneficial effects on motor outcomes in patients who are moderately

impaired after stroke141. Modulation of multiple neurotransmitter systems to promote stroke

recovery has been attempted with amphetamines,107 which act primarily through

noradrenaline and dopamine signalling and enhance arousal and attention that is relevant for

learning and recovery142. L-amphetamine sulphate has been tested for treatment of cognitive

dysfunction in MS. They significantly improved performance in learning and memory

tasks143,144, as well as speed of processing and working memory145.

Repetitive transcranial magnetic stimulation (rTMS) interferes with or potentiates the

function of specific cortical regions146. In stroke recovery, rTMS can improve motor

function by re-establishing the functional interhemispheric balance through reduction of

Tomassini et al. Page 7

Nat Rev Neurol. Author manuscript; available in PMC 2014 March 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



interhemispheric inhibition or by increasing the excitability of damaged circuits147. In MS,

rTMS may limit the effect of functional interhemispheric imbalance between motor regions

and may induce remote effects on the excitability of spinal circuits in patients suffering from

spasticity148,149. Transcranial direct current stimulation (tDCS) modulates synaptic

plasticity by altering cortical excitability150. Decreased GABAergic tone, which releases

latent cortico-cortical projections from tonic inhibition, is a mechanism of rapid cortical

plasticity that can facilitate recovery120. tDCS can predispose brain plasticity mechanisms to

learning151 and recovery152 through modulation of this GABAergic tone. The therapeutic

potential of electrical stimulation is under investigation for stroke recovery, but its possible

application to MS recovery remains to be explored.

The presence of cortical pathology in MS challenges attempts to develop pharmacological

and electrical interventions that modulate the function of specific brain systems as

pathological changes may alter cortical excitability and thus interfere with the desired

effects of interventions.

Beyond pharmacological and electrical interventions, the question remains open as to what

effect pharmacological modulation of inflammation with disease modifying treatment has on

mechanisms of brain plasticity79.

Imaging adaptive functional reorganization in MS

Promotion of functional restoration requires optimization of methods to detect the effects of

interventions and to improve the efficiency of studies. fMRI has been widely used in studies

on recovery in MS153. It characterizes functional reorganization at the systems level154, as

generation of an fMRI signal correlates with neural activity. However, the fMRI signal is

only indirectly neural in origin, and disease-related factors and therapeutic interventions can

further complicate interpretation of the signal3 (Figure 3). Therefore, the use and

interpretation of fMRI as a measure of neural activity in studies on neuroplasticity and

recovery requires methodological consideration3.

Interpretation of fMRI signal in disease and in interventional studies

The blood oxygenation level-dependent (BOLD) signal is the image contrast most

commonly used in fMRI studies (Box 2). Comparison with electrophysiological

measurements suggests that the BOLD signal most closely corresponds to pre- and

postsynaptic processing of incoming afferent signals and intracortical processing, such as

are represented in local field potentials155-157 rather than the spiking output of a particular

region. Proportional increases or decreases in local excitation and inhibition are likely to

lead to increases or decreases, respectively, in the local energy demand and, therefore, in the

BOLD signal155-157. Net excitation is also likely to lead to BOLD signal increases, whereas

the fMRI response to a net inhibition is probably more circuit-dependent owing to lower

energy demands of reduced excitation but increased energy requirement for the inhibitory

processes155-157.

The origin of the BOLD signal is vascular, so neurovascular coupling must remain intact for

fMRI to provide a faithful representation of alterations in neural activity. Not only should

Tomassini et al. Page 8

Nat Rev Neurol. Author manuscript; available in PMC 2014 March 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



the chemical signalling between neurons, astrocytes and cerebral arterioles be preserved, but

so should the biophysical coupling between the vascular response and the BOLD signal.

This coupling is embodied in the concept of vascular reactivity, defined as the capacity of

the vasculature to augment blood flow and generate a BOLD response following a vascular

stimulus.

Alteration of the physiological properties of the BOLD signal can occur with age, in chronic

inflammatory states or with therapeutic interventions158-160 (Figure 3). Age can affect the

fMRI response independently of other pathological factors. A reduction of task-induced

BOLD contrast associated with reduced baseline cerebral blood flow (CBF) and baseline

cerebral metabolic rate of oxygen (CMRO2) has been demonstrated in the ageing brain161.

Baseline CBF has been shown to modulate task-related BOLD signal162. Vascular reactivity

assessment using carbon dioxide (CO2) has suggested a reduced ability of blood vessels to

respond in the ageing and diseased brain163,164. In addition to alterations in vascular

behaviour, neurodegenerative diseases and even a genetic predisposition for such diseases

are likely to modify CBF, cerebral blood volume (CBV) and CMRO2 and, therefore, the

BOLD response165,166.

Disease or interventions can induce changes in baseline neural activity and vascular

response, which are likely to modulate the BOLD signal in response to a task167, leading to

either over- or underestimation of their true modulatory effects on brain activity (Figure 3).

Altered fMRI responses have been demonstrated in circumstances of altered underlying

cerebral physiology168. In MS, vascular and metabolic changes have been described169,170.

Abnormal perfusion occurs in enhancing171 and nonenhancing172 MS lesions, as well as in

normal-appearing brain tissue in patients with MS169. Both white and grey matter can be

affected by perfusional changes that result from damage. This perfusional changes can differ

across disease phases and forms173. Baseline CMRO2 and venous CBV can also be reduced

in MS174. Furthermore, a more systemic vascular dysregulation can arise from production of

inflammatory molecules and from astrocyte dysfunction169, which can alter neurovascular

coupling through a vasoconstrictive effect169 or through impaired buffering of ions and

neurotransmitters175. In addition to disease-associated alterations, therapeutic interventions

can induce changes in fMRI responses through their effects on brain plasticity. Their effects

on BOLD response may also differ from those in healthy individuals, as therapeutic

interventions can interact with damage.

Given the complexity of the processes leading to generation of BOLD signal and the

additional confounders generated by factors such as age, pathology or interventions,

methods to improve the interpretability of the fMRI signal are needed to characterise

mechanisms and aid in the development of interventions for functional recovery in MS.

Improving interpretability of fMRI signal

Controlling for factors that modulate the BOLD response to neural activity improves the

interpretability of fMRI3 (Table 1). However, use of a control task to explore the functional

system specificity of an intervention is useful for ruling out global modulation of signalling

or vascular reactivity induced by the disease or the intervention. Also, resting fMRI provides

an alternative approach to studying functional plasticity that avoids the confounding effect
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of task-related performance. This approach has been used to explore spontaneous and

intervention-driven functional reorganization in MS15,80,81,176-178. It provides a powerful

tool in recovery studies as changes in local versus distant connectivity can be characterized

despite inter-individual differences in spontaneous or intervention-driven behavioural

changes. Resting fMRI can also help to disentangle the contribution of insufficient adaptive

versus undesirable maladaptive plasticity to clinical status and to changes in clinical status

with intervention. However, given the absence of associated behavioural information in

resting fMRI, use of this approach in disease and interventional studies requires similar

methodological consideration to task-based fMRI.

Measurement of baseline perfusion and of perfusion responses to a task can help to control

for differences in baseline BOLD signal161,162,165,179, which is relevant when assessing the

effect of interventions in patient groups that are affected by different levels of inflammation

or are undergoing different types of pharmacological interventions. Vascular reactivity,

tested using a vascular stimulus such as CO2
180, can be factored into a subsequent analysis

of task-related BOLD signal changes181 to separate the effect of disease or intervention on

the vascular versus the neuronal component of the BOLD signal159. Combination of fMRI

approaches with simultaneous or delayed electrophysiological recording - that is,

electroencephalography, magnetoencephalography or TMS - can further contribute to

elucidation of the origin of BOLD signal changes3. This combination approach is

particularly useful for clarifying the neural correlates of an increased or decreased BOLD

signal128 and, thereby, the mechanisms underlying therapeutic interventions. Calibrated

fMRI, in which task-related fractional changes in CMRO2 are derived from calibration of

BOLD signal relative to changes in CBF182,183, has been used in pharmacological studies in

the healthy brain159,184 with the expectation that CMRO2 changes reflect the underlying

neural activity better than BOLD signal alone. In addition to controlling for potential

confounding factors, the measurement of cerebral physiology might provide novel markers

of recovery or treatment effects. Arterial-spin labelling measures of CBF, for example, are

more stable markers of resting levels of brain activity over long time periods than are BOLD

signal measures185, which is relevant to disease evolution and treatment158. Furthermore,

regional measures of vascular reactivity163 and CBF may help to determine inflammatory

status172 and thus assess the effects of anti-inflammatory treatments and their effects on

brain plasticity in MS.

Efficient study designs would facilitate the development of interventions to promote

recovery. Multicentre fMRI studies are feasible and reliably informative in MS91. In

multicentre settings, longitudinal studies, which are required when testing interventions to

promote recovery186, can provide reproducible fMRI measures187.

Several studies in motor recovery in MS have analysed functional and effective connectivity

using sophisticated statistical approaches to establish the strength of activation and

synchrony between specific brain areas77,178. Graph theory approaches that model

effectiveness of information transfer within brain networks can enable assessment of the

effect of individual factors, disease and intervention in dynamically changing brain

systems76,83,188.
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Functional changes in specific regions can be particularly informative in assessment of

restorative therapies. ‘Recovery-weighted’ maps, in which patient-specific28,30,63 and

performance-related91 functional responses are associated with a favourable clinical status63

or outcome33,34, can be useful for testing the effects of interventions9. Similarly, the

development of high-resolution methods to study difficult-to-access anatomical regions

relevant for recovery such as the LGN can help in understanding aspects of recovery that

can be manipulated early after acute damage31.

In studies on recovery, fMRI is often combined with structural information in an attempt to

capture brain plasticity. Models that combine visual responses as measured on fMRI with

optic nerve structure and measures of visual function can determine the contribution of

functional reorganization to clinical function after accounting for structural factors28.

Combination of functional connectivity measures with measures of structural damage to

specific white matter tracts is also used to investigate the relationship between structural and

functional abnormalities in patients with MS90. Structural imaging can be used in

combination with functional imaging in recovery studies to investigate the bases for

individual variation in neuroplasticity189 and recovery190, to demonstrate structural

plasticity accompanying functional plasticity and to characterize the time course of these

concurrent changes191. A detailed discussion of structural imaging methods to investigate

structural repair is beyond the scope of this Review. Given the close interplay between

systems-level functional and structural plasticity, opportunities and limitations of structural

imaging methods, which may be relevant to investigate structural repair in MS153 and may

be similarly affected by disease or interventions, are briefly discussed in Supplementary Box

1 online.

Conclusions and future directions

Despite substantial progress in the field of functional recovery, MS continues to be the

major cause of chronic neurological disability in young adults, and development of

therapeutic strategies to promote functional recovery remains challenging. Review of the

Literature highlights difficulties of confidently interpreting results from single studies or of

combining results from different studies because of uncertainties about the homogeneity of

patient groups, standardization of interventions, whose biological effects can be

characterized and quantified using both clinical scales and objective (imaging or

electrophysiological) measures, a lack of sensitive surrogate markers of recovery or an

understanding of expected treatment effect sizes that could contribute to prospective

powering of studies. A path forward will involve development of new kind of study designs,

optimized for assessing specific mechanisms of recovery and incorporating clinically

relevant outcomes, with testing of specific hypotheses related to the underlying

neurobiological mechanisms with which interventions promote recovery. A combined

strategy involving a strong biological rationale and monitoring of functional and structural

reorganization using brain imaging methods should form the basis for scientifically

informed neurorehabilitation in MS. Using this approach, effects of interventions can be

quantified and compared with clinically-relevant, sensitive and reproducible measures in

selected clinical cohorts (Box 3). As in stroke research, restorative strategies in MS are

building on emerging understanding of neural plasticity. Their progress, therefore, is
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inherently cross-disciplinary and relies on more complex, multimodal approaches, beyond

the purely behaviour-centred studies.

Experience gained from other neurological conditions provides a powerful framework in

which models of recovery and neurorehabilitation can be constructed and tested154.

Development of new strategies to promote recovery, and of imaging markers to measure

effects of therapeutic intervention, however, needs to take place within the specific

pathological context of MS. The chronic and diffuse nature of MS pathology poses

challenges, as effects of interventions need to be sustained and to operate across multiple

brain systems. In addition to adaptive plasticity, maladaptive reorganization accompanying

chronic disuse can occur, presenting a further challenge to recovery. Limited, direct

evidence from studies in MS encourages manipulation of adaptive plasticity with therapeutic

interventions, but our knowledge of brain plasticity in MS derives mainly from

observational studies without external inducement of plasticity. Further testing in controlled

interventional studies is essential if we are to develop an understanding of how to effectively

promote adaptive plasticity in MS and how to translate such methods into clinical practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1

Criteria for the definition of behaviourally relevant brain functional reorganization after

brain damage. Recovery studies in the fields of stroke and MS suggest that behaviourally

meaningful functional reorganization - that is, adaptive functional reorganization - can be

defined if:

1. There is a relationship between extent of changes of functional patterns and

associated pathology

2. Altered patterns of functional activation accompanied by preserved or

completely recovered behaviour

3. Learning or rehabilitation induce similar changes in functional activation

4. Facilitation of reorganization increases the rate of, or the potential for recovery

5. Interruption of reorganization processes and/or maladaptation results in

functional impairment
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Box 2

The neurophysiological basis of functional MRI. Functional MRI (fMRI) has millimetre-

scale spatial resolution, providing a large-scale average of neural activity. The parameter

measured by this imaging technique is the blood oxygenation level-dependent (BOLD)

signal, which is principally affected by changes in the local balance between neuronal

excitation and inhibition. Increased neural activity results in increased cerebral metabolic

rate of oxygen (CMRO2) and local vasodilatation. As a consequence, cerebral blood flow

increases. The fractional increase in blood flow is greater than the fractional increase in

CMRO2. This difference reduces the quantity of (paramagnetic) deoxy-haemoglobin in

the veins and is equivalent to increased oxygenation, which increases local magnetic field

homogeneity around capillaries and veins and, thereby, increases net signal intensity in

that area. This change in BOLD signal varies depending on the magnetic field strength,

the brain region and the underlying physiology or pathology. Within a scan, periods of

active stimulation (‘ON’ condition) are contrasted with rest periods (‘OFF’ condition).

The choice of baseline is crucial in the interpretation of fMRI data.

The most powerful experimental designs use equal-duration alternating ON and OFF

periods (block design), each lasting 10-60 s. Brief stimuli can be used in event-related

designs where the functions under investigation dictate. Investigations of resting-state

activity, in which the volunteer does not perform a particular task, have grown in

popularity in recent years, especially in patient populations, removing the potential

complication of disease-associated impaired task performance. These investigations seek

to identify temporally co-varying BOLD signals, which are thought to reflect

dynamically co-varying levels of neural activity, from different brain regions. Such

signals are thought to represent functional connectivity between the brain regions in

question. This approach can identify networks of brain regions that could underlie a

specific function, such as motor output or vision192, and can be used to detect their

potential modulation in disease.
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Box 3

Considerations for future studies to promote functional recovery in MS.

Type of study

Hypothesis-driven studies are preferable when targets of intervention are known.

Translational studies, from bench to bedside, should be encouraged. Exploratory

methodologies can be used for identification of potential new therapies or targets.

Design

Optimized trial designs (for example, sequential, adaptive or enrichment methodologies)

should be prioritized over traditional trial designs. Appropriate control groups are

essential. A post-intervention study phase is desirable to confirm the effect of

interventions and to test for sustained effects.

Groups

Cohorts with disabilities should be prioritized when investigating the potential benefits of

new interventions. Nondisabled cohorts can be studied to define biological mechanisms

of successful recovery. They may be also considered for studies of interventions that

have potential to increase the capacity for recovery by delaying accrual of disability

Eligibility criteria for study group should be based on “rehabilitation criteria”

(performance over disease characteristics), when effects of interventions are tested, or on

“standard clinical criteria” (disease characteristics over performance), when the influence

of specific disease characteristics on effects of interventions is to be tested.

Sample size

Fixed sample size or adaptive sample size re-estimation can be considered, depending on

the type of study design.

End point

The study end point should be clinically relevant. Both clinical and paraclinical measures

such as imaging should be collected to define mechanisms of therapeutic benefit. Efforts

should be accelerated to better validate imaging or other paraclinical measures of brain

recovery. Patient-related outcome measures provide an important complementary

perspective.

Interventions

Behavioural, pharmacological or electrophysiological interventions should all be

considered. Interventions and key aspects of imaging or other paraclinical measures

should be standardized as much as possible to allow comparisons between studies. To

facilitate the development of such standardised methods, the scientific community should

work towards sharing of methodology and data.

Analysis methods

Hypothesis testing and exploratory studies should be clearly identified as such and

appropriate statistical approaches used for each. Confidence intervals should be regularly
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reported and consideration should be given to the potential effects of heterogeneity in

patient populations. When imaging is combined with behavioural studies, multimodal

approaches are desirable.
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Search strategy and selection criteria

References for this Review were identified through searches of PubMed using the search

terms “functional reorganization”, “brain plasticity”, “recovery”, “rehabilitation”,

“pharmacological modulation” and “MRI” from January 1949 until April 2012. Articles

were also identified through searches of the authors’ own files. Only papers published in

English were reviewed. The final reference list was generated on the basis of originality

and relevance to this Review.
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Key points

• Evidence across brain systems supports a behaviourally relevant role for

neuroplasticity in multiple sclerosis (MS) across ages, stages and phases of the

disease, which is preserved despite widespread pathology.

• Together with adaptive plasticity, maladaptive plasticity can occur owing to

disuse with impairment and may contribute to disability.

• Interventions that drive neuroplasticity can promote functional restoration by

inducing adaptive changes or by predisposing functional systems to adaptive

plasticity.

• Individual and disease-related factors influence both spontaneous and

intervention-driven adaptive functional reorganization, as well as its assessment

using imaging.

• Improving the interpretability of functional MRI measures is important for

characterization and quantification of the effects of recovery interventions and,

thereby for development of recovery-oriented strategies.
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Figure 1.
Non-pharmacological modulation of brain plasticity in MS14,94. Patients with MS and

healthy volunteers performed a visuomotor task in which they tracked a continuously

moving bar on a computer screen by altering pressure applied to a handle held in the right
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hand. The task was performed in blocks of 38 sec. Participants practised the task in short-

term (10 blocks for a total of ~25 min) and in the longer-term (daily for 15 days

consecutively) settings. Performance was measured as the mean tracking error across each

block (short-term) or day (longer-term) of practice. During the first and last session,

participants underwent fMRI scanning. As depicted in the graphs, short-term (a) and longer-

term (b) task practice significantly improved visuomotor performance in both healthy

controls and patients with MS, across levels of disability according to EDSS scores. As

shown in the fMRI scans, these performance improvements were associated with a reduction

in blood oxygenation level-dependent signal in brain regions involved in visuomotor

integration. Abbreviations: EDSS, Expanded Disability Status Scale; fMRI, functional MRI;

MS, multiple sclerosis; R, right hemisphere. Permission obtained from SAGE Publications

© Tomassini, V. et al. Mult. Scler. 17, 103–115 (2011), and Tomassini, V. et al.

Neurorehabil. Neural Repair 26, 581–593 (2012).
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Figure 2.
Pharmacological modulation of brain plasticity in MS16. Patients with MS and healthy

volunteers underwent a counting Stroop task during fMRI scanning. Patients had

comparable cognitive performance to controls, but a significantly greater BOLD signal

change in the left prefrontal cortex - a difference that reflects functional reorganization.

BOLD signal changes in these regions correlated with cognitive performance and brain

volume. A functional score, the activation ratio (AR), representing the ratio between the

magnitude of prefrontal cortex activation on the left (found in MS patients) relative to right

hemisphere, was calculated to test the effect of pharmacological modulation of brain

adaptive plasticity with rivastigmine, a cholinesterase inhibitor. Before rivastigmine

administration or following administration of placebo, mean AR in patients was greater than

in controls. After rivastigmine administration, mean AR in patients was reduced to within

the range of controls. Abbreviations: BOLD, blood oxygenation level-dependent; fMRI,

functional MRI; MS, multiple sclerosis; R, right hemisphere. Permission obtained from

Oxford University Press © Parry, A. M. et al. Brain 126,2750–2760 (2003).
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Figure 3.
Effects of disease and pharmacological interventions on generation of BOLD fMRI signal3.

The graphs illustrate normal (N), elevated (+) or reduced (−) levels in processes that

generate the measured BOLD signal. These processes include neural and vascular factors

such as signalling to the vasculature and vascular responsiveness. (a) A schematic fMRI

activation map in a control group or under placebo administration. (b) Changes in neural

activity induced by disease or drugs are correctly reflected in the final statistical map when

the confounding effects of signalling and vascular responses are taken into account. (c)
Changes in neural activity induced by disease or drugs are incorrectly reflected in the final

statistical map because of the intervening confounds of altered neurovascular signalling or

vascular responsiveness. Abbreviations: BOLD, blood oxygenation level-dependent; fMRI,

functional MRI. Permission obtained from Elsevier Ltd © Iannetti, G. D. & Wise, R. G.

Magn. Reson. Imaging 25, 978–988 (2007).
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Table 1

Potential confounding factors affecting BOLD signal generation in MS studies and strategies to overcome

them.

Source of fMRI signal Confounding factors Strategy to control for confounding factors

Neural signalling Disease-related or intervention-related increases or decreases
in brain activity

Simultaneous or delayed electrophysiological
recording

Neurovascular coupling Disease-related or intervention-related effect on vascular
response to changes of neural activity

Measure vascular reactivity (for example, with
carbon dioxide challenge)

Vascular compartment Disease-related or intervention-related differences in
baseline perfusion levels

Measure baseline perfusion
Measure perfusion response to a task

Nat Rev Neurol. Author manuscript; available in PMC 2014 March 18.


