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Senescent Cardiac Fibroblast Is Critical for Cardiac
Fibrosis after Myocardial Infarction
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Abstract

Senescence is a recognized mechanism of cardiovascular diseases; however, its contribution to myocardial fibrosis
and rupture after infarction and the underlying mechanisms remain unclear. Here we showed that senescent cardiac
fibroblasts markedly accumulated in heart after myocardial infarction. The expression of key senescence regulators,
especially p53, was significantly up-regulated in the infarcted heart or hypoxia-treated fibroblasts. Furthermore,
knockdown of endogenous p53 by siRNA in fibroblasts markedly reduced hypoxia-induced cell senescence, cytokine
expression but increased collagen expression, whereas increased expression of p53 protein by adenovirus infection
had opposite effects. Consistent with in vitro results in cardiac fibroblasts, p53 deficiency in vivo significantly
decreased the accumulation of senescent fibroblasts, the infiltration of macrophages and matrix metalloproteinases,
but enhanced collagen deposition after myocardial infarction. In conclusion, these results suggest that the p53-
mediated fibroblast senescence limits cardiac collagen production, and inhibition of p53 activity could represent a
novel therapeutic target to increase reparative fibrosis and to prevent heart rupture after myocardial infarction.
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Introduction

Myocardial infarction (MI), one of the leading causes of
mortality in aged people, leads to complex structural
remodeling. Following MI, infarct healing is immediately
initiated, including the infiltration of inflammatory cells,
activation of matrix metalloproteinases (MMPs), myofibroblast
production of extracellular matrix and scar formation [1,2]. Both
clinical and experimental studies have demonstrated aging-
associated defects in inflammation, collagen deposition and
cardiac repair, which contribute to adverse remodeling
including ventricular dilation and hypertrophy [3,4]; however,
the molecular mechanisms for the cell senescence of
myocardial infarction have not yet been elucidated.

Cellular senescence is a process of growth-arrest that limits
the proliferation of mammalian cells [5]. Senescent cells are
characterized by several molecular and cytological markers,
including a large flattened morphology, up-regulation of
senescence-associated 3-galactosidase (SA-B-gal) activity and
proteins (such as p16, p19, p21 and p53) [6]. Several pathways
can induce senescence in various cell types [7]. Among them,
p53/p21 pathway has a key role in the induction of cell
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senescence. Elevated p53 activity can induce senescence in
proliferative tumor cells and other cell types [8,9,10], whereas
inhibition of the p53 activity in senescent cells can reverse the
phenotype [11]. Increased p53 activity also induces cell
apoptosis in response to diverse pathological stresses such as
ischemia and myocardial infarction [12,13,14]. However,
whether p53-mediated cell senescence influences cardiac
remodeling after infarction remains unknown.

In the present study, we examined the role of cellular
senescence in regulating cardiac fibrosis after myocardial
infarction. Our results demonstrated that myocardial infarction
or H/R promotes fibroblast senescence and the expression of
key senescence regulators, especially p53, which decrease
collagen production and the reparative cardiac fibrosis,
contributing to cardiac rupture. Changes in p53 levels regulated
these effects. Thus, these results suggest that p53-mediated
fibroblast senescence inhibits cardiac fibrosis after myocardial
infarction.
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Materials and Methods

Antibodies and Reagents

Senescence-associated B-galactosidase (SA-B-gal) activity
assay kit was purchased from Abcam (Cambridge, MA). The
antibodies against p53, a-smooth muscle actin (a-SMA), 488-
goat anti-mouse, 555-goat anti-rabbit and cy3-donkey anti-goat
were from Cell Signaling Technology (Beverly, MA); antibodies
against p16, p19, p21, discoidin domain receptor 2 (DDR2),
troponin | and Mac-2 were from Santa Cruz Biotechnology
(Santa Cruz, CA). Penicillin, streptomycin, fetal bovine serum
(FBS) and others were obtained from Invitrogen Life
Technologies (Carlsbad, CA) or Sigma (Sigma-Aldrich, Louis,
MO).

Animals and myocardial infarction model

Wild-type (WT) littermates and homozygous p53 knockout
mice (p53 KO) on C57/B6 background were obtained from the
Jackson Laboratory as described [14]. WT and p53 KO male
mice (8- to 12-week-old) were anesthetized with 2% isoflurane
inhalation and subjected to operation of myocardial infarction
model by ligation of left coronary artery (LCA) as described
[15]. The sham group underwent the same surgical procedure
except that the LCA was not occluded. Mice were sacrificed at
7" day post-operation and heart tissues were harvested. All
animal protocols were approved by the Animal Care and Use
Committee of Capital Medical University (20120112) and
experiments conformed to the Guide for the Care and Use of
Laboratory Animals (National Institutes of Health publication
No. 85-23,1996).

Histology and immunohistochemistry

Heart tissues were fixed in 4% paraformaldehyde, embedded
in paraffin and sectioned at 5 pym intervals. Hematoxylin/eosin
(H&E), Masson’s trichrome and Sirius Red staining were
performed using standard procedures as described [16,17].
The percentage of collagen deposition (blue or red staining as
positive area, respectively) to ischemic tissue was analyzed
and calculated.

Immunostaining was performed as described previously
[18,19]. Heart sections were stained with antibodies against
troponin | (1:200), p53 (1:200), a-SMA (1:200), DDR2 (1:200),
p16 (1:200) and p21 (1:200) at 4°C overnight. Followed by
incubation with Alexa Fluor conjugated secondary antibodies.
DAPI was used for counterstaining. An irrelevant isotype
mouse, rabbit or goat IgG was used as a negative control.
Immunohistochemistry was performed on paraffin heart
sections (5 pm) with antibodies against p16 (1:200), p19
(1:200), p21 (1:200), p53 (1:200) and Mac-2 (1:200) at 4°C
overnight [18,19]. Biotin-conjugated secondary antibody was
added for 30 min at room temperature. For color development,
we used 3, 30-diaminobenzidine tetrahydrochloride (DAB) and
hematoxylin as a counterstain. Images were viewed and
captured using a Nikon Labophot 2 microscope.

Senescence-associated B-galactosidase (SA-B-gal) activity
assay in tissues and cells was performed using Cellular
Senescence Detection Kit according to manufacture’s protocol.
Briefly, cells or frozen heart sections were fixed in 1%
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formaldehyde for 5 min. After washing with PBS, sections were
incubated with 1 mg/ml X-Gal staining solution overnight at
37°C, and then counterstained with Eosin. Blue-stained
senescent cells were observed under light microscopy and
counted.

The number of staining positive cells were calculated by
using NIS-ELEMENTS quantitative automatic program (Nikon,
Tokyo, Japan) with the average value of at least 10 random
fields from each section in double-blind fashion. The
percentage of staining positive cells was determined by the
number of cells having positively staining divided by the total
counted cells and multiplied by 100.

Cell culture, siRNA transfection and adenovirus
infection

Cardiac fibroblasts (CFs) were isolated and cultured as
described [18,19]. Briefly, hearts excised from neonatal WT
mice (1-3 day-old) were minced and digested. The supernatant
was filtered through a 400-um nylon mesh filter and then
centrifuged at 800 rpm for 5 min at 4°C. Cells were placed into
dishes with fibroblast culture media (DMEM, 10% normal
bovine serum albumin and 100 U/ml penicillin/streptomycin)
and incubated at 37°C with 5% CO, and 95% air. Fibroblasts
(passages 6 to 12) were transfected with 100 nmol/L of small
interfering RNA (siRNA) using lipofectamine 2000 according to
manufacture’s protocol or were infected with recombinant
overexpression adenovirus (Ad), including Ad-GFP or Ad-p53
at multiplicity of infection (50—100). The sequences of double
strand siRNA targeting p53 were 5'-
CCAGAAGAUAUCCUGCCAUTT-3/, 3-
AUGGCAGGAUAUCUUCUGGTT-5 (purchased from
Invitrogen, San Diego, CA).

Simulated hypoxia/reoxygenation protocol

The simulated hypoxia/reoxygenation (H/R) was performed
as previously described [20,21]. After 24 hrs of adenovirus
infection, the cells were subjected to hypoxia buffer that
contained 118 mM NaCl, 24 mM NaHCO,, 1.0 mM NaH,PO,,
1.2 mM MgCl,, 2.5 mM CaCl,—2H,0, 16 mM KCI, 20 mM
sodium lactate, 10 mM 2-deoxyglucose (pH 6.2) for 3 h.
Reperfusion was accomplished by replacing the hypoxia buffer
with normal cell medium under normoxia conditions for 3 days.

Quantitative real-time PCR

Total RNAs were isolated from cultured fibroblasts or fresh
mouse hearts by the Trizol method (Invitrogen). Samples (1-2
ug) were reverse-transcribed to generate first-strand cDNA by
use of MMLV Reverse Transcriptase (Promega). Quantitative
real-time PCR (qPCR) analysis was performed with iQ5 Real-
Time PCR Detection System (Bio-Rad, Hercules, CA) and
specific primers for mouse IL-6, IL-11, CXCL1, MMP2, MMP9,
collagen 1, and collagen 1l as described previously [19,22,23].
A housekeeping gene f-actin was used as an internal
standard.
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Analysis of cell proliferation

For growth curves, cells (1x10* cells per well) were grown in
12-well plates and treated as indicated. Cells were stained with
1% Trypan blue and the numbers of total cells were counted.
For BrdU incorporation, cells in 24-well plates (5x10° per well)
were treated with H/R for 3 days and controls were left
untreated. BrdU was labeled according to manufacturer’s
protocol. BrdU positive cells were visualized with secondary
antibodies conjugated with 488-goat anti-mouse. Fluorescence
microscopy images were taken from 8 random fields in each
well using NIKON camera (NIS-ELEMENTS quantitative
automatic program).

Western Blot Analysis

Cells were lyzed with lysis buffer (20mM Tris (pH7.5), 1mM
EDTA, 150mM NaCl, 1 mM EGTA, 1 mM B-glycerophosphate,
1% Triton X-100, 2.5 mM sodium pyrophosphate, 1 mM Na
3VO,, 4ug/ml aprotinin, 4 ug/ml leupeptin, 4 ug/ml pepstatin,
and 1 mM PMSF). 50 ug protein lysates were separated by
10% SDS-PAGE and then transferred to nitrocellulose
membranes, the membranes were incubated with primary
antibody against anti-p53 (1:1000), p21 (1:200) and GAPDH
(1:5000) at 4°C overnight, then with IR Dye-conjugated
secondary antibodies (1:5000) for 1hr. The images were
quantified by the use of the Odyssey infrared imaging system
(LI-COR Biosciences, Lincoln, NE) as described [17,18,19]

Measurement of cytokines level

Cardiac fibroblast cells were cultured in 24-well plates
infected with adenovirus as mentioned above and treated with
simulated H/R for 3 hrs, then replaced in normoxia media for
48 hrs. The culture supernatants were analyzed for the protein
levels of cytokines with Bio-Plex assay kit according to
manufacturer’s protocols (Bio-Rad).

Statistical analysis

All data were analyzed using GraphPad software (GraphPad
Prism version 4.00 for Windows; GraphPad Software). Results
are expressed as mean + SEM. Differences are analyzed by t
test or ANOVA, P < 0.05 was considered statistically
significant.

Results

Senescent fibroblasts accumulate in the infarcted heart
in vivo

To investigate the role of cellular senescence in cardiac
fibrosis, myocardial infarction was induced by ligation of left
coronary artery (LAC) in male mice and was evaluated by
hematoxylin/eosin (H&E) and Masson staining. As shown in
Figure 1A, infarction size and fibrotic area were significantly
increased in the infarcted heart compared with that in sham
control. To identify senescent cells in vivo, heart sections from
infracted or sham mice were stained with a panel of
senescence-associated markers, including SA-B-gal activity
and proteins (p16, p19, p21 and p53), which are associated
with cellular senescence process [24,25]. As shown in Figure
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1B and C, the number of cell staining positive for SA-B-gal and
senescence-associated proteins were all significantly increased
in the infarct-border regions of heart compared with shamed
heart. Notably, less SA-B-gal positive cells were observed in
remote area of the heart where didn't experience ischemia
process or in sham heart. These results indicate that senescent
cells accumulate in the heart after infarction.

Fibroblasts are known to be the most abundant cells in the
heart [26,27], the location of senescent cells in fibrotic areas of
the heart (both the border and infarcted regions) (Figure 1B
and C) suggested that senescent cells may be derived from
fibroblasts, which initially proliferate and produce extracellular
matrix in fibrosis formation following heart injury [26,27].
Indeed, in the infarcted heart sections, the cells that were
stained positive for the senescence-associated markers p53 or
p16 were also positive for the myofibroblast markers a-SMA or
DDR2, respectively (Figure 2A and B), but not for
cardiomyocyte marker troponin | (Figure 2C). Moreover, the
percentage of a-SMA- or DDR2-positive myofibroblasts was
higher in the infarcted heart than that in sham control (Figure
2A and B). Collectively, these results suggest that myocardial
ischemia triggers fibroblast senescence in the heart.

Hypoxia/reoxygenation induces cardiac fibroblast
senescence

Hypoxia has been reported to induce premature senescence
in neonatal rat cardiomyocytes, fibroblast and bone marrow
hematopoietic cells [28,29,30]. Ischemia or H/R promotes
differentiation of fibroblasts to myofibroblasts in pulmonary
arteries [31,32], we therefore examined whether H/R promotes
cardiac fibroblast senescence in vitro. Cardiac fibroblasts were
cultured at H/R for 0-10 days. The viability, proliferation and
senescence of fibroblasts were evaluated by Trypan blue
staining (cell viability). BrdU incorporation and expression of
senescence-associated markers. H/R treatment significantly
reduced the number of viable cells in a time-dependent manner
(Figure 3A) and inhibited proliferation of cardiac fibroblast at
day 3 of treatment as compared with normoxia-treated cells
(Figure 3B). Moreover, H/R-treated cardiac fibroblasts
exhibited enlarged and flattened cell morphology, which are the
typical characteristics of cellular senescence (Figure 3C).
Furthermore, the activity of SA-B-gal and expression of
senescence-associated markers including p16, p19, p21 and
p53 were all markedly higher in the hypoxia-treated cells than
that in normoxia control (Figure 3C and D). In addition, the
levels of MMP2 and MMP9 mRNA expression were
significantly up-regulated, but the mRNA expression levels of
collagen | and Il were markedly decreased in hypoxia-treated
cells than that in normal cells (Figure 3E and F). Finally,
hypoxia markedly up-regulated the expression of p53 protein in
a time-dependent manner (Figure 3G). Together, these results
suggest that Hypoxia induces cardiac fibroblast senescence
and p53 may play a critical role in this process.

Effect of p53 on hypoxia-induced fibroblast senescence

Since the p53/p21 pathway plays a critical role in the
senescence in several cell types [7], and ischemia or hypoxia
markedly induced the expression of p53 and p21 in the
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Figure 1
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Figure 1. Senescent cells accumulated in heart after infarction. (A) Myocardial infarction (MI) was induced by ligation of left
coronary artery (LAC) in mice. After 1 week of MI, the heart sections were evaluated by hematoxylin/eosin (H&E) and Masson
staining. (B) Senescent cells were detected by SA-B-Gal staining in the heart (left). Bar graph shows the percentage of SA-B-Gal
positive cells in the heart sections (right). (C) A panel of senescence markers, including p16, p19, p21 and p53, was immunostained
with specific antibodies (left). Scale bars: 50 ym. The percentage of positive cells was measured by selecting 6 random fields. Bar
graphs show the percentage of p16-, p19-, p21- and p53-positive cells in heart sections (right). Data expressed as meantSEM (n=5
per group). *P<0.05, **P<0.01, ***P<0.001 vs. sham.

doi: 10.1371/journal.pone.0074535.g001

infracted heart and in vitro fibroblasts (Figure 1 through 3). We reduced by infection of p53 siRNA (p53-siRNA) but not
then examined effect of p53 on proliferative capacity and scrambled siRNA (Scr-siRNA) (Figure 4A, left). After hypoxia
senescence of cardiac fibroblasts. Western blot analysis treatment, the number of SA-B-gal-positive cells was
revealed that the endogenous p53 expression was markedly significantly decreased in the p53-siRNA-infected cells
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Figure 2
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Figure 2. Senescent cells derive from cardiac myofibroblasts. (A, B) Heart tissues at day 7 after infarction were double-stained
using anti-p53 or p16 (markers for senescence, green) and anti-a-SMA and DDR2 (markers for myofibroblasts) antibodies, and
counterstained with DAPI (blue), and then examined by a fluorescence microscopy. (C) The heart sections were immunostained
using the combination of anti-p53 (green) and anti-Troponin (a marker for cardiomyocytes, red) antibodies and counterstained with
DAPI (blue), and examined by a fluorescence microscopy. Scale bars: 50 um. (D) Bar graph shows the percentage of staining
positive cells.

doi: 10.1371/journal.pone.0074535.g002

PLOS ONE | www.plosone.org 5 September 2013 | Volume 8 | Issue 9 | e74535



Fibroblast Senescence Limits Cardiac Fibrosis

Figure 3
A B C
Normoxia Hypoxia
8 ) 20 Zame
-s-Normoxia o © 2 J
—~ |=Hypoxia & 2
e ©15 g
x [ =
ey o Kk =
g4 210 0 7
= (-}
5 ?
2 g & Z
T2 2 5 =
[¢] b= o
(i3]

0 2 4 6 8 10(days) ONormoxia Hypoxia

Normoxia

Normoxia g = . -
Hypoxia

Hypoxia — & = &

o Normoxia

= Normoxia
= Hypoxia = Hypoxia

sk
*

p53 p21 p16 p19

m
M

s =
o o
73 73
% 412 Normoxia 21.2
é = Hypoxia é
o3 0 0.9
< <
Z Z
X2 X 0.6
5 £
_g 1 2 0.3
kS| =
&o € o
MMP2 MMP9 Collagen | Collagen Il
G

3h 6h 3d
Normoxia Hypoxia Normoxia Hypoxia Normoxia Hypoxia

- - » p53

ANy GBS asws @R £-actin

2.0

o
«

c’_' J
+ - + - + -
-+ -+ -+

3h 6h 3d

o w

Ratio
p53/B-actin
Qe
o

Normoxia
Hypoxia

Figure 3. Hypoxia/reoxygenation induces senescence in cardiac fibroblasts. (A) Neonatal cardiac fibroblasts from wild-type
(WT) mice were treated with hypoxia/reoxygenation (H/R) for 0-10 days. The growth of viable cells was measured by using Trypan
blue staining. Bar graphs show the number of viable cells at day 0-10 of H/R treatment. (B) Cells were culture as in A for 3 days.
Cell proliferation was measured by using BrdU incorporation assay. Bar graphs show the percentage of BrdU positive cells. (C)
Morphology and SA-b-Gal staining of fibroblasts treated with hypoxia were viewed and performed (left). Bar graph shows the
percentage of SA-B-Gal positive cells (right). (D) Cells treated with hypoxia were subjected to immunostaining using anti-p16, p19,
p21 and p53 (markers of senescence). DAPI was used for counterstaining (left). Bar graphs show the percentage of senescence
marker positive cells (right). (E, F) gPCR analysis was used to quantify the mRNA expression of MMP2, MMP9, collagen | and
collagen Il in fibroblasts treated with hypoxia. Bar graphs show the relative mRNA levels in hypoxia-treated cells compared with
normoxia group. (G) p53 protein levels were detected by Western Blot analysis in fibroblasts treated with hypoxia for 3 h, 6 h and 3
d. Bar graphs show the quantitative analysis of p53 protein (right). Scale bars: 50 ym. Data expressed as meantSEM (n=3).
*P<0.05, **P<0.01, ***P<0.001 vs. normoxia.

doi: 10.1371/journal.pone.0074535.g003
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compared with that in scrambled siRNA (Figure 4B, left and
middle). Moreover, immunostaining demonstrated that
knockdown of p53 markedly reduced p21-positive cells, a main
downstream target of p53, compared with scrambled siRNA
after hypoxia stimulation (Figure 4C, left). To further confirm
the effect of p53 on cardiac fibroblast, the fibroblasts were
infected with adenovirus GFP-vector (Ad-GFP) or p53 (Ad-
p53). Infection of Ad-p53 increased 3.7-fold compared with Ad-
GFP control after 24 hrs (Figure 4A, right). Furthermore,
infection of fibroblasts with Ad-p53 markedly increased the
number of SA-B-gal- and p21-positive cells compared with Ad-
GFP infection after hypoxia (Figure 4B, left and right and 4C,
right). There was no difference in SA-B-gal activity or p21
expression between two groups under normoxia (Figure 4B
and C). Thus, inhibiton of p53 attenuates fibroblast
senescence induced by hypoxia.

Effect of p53 on the expression of inflammatory factors
in fibroblasts in response to hypoxia

Because cellular senescence in fibroblasts and other cells is
accompanied by a marked increase in the production of a wide
range of growth factors, chemokines and cytokines (termed
senescence associated secretory phenotype) [24]. We then
measured several cytokine levels with qPCR analysis. The
mRNA levels of IL-6, IL-11 or CXCL1 were significantly
increased in the infarcted heart or in hypoxia-treated cells
compared with control groups (Figure 5A and B). Moreover,
Bio-Plex multiplex assay revealed that p53 knockdown by
siRNA significantly reduced the protein levels of CXCLA1,
CXCL2, MCP-1, IL-6, GCP-2 and M-CSF in fibroblasts after
hypoxia exposure compared with scrambled siRNA control
(Figure 5C). On the other hand, increased expression of p53
had the opposite effects (Figure 5D). These data indicate that
inhibition of p53 decreases inflammatory cytokine expression in
senescent fibroblasts in response to hypoxia.

Knockout of p53 attenuates fibroblast senescence and
inflammation but enhances collagen deposition in
mouse heart after infarction

Because our above results demonstrate that p53 contributes
to cardiac fibroblast senescence in the heart and in cultured
fibroblasts (Figure 4). To evaluate the impact of p53-mediated
senescence on cardiac fibrosis, we compared the
histopathology of heart obtained from WT and p53-deficient
mice (p53 KO) subjected to left coronary artery ligation. After 7
days, p53 KO mice exhibited a significantly decrease in the
number of SA-B-gal-positive fibroblasts (Figure 6A), an
increase in the fibrotic areas (Figure 6B and C) and the
expression of collagen | and collagen 1l (Figure 6F), but a
decrease in the expression of MMP 2 and MMP 9 compared
with WT mice (Figure 6E), and also displayed an decrease in
the number of Mac-2-positive macrophages (Figure 6D). There
was no significant difference in cell senescence, inflammation
and collagen deposition between two groups after sham
operation (Data not shown). These results suggest that p53-
dependent senescence limits cardiac fibrosis after infarction.
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Discussion

In this study, we provide the evidence of p53 involvement in
fibroblast senescence and myocardial fibrosis after infarction.
We demonstrated that senescent fibroblasts accumulated in
infracted hearts of mice. Both p53 and p21 were significantly
up-regulated in infracted heart and hypoxia-treated fibroblasts.
Knockout of p53 markedly attenuates hypoxia-induced
fibroblast senescence. Conversely, increased expression of
p53 had the opposite effects. Moreover, p53-deficient mice
showed a decrease in accumulation of senescent fibroblasts
and inflammation, and an increase in fibrosis in the infarcted
heart. Thus, p53-mediated fibroblast senescence limits the
reparative cardiac fibrosis contributing to cardiac rupture after
myocardial infarction (MI).

Myocardial infarction leads to cardiac remodeling and heart
failure. During the process, myofibroblasts are key cells that
replace the damaged and lost cardiomyocytes, and contribute
cardiac repair [1,2]. Cellular senescence was first identified as
a process that inhibits the proliferation of cultured human cells
[33]. Diverse stimuli including oxidative stress, DNA damage,
mitogenic signals and other stresses can cause cells to
permanently arrest and senesce. Most of these senescence
inducers result in the acquisition of multiple senescence
markers, including cell cycle arrest, apoptosis resistance,
changes in expression of senescence-associated proteins, SA-
B-gal activity and the senescence secretory phenotype [7]. It is
known that senescent cells accumulate with age in
cardiovascular diseases and promote inflammation and cardiac
fibrosis [3,4,7]. However, myocardial injury or H/R induces
premature (or replicative) senescence in cardiomyocytes,
fibroblasts and bone marrow hematopoietic cells, which are
fuctionally different with aged cells, such as difference in
production of inflammation [28,29,30]. It must be pointed out
that hypoxia has different action on senescence in different
types of cells. For example, evidences indicate that hypoxia
suppresses cellular senescence of human fibrosarcoma cells
(HT-p21-9 cells), fibroblast WI-38t cells, mesenchymal stem
cells, and other cells [34,35,36]. However, hypoxia can also
induce premature senescence in neonatal SD rat
cardiomyocytes, cardiac fibroblasts, and Fanconi anemia bone
marrow hematopoietic cells, indicating that hypoxia-induced
senescence is cell-specific physiological responses [28,29,32].
Furthermore, exposure of cardiac fibroblast to hypoxia
stimulates myofibroblast differentiation and reduces cell
proliferation [32]. Consistent with these data, the present study
demonstrated that myocardial infarction induced accumulation
of senescent fibroblasts characterized by the increase in SA-B-
gal activity and the expression of p53 and other proteins
(Figure 1B and C). These findings were further confirmed in
hypoxia-treated cardiac fibroblasts (Figure 3). Collectively,
these results suggest that ischemia or hypoxia can induce
fibroblast senescence and the expression of p53 in the heart
and in cultured fibroblasts.

Senescence response depends on two pathways that are
governed by the tumor suppressor proteins p53 and pRb. Both
proteins are critical transcriptional regulators that are
responsible for cell cycle, DNA damage, and cell death, which
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Figure 4. Effects of p53 on cell senescence and p21 expression in cardiac fibroblasts induced by hypoxia/
reoxygenation. (A) Cardiac fibroblasts were infected with scrambled siRNA (Scr-siRNA, 100 nmol/L), p53-siRNA (100 nmol/L), or
adenovirus GFP control (Ad-GFP, MOI=50) or p53 (Ad-p53, MOI=50) for 24 h and then exposed to hypoxia/reoxygenation (H/R) for
3 days. The infection efficiency was detected by Western blot analysis using anti-p53 antibody. (B) Senescent cells were detected
by SA-B-Gal staining (left). Bar graph shows the percentage of SA-B-Gal-positive cells (middle and right). (C) Senescent cells were
subjected to immunostaining using anti-p21 antibody (top). DAPI was used for counterstaining (middle). Bar graph shows the
percentage of p21-positive cells (bottom). Scale bars: 50 ym. Data expressed as mean+SEM (n=3). ***P<0.001 vs. normoxia;
*P<0.05, **P<0.01 vs. Scr-siRNA+hypoxia or Ad-GFP+hypoxia.

doi: 10.1371/journal.pone.0074535.g004
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involves a number of upstream regulators and downstream
effectors [7]. It is generally considered that senescence occurs
via the p53 pathway in response to DNA damage and telomere
dysfunction, whereas the p16/pRb pathway mediates
senescence caused by oncogenic stimuli, chromatin disruption,
and other cellular stresses [7]. p53 is a crucial mediator of
cellular senescence [10]. The cyclin-dependent inhibitor p21 is
the main downstream effector of p53 signaling during
senescence. It is known that replicative senescence in human
fibroblasts is dependent on the function of p53 and correlates
with activation of p53-dependent transcription [37]. We found
that p53 overexpression significantly increases senescence
markers only under hypoxic conditions (Figure 5). We
interpreted that under normal condition, although
overexpression of p53 increases its protein level, the p53
activity is lower. In contrast, hypoxia not only increases p53
protein level with the duration of the hypoxia but also promotes
the posttranslational modifications of p53 thereby leading to
increased p53 activity [38]. Furthermore, the induction of p21
by hypoxia has been described in a p53-dependent and
independent manner [38]. Although several studies have
demonstrated the critical role of p53 in regulating cardiac
remodeling and function after Ml [12,13,14], the role of p53 in
cardiac fibroblast senescence in response to ischemia or
hypoxia remains unknown. The present results demonstrated
that ischemia or hypoxia significantly induced p53 expression
in the heart and in cultured cardiac fibroblasts. Knockdown of
p53 inhibited fibroblast senescence, reduced the expression of
p21 and inflammatory cytokines, and increased collagen
production in hypoxia-treated cardiac fibroblasts or in the
infracted heart (Figures 4 and 6). In contrast, increased
expression of 53 reversed these effects (Figure 4).
Overexpression of p53 by Ad-p53 infection induced p21
expression but no statistically significant difference was
observed under normoxia (Figure 4C). Thus, these data
suggest that p53-mediated signaling in fibroblasts may
contribute to fibroblast senescence, leading to suppression of
collagen production and cardiac fibrosis after myocardial
infarction.

A number of studies support the idea that in addition to
growth arrest, the change of senescence secretory phenotype
is another essential characteristic of senescence [25]. Recent
studies in fibroblasts have demonstrated that senescent cells
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independent manner in senescent human cells in
atherosclerotic lesions and other cell types [43,44]. These
results suggest that p53 regulate cytokine expression in cell
type-specific fashion. Here, we demonstrated that p53 was a
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In  conclusion, the present study demonstrates that
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