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Abstract

Uterine leiomyomas (ULs) are benign tumors occurring in the majority of reproductive aged women. Despite the high
prevalence of these tumors, little is known about their etiology. A hallmark of ULs is the excessive deposition of
extracellular matrix (ECM), primarily collagens. Collagens are known to modulate cell behavior and function
singularly or through interactions with integrins and growth factor-mediated mitogenic pathways. To better
understand the pathogenesis of ULs and the role of ECM collagens in their growth, we investigated the interaction of
leiomyoma smooth muscle cells (LSMCs) with two different forms of collagen, non-polymerized collagen (monomeric)
and polymerized collagen (fibrillar), in the absence or presence of platelet-derived growth factor (PDGF), an
abundant growth factor in ULs. Primary cultures of human LSMCS from symptomatic patients were grown on these
two different collagen matrices and their morphology, cytoskeletal organization, cellular proliferation, and signaling
pathways were evaluated. Our results showed that LSMCs had distinct morphologies on the different collagen
matrices and their basal as well as PDGF-stimulated proliferation varied on these matrices. These differences in
proliferation were accompanied by changes in cell cycle progression and p21, an inhibitory cell cycle protein. In
addition we found alterations in the phosphorylation of focal adhesion kinase, cytoskeletal reorganization, and
activation of the mitogen activated protein kinase (MAPK) signaling pathway. In conclusion, our results demonstrate
a direct effect of ECM on the proliferation of LSMCs through interplay between the collagen matrix and the PDGF-
stimulated MAPK pathway. In addition, these findings will pave the way for identifying novel therapeutic approaches
for ULs that target ECM proteins and their signaling pathways in ULs.
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Introduction collagen types | and Ill were both upregulated in ULs compared

to normal myometrium. Recent global gene-profiling

Uterine leiomyomas (ULs) are one of the most common
pelvic neoplasms in reproductive aged women with a reported
prevalence of 25-70% depending on age [1-3]. These benign
tumors originate from uterine smooth muscle cells (SMCs) and
can cause severe symptoms such as abnormal uterine
bleeding, pelvic pain and infertility [3]. Despite the prevalence
of these tumors, there is limited understanding of their
pathogenesis and few successful therapeutic strategies.

The most distinct feature of ULs is the excess synthesis and
deposition of ECM proteins, mainly collagens type | and llI
[4-10]. Early studies by Stewart and Nowak [5] showed that
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experiments have shown that ECM genes encoding collagen
proteins are differentially expressed in ULs compared to normal
myometrial SMCs [8,11-13]. In addition, ULs show alterations
in the structure and composition of collagen fibrils, in that
collagens are loosely packed and arranged in a nonparallel,
disorganized manner [7]. There is also greater remodeling of
the ECM in leiomyomas as they express higher levels of
specific metalloproteinases (MMPs) including MMP2 and
MMP11 [14-16]. These changes are contributing factors in the
altered mechanical homeostasis in ULs leading to changes in
cell signaling [17,18].
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ECM collagens are known to both maintain cellular
morphology and act as conduits between extracellular stimuli
and cells by regulating proliferation, migration, differentiation,
and survival [19]. The ultrastructure of fibril-forming collagens |
and Il has distinct effects on cellular morphology and
proliferation mediated through focal adhesions and signaling
pathways such as mitogen activated protein kinase (MAPK)
[20-22]. Normal and malignant cells, such as fibroblasts,
endothelial cells, hepatic stellate cells, vascular SMCs, bladder
SMCs and melanoma cells all show an expanded morphology
on monomeric collagen in contrast to a more dendritic
morphology on fibrillar collagen [20—26]. A monomeric collagen
matrix also stimulates cellular proliferation. Vascular SMCs and
hepatic stellate cells cultured on polymerized collagen | fibrils
show reduced cell proliferation in contrast to cells grown on
monomeric, unpolymerized collagen [22,27]. These effects are
likely modulated through growth factors such as PDGF since
the ECM can act as a repository for growth factors changing
their bioavailability and function [28-31].

Proposed mechanisms that may explain the growth
modulatory effects of different forms of ECM collagens include
interaction through integrins which are the main collagen
receptors. Clustering and activation of integrin receptors
induces cytoskeletal reorganization and formation of focal
adhesions followed by activation of specific focal adhesion
kinases (FAK). Activation of FAK then activates signaling
pathways such as mitogen activated protein kinase (MAPK)
and phosphatidylinositol 3-kinase (PI3K) pathways, altering the
expression of cell cycle regulatory proteins and promoting
proliferation [32—37]. Collagen matrices can also directly affect
cell growth through interactions with discoidin domain receptors
(DDRs) independent of cell spreading and cytoskeletal
changes [37-39].

The fact that ULs are fibrotic tumors containing an
abundance of disorganized ECM collagen [7,17] led us to
investigate the pathogenesis of these tumors in the context of
how these different forms of ECM collagen modulate LSMC
behavior and how they interact with PDGF, a growth factor that
is abundantly expressed in ULs. Using an in vitro model system
of ECM collagen, we examined the interaction of cultured
LSMCs with monomeric unpolymerized collagen films and
fibrillar polymerized collagen gels in modulating cellular
morphology, cell proliferation, cell cycle progression, and the
associated signaling pathways.

Materials and Methods

Tissue collection and cell culture

Leiomyoma samples were obtained from premenopausal
women undergoing hysterectomy at either Carle Foundation
Hospital (Urbana, IL) or Feinberg School of Medicine,
Northwestern University (Chicago, IL). Permission to use these
samples was approved by the Institutional Review Board at the
University of lllinois at Urbana-Champaign and Northwestern
University. All samples were obtained after receiving written
informed consent from the patients. Tissue samples were
manually minced and then digested in Dulbecco Modified
Eagle’s Medium (DMEM; Biowhittaker, Walkersville, MD)
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containing 1.5 mg/ml Collagenase for 4-6 hours at 37 degrees.
Once digested, cells were cultured in DMEM medium
containing 10% serum [DMEM supplemented with 5% FBS
(Hyclone, Logan, UT), 5% BCS (Hyclone, Logan, UT), and
10,000 U pen/ml penicillin (Biowhittaker, Walkersville, MD),
10,000 pg strep/ml streptomycin(Biowhittaker, Walkersville,
MD), and 200 mM L-glutamine(Biowhittaker, Walkersville, MD)
from here on called 10% medium] at 37°C in a humidified
atmosphere of 95% air and 5% CO,

Collagen matrix preparation

PureCol collagen solution (Advanced Biomatrix, San Diego,
CA) was diluted to 1.0 mg/ml with 0.1 M acetic acid at room
temperature. For monomeric collagen coating, plastic dishes
were incubated with 0.5 M acetic acid for 20 minutes at room
temperature, rinsed once with distilled water and coated with
diluted collagen under sterile conditions for 4-6 hours. For
fibrillar collagen coating, diluted collagen was neutralized with
10x PBS, 0.1 N NaOH and 0.1 N HCI on ice. Plastic dishes
were coated with fibrillar collagen and incubated at 37 degrees
overnight for the gel to polymerize. Coated dishes were rinsed
with PBS several times before seeding cells.

Cell proliferation assays and flow cytometric analysis

To obtain the growth curve of LSMCs, equal numbers
(100x10°%) of trypsinized LSMCs from confluent dishes were
cultured in 10% serum-containing medium on different
matrices. Cells were trypsinized and counted every other day
using a hemocytometer. We also used thymidine incorporation
assays to measure the proliferation of LSMCs on different
matrices in the absence or presence of PFGF-AB (R&D
Systems, Minneapolis, MN). Briefly ,LSMCs were cultured at
equal numbers (2000 cells) in 96-well plates coated with
monomeric or fibrillar collagen. Cells from 3 patients with 6
experimental replicates per plate were used. For cell cycle
synchronization, LSMCs at 90% confluence were serum
starved for 24 hours and then treated with 10% serum medium,
medium with no serum, or medium containing 10 ng/ml PDGF
for 24 hours. Cells were labeled with 0.01 pCi/pl tritiated
thymidine (PerkinElmer, Waltham, MA) for 18 hours after
treatment. Cells were then trypsinized and harvested on filter
papers for reading in a Wallace Microbeta liquid scintillation
counter (Oy, Finland).

For flow cytometric analysis, leiomyoma cells were grown to
confluency in 10% serum-containing medium. Once confluent,
cells were washed with PBS and then placed in serum-free
medium and serum starved for 24hrs. Following serum
starvation, cells were washed and plated again in serum free
medium or in serum free medium containing 10 ng/ml PDGF
for 24hrs. At this time cells were harvested with 0.25% trypsin/
EDTA, washed with PBS and fixed in 70% ethanol at -20°C
overnight. Fixed cells were centrifuged and washed with PBS
and stained with a staining solution containing 2 mM MgCI2, 1
mg/ml propidium iodine (Sigma, St. Louis, MO) and 1 mg/mi
RNase A (Roche, Indianapolis, MN)/PBS overnight at 4°C.
Stained cells were taken and analyzed for cell cycle phase
distributions in a FACScan flow cytometer (Becton Dickinson,
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Franklin Lakes, NJ). All data were analyzed using FCS express
v4 software (De Novo software, LA, CA).

Cell adhesion assay

Adhesion of LSMCs to different matrices was compared in
cells seeded onto either plastic, monomeric collagen or fibrillar
collagen coated dishes. Three hours after seeding, dishes were
gently rinsed with PBS to remove unattached cells and imaged
to count the number of attached cells to each matrix. Adhesion
assays were performed on cells from three different patients
with two experimental replicates for each patient. The numbers
of attached cells in 10 fields of 20 mm? surface area were
averaged and represented as mean + SEM.

Immunofluorescence microscopy

Immunofluorescence staining of cells was carried out by first
fixing cells in 4% paraformaldehyde for 30 minutes at room
temperature. Following three washes in PBS, cells were
permeabilized in 0.1% triton X-100 for 15 minutes. Dishes were
next incubated in ultra-cold methanol for 15 minutes at -20°C
and washed for half an hour before blocking by Image-iT FX
Signal FX Enhancer (Invitrogen, Carlsbad, CA) for 30 minutes.
Following a PBS wash, cells were incubated with 1:100
dilutions of primary antibodies against vinculin (Sigma, St.
Louis, MO), pFAK (Cell Signaling; Danvers, MA), and integrin
a2 (Santa Cruz Biotechnology, Santa Cruz, CA) for 2 hours at
room temperature. A 1:200 dilution of secondary antibodies
conjugated with different fluorophore antibodies (Invitrogen,
Carlsbad, CA) was applied to incubating cells for 2 hours. After
three washes with PBS, cells were stained with 10 ug/ml DAPI
(Invitrogen, Carlsbad, CA) for 15 minutes. Dishes were cured in
Prolong Gold (Invitrogen, Carlsbad, CA) for 24 hours in
darkness before imaging with a Zeiss LSM710 microscope
(Oberkochen, Germany).

Immunoblotting

LSMCs were cultured on different matrices and treated with
or without protein inhibitors (Sigma, St. Louis, MO) prior to
treatment with 10 ng/ml PDGF. At the end of the treatment
time, cell lysates were collected using RIPA lysis buffer
containing protease cocktail inhibitors (Roche, Indianapolis,
IN). BCA assays (Thermo Scientific; Rockford, IL) were
performed on cell lysates to determine protein concentrations.
Proteins were loaded onto 4-20% gradient SDS-PAGE gels
(Thermo Scientific; Rockford, IL) under reducing conditions
before being transferred to nitrocellulose membranes. Primary
antibodies [anti-phospho-ERK1/2 (1:1000; Cell Signaling;
Danvers, MA), anti-ERK1/2 (1:1000; Cell Signaling; Danvers,
MA), phospho PDGF-Rp (1:500; Cell Signaling; Danvers, MA),
anti-PDGF-R (1:500; Cell Signaling; Danvers, MA), phospho-
AKT (1:1000; Cell Signaling; Danvers, MA). AKT (1:1000; Cell
Signaling; Danvers, MA), RhoA (1:1000; Cell Signaling;
Danvers, MA), GAPDH (1:2000; BD Transduction Laboratories,
Lexington, KY), p21 Waf1/Cip1 (1:2000; Cell Signaling;
Danvers, MA); p27 Kip1 (1:1000; Cell Signaling: Danvers, MA);
cyclin E (1:1000; Cell Signaling: Danvers, MA); and cyclin D2
(1:1000; Cell Signaling: Danvers, MA).] were incubated at 4°C
overnight. Incubation with HRP-conjugated secondary antibody
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(Cell Signaling; Danvers, MA) was for 60 min at room
temperature (1:10,000) and HRP signal detection was carried
out with Super Signal West Pico Chemiluminescent Substrate
kit (Thermo Scientific; Rockford, IL). Membranes were first
probed with anti- phosphorylated protein antibody and then
stripped and re-probed with anti-total protein antibody as a
loading control. ImageJ software from the National Institutes of
Health was used for densitometric analysis.

Statistical analysis

Regression analysis was performed to estimate the growth
rate of LSMCs. Experimental variability between treatments/
matrices was determined by an analysis of variance (ANOVA)
model. To determine statistical differences between groups,
post-hoc orthogonal comparisons were applied. Values are
expressed as mean + SEM and p< 0.05 was considered
statistically significant. STATA SE (Version 11.2) software was
used for conducting all statistical analyses.

Results

Morphology of LSMCs on different collagen matrices

To understand the interaction of LSMCs with different
collagen matrices, we cultured primary LSMCs on plastic,
monomeric collagen or fibrillar collagen-coated dishes and
examined cell morphology 48 hours later. LSMCs on
monomeric collagen-coated dishes displayed a spindle-like
morphology typical of SMCs that was similar to LSMCs on
control, plastic dishes (Figure 1A & B). In contrast, LSMCs on
fibrillar collagen-coated dishes had a star-like morphology, with
reduced cellular size and numerous cellular projections (Figure
1C). The star-like morphology was found to be reversible.
When the fibrillar coating was removed from one section of the
culture dishes by scraping with a sterile, plastic pipette tip the
LSMCs returned to their spindle-like morphology and grew
similarly to cells on plastic and monomeric collagen matrices
(Figure 1D). Growth of LSMCs on fibrillar collagen was also
slower than cells on plastic or monomeric collagen-coated
dishes as observed by the differences in confluency of dishes
48 hours after initial seeding.

Proliferation of LSMCs on different collagen matrices

To quantify LSMC proliferation on different collagen
matrices, growth curves using individual cell counts and
tritiated thymidine incorporation assays were performed.
Growth curves for LSMCs cultured on collagen matrices in the
presence of 10% serum showed that both monomeric and
fibrillar collagen were permissive to cell proliferation. However,
the rate of LSMC proliferation on monomeric collagen was
significantly greater than for LSMCs -cultured on fibrillar
collagen (Figure 2A). The doubling time of LSMCs on
monomeric collagen was 1.5 days compared to 6 days for cells
cultured on fibrillar collagen. To confirm that differences in
growth rates were not due to different adhesive properties of
the cells on monomeric and fibrillar collagen, LSMCs were
seeded on these matrices and allowed to attach for three hours
before washing the unattached cells and counting the
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Figure 1. Morphology of LSMCs changes on different collagen matrices. Equal numbers of LSMCs were cultured on plastic
(A), monomeric (B) or fibrillar (C) collagen-coated dishes in serum containing medium for 48 hours and then imaged. Three hours
after seeding, the fibrillar collagen coating of a dish was partially removed to expose LSMCs to the plastic matrix (D) (Bars 200 pm

in main figures; 50 uym in inserts).
doi: 10.1371/journal.pone.0075844.g001

remaining attached cells. Results showed that there was no
difference between the two collagen matrices in adhesion
efficiency (Figure 2B) that could account for the difference in
rate of cell proliferation. Therefore, the two forms of collagen
differentially modulate the growth of LSMCs independent of
their adhesion properties.

LSMCs within leiomyoma tissues are exposed to many
growth factors including PDGF which can exist bound to the
ECM. We next examined whether the interaction of LSMCs
with ECM collagen alters the way these cells respond to the
stimulatory effects of PDGF. Basal and PDGF-stimulated
proliferation of LSMCs cultured on either monomeric or fibrillar
collagen matrices for 24 hours was measured. Results showed
that, similar to our growth curve analysis, both matrices were
permissive to proliferation of LSMCs in the presence or
absence of PDGF with monomeric collagen having a significant
potentiating effect over fibrillar collagen (Figure 3).
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Interestingly, PDGF treatment further increased LSMC
proliferation on monomeric collagen compared to plastic
suggesting a synergistic effect between the monomeric,
unpolymerized collagen and PDGF. LSMCs grown on fibrillar
collagen were responsive to the stimulatory effects of PDGF
(40% increase) although to a lesser extent than cells grown on
monomeric collagen (60% increase) when compared to non-
stimulated cells.

To determine whether the stimulatory effects of monomeric
collagen on the growth of LSMCs was the result of cell cycle
modulation, cells were cultured on plastic or monomeric
collagen-coated dishes for 24 hours in the presence or
absence of PDGF and the distribution of DNA content was
measured by flow cytometry (FACS). Due to the difficulties in
separating LSMCs from the fibrillar collagen gels we were
unable to obtain single cell suspensions required for FACs
analysis for this treatment group. In support of the proliferation
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Figure 2. Growth, but not attachment of LSMCs is different on collagen matrices. (A) LSMCs were cultured on plastic,
monomeric, or fibrillar collagen-coated dishes in serum-containing medium for 6 days. At the end of each day cells were trypsinized
and counted using a hemacytometer. Rate of growth on each matrix was calculated using linear regression. (B) LSMCs cultured on
different matrices were gently washed three hours after seeding and imaged to count the number of attached cells to each matrix.
Statistical significance between matrices is indicated by asterisk (n=3, p<0.05).

doi: 10.1371/journal.pone.0075844.9g002
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Figure 3. Basal and PDGF-stimulated proliferation of LSMCs are different on collagen matrices. Cell-cycle synchronized
LSMCs were cultured on 96-well plates coated with different forms of collagen in medium with or without PDGF(10 ng/ml) for 24
hours. At the end of the treatment, cell proliferation was measured with thymidine incorporation assays. Statistical significance of the
cellular growth rate between matrices within each treatment group as well as between stimulated and non-stimulated cells are

indicated by asterisks (n=3, p<0.05).
doi: 10.1371/journal.pone.0075844.g003

studies on plastic and monomeric collagen, FACs analysis
showed that treatment of LSMCs with PDGF increased the
percentage of cells in the S phase of the cell cycle compared to
non-stimulated cells (Figure 4). Culture of LSMCs on
monomeric collagen further increased the progression of cells
through the cell cycle. To explain the change in cell cycle
progression we analyzed p21 (an inhibitor of cell cycle
progression) expression by immunoblotting of LSMCs cultured
on plastic, monomeric or fibrillar collagen matrices. When
normalized to GAPDH expression, p21 expression was lowest
in LSMCs cultured on monomeric compared to plastic or
fibrillar collagen matrices (Figure 5). Therefore, monomeric
collagen may promote cell cycle progression by down-
regulating endogenous levels of p21 thereby removing the
“regulatory brake” for cellular proliferation. We also examined
expression of p27, cyclin E and cyclin D2 but were unable to
show a consistent effect of the different matrices on these cell
cycle regulatory proteins (data not shown). We did not see a
difference in p21 levels in LSMCs cultured on plastic or fibrillar
collagen even after stimulation with PDGF (Figure 5.). There
are two explanations for these findings. First, PDGF stimulation
of cell proliferation (Figure 4.) may not involve regulation of p21
but rather stimulation of LSMCs to move through the cell cycle
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by possibly upregulating other CDK proteins and second,
fibrillar collagen may not inhibit LSMC proliferation through p21
but through other cell cycle inhibitors.

Localization of cytoskeletal F-actin and focal adhesion
components in LSMCs cultured on different collagen
matrices

ECM exerts its effects on cells through the activation of
several mediatory proteins including integrins, FAK and vinculin
leading to the assembly of cytoskeletal components. To
investigate whether the differential proliferative responses of
LSMCs cultured on monomeric and fibrillar collagen matrices
occur through such mediatory proteins, we immunostained
LSMCs cultured on collagen matrices for a2B1 integrin,
phospho-FAK (pY397), vinculin, and F-actin stress fibers.
Results showed no difference in abundance or clustering of
a2B1 integrin across matrices whereas LSMCs cultured on
monomeric  collagen  displayed abundant  activation
(phosphorylation) of FAK, specifically at the sites of matrix
adhesion (Figure 6). In contrast, LSMCs cultured on fibrillar
collagen showed minimal FAK phosphorylation at Y397
throughout the cell cytoplasm. Localization of vinculin in
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Figure 4. Effect of ECM collagen on cell cycle progression in LSMCs. Leiomyoma cells were treated with serum free (SF)
medium or PDGF (10ng/ml) for 24 hours on either plastic or monomeric collagen matrices and then assayed by FACs analysis for
cell cycle phase. 10,000 events were counted per cell line and the percent of cells in each phase is expressed as total number of
diploid cells. Statistical analysis by orthogonal contrast statements was performed between treatments in the S phase of the cellular
cycle to address changes in cellular proliferation. Asterisks denote statistical significance of the indicated comparisons (n=6;

p<0.05).
doi: 10.1371/journal.pone.0075844.9g004

LSMCs on monomeric collagen showed a punctate pattern
which differed from the more widespread localization observed
in cells grown on fibrillar collagen (Figure 6). Formation of F-
actin stress fibers in LSMCs grown on monomeric collagen was
quite pronounced with distinct lines of central and peripheral
fibers compared to the presence of thin, lightly stained
peripheral fibers in cells grown on fibrillar collagen (Figure 6).

Activation of MAPK signaling pathway

To elucidate the signaling mechanisms involved in the
interaction of collagen matrices with LSMCs, we investigated
MAPK, AKT and Rho-GTPase signaling which have been
shown to be associated with the effects of ECM in a variety of
cell types. LSMCs were cultured on plastic, monomeric or
fibrillar collagen-coated dishes and stimulated with 10 ng/ml
PDGF for 0, 10, 30, and 60 minutes. Results showed that while
there was no significant difference in the activation of RhoA
across matrices (Figure 7A), both AKT (Figure 7B) and ERK1/2
(Figure 8A) were strongly activated as early as 10 minutes after
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PDGF stimulation in LSMCs cultured on all matrices. AKT
activation on all matrices persisted over time, whereas
activation of ERK1/2 on plastic and monomeric collagen
matrices returned to basal levels within an hour but persisted in
LSMCs cultured on fibrillar collagen matrix. We next looked at
the activation of PDGFR on matrices. The basal level of
PDGFR phosphorylation (time 0) was lower in LSMCs cultured
on the fibrillar collagen. However, a robust activation of PDGFR
was observed on all matrices within 10 minutes in response to
PDGF treatment (Figure 8B). This activation was significantly
stronger in cells cultured on monomeric collagen than on
plastic matrix, but not fibrillar collagen. Furthermore, the
duration of this phosphorylation was longer on monomeric
collagen than for LSMCs cultured on the other matrices.

We next determined the specificity of PDGF activation of the
MAPK signaling pathway in LSMCs. LSMCs cultured on plastic
were pre-treated with inhibitors specific to PDGFR and
ERK1/2, AG1296 and PD98059 respectively, for two hours
followed by a 10 minute stimulation with 10 ng/ml PDGF.
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Figure 5. Effect of ECM collagen on p21 expression in LSMCs. Leiomyoma cells were treated with serum free (SF) or PDGF
(10ng/ml) for 24 hours on either plastic, monomeric or fibrillar collagen matrices. Cell lysates were subjected to SDS-PAGE and
immunoblotted for p21and GAPDH expression. Densitometry values were normalized to GAPDH expression and compared
amongst all treatments and matrices. Statistical analysis by orthogonal contrast statements was performed comparing each
treatment within each matrix and also comparing each treatment across all matrices. Statistical significance for all comparisons is

indicated by asterisks (n=4; p<0.05).
doi: 10.1371/journal.pone.0075844.g005

Results showed that both inhibitors could significantly reduce
the phosphorylation of ERK1/2(Figure 8C), suggesting the
specificity of the MAPK signaling activation on matrices.

Discussion

In the present study, we investigated interactions of primary
human uterine LSMCs with different collagen matrices
representing normal and fibrotic uterine SMCs in the absence
or presence of the mitogenic growth factor PDGF. In our
model, we used non-polymerized monomeric collagen matrix to
mimic the ECM environment in ULs where SMCs continuously
synthesize nascent collagen and collagen is also subjected to
MMP-mediated degradation leading to a higher proportion of
non-cross linked collagen that is laid down in a disorganized
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manner [7,17]. Polymerized collagen gels were used to mimic
the highly ordered ECM in normal myometrial tissue. Our
results showed that LSMCs cultured on monomeric non-
crosslinked collagen showed increased proliferation, increased
progression through the cell cycle, increased phosphorylation
of FAK, decreased expression of the p21 cell cycle inhibitor,
and altered cytoskeletal organization and activation of the
MAPK signaling pathway when compared to cells grown on
fibrillar collagen gels. These findings are similar to studies in
other cell types where distinct morphologies and biological
functions were observed for cells grown on monomeric versus
fibrillar forms of collagens [20,21,40-42].

Cell shape and extracellular environment have been
recognized as major determinants of cell behavior and function
[43-48]. Cells can sense the degree of extension or
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compression in their surroundings to modulate specific cell
processes that affect cell survival, differentiation, or apoptosis
[43,49-54]. Mammary epithelial cells lose their epithelial
morphology once matrix rigidity decreases below a specific
threshold [55,56]. Similarly, vascular SMCs obtain a more
proliferative phenotype when cultured on rigid collagen films
[57]. We did not measure the exact mechanical force exerted
on LSMCs from monomeric and fibrillar collagen matrices.
However, the differential growth of LSMCs on the gelatinous,
pliable form of the fibrillar collagen compared to the more rigid
monomeric collagen coating suggests that LSMCs sense
different mechanical cues on different collagen matrices. Both
of these factors - matrix rigidity and pliability- are known to
change the degree of mechanical stress exerted on cells and
hence alter cell phenotype and function [35]. It is, therefore,
possible that uterine LSMCs have a higher rate of proliferation
because they are being exposed to greater amounts of
monomeric or degraded collagen whereas in normal
myometrial tissue, proper synthesis, assembly and turnover of
collagen molecules provide cells with timely cues for
quiescence or proliferation.

Mechanical stress exerted upon cells through the ECM in
both normal and diseased tissues is transmitted through
molecular players such as integrin receptors, focal adhesions,
cytoskeletal proteins, and signaling pathways including MAPK,
PI3K/AKT, and Rho-GTPase [58-60]. We observed increased
phosphorylation of FAK which is regulated by the physical
properties of the matrix [61], supporting the active formation of
focal adhesions in LSMCs cultured on monomeric collagen
matrix. It is possible that such activation, along with the
pronounced expression and clustered placement of vinculin
and F-actin stress fibers observed on the monomeric collagen,
could lead to hyper-activation of the MAPK signaling pathway
which in turn can cause an increase in the rate of cell
proliferation on this matrix. In addition, involvement of Rho-
GTPases other than RhoA, as well as integrins other than a231
integrin, should be considered as other contributing factors to
the observed differences between monomeric and fibrillar
collagen matrices.

The decreased level of activation or clustered localization of
vinculin, FAK, and F-actin stress fibers in LSMCs cultured on
fibrillar collagen observed in this study could explain the state
of quiescence or decreased cell proliferation in LSMCs grown
on this matrix. In fact, potent suppression of focal adhesion
formation, as indicated by altered vinculin localization, has
been linked to changes in gene expression and cell function in
vascular SMCs cultured on polymerized fibrillar collagen [62].
Cell cycle arrest at the G0/G1-S and G2-M transition in cells
cultured on fibrillar collagen has also been linked to alterations
in cell proliferation [20,22,37]. In our study, we found that
LSMCs cultured on monomeric collagen had enhanced
progression from the G1-S phase of the cell cycle and down-
regulation of the cyclin inhibitor p21 but not p27. Indeed,
vascular SMCs have also been shown to have lower
expression of p21 when cultured on monomeric collagen [22].
A similar phenomenon has also been reported in lung
mesenchymal cells cultured on monomeric collagen as these
had higher levels of cyclin E1 and CDK2 mRNA along with
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increased cell proliferation when compared to cells cultured on
fibrillar collagen [42]. Other studies have reported that LSMCs
escape G1/GO arrest through up-regulation of cyclins D & G1
[63,64]. In addition, transfection of LSMCs with cyclin G1
antisense oligos led to increased expression of both p21 and
p27 cyclin-dependent kinase inhibitors and induction of
apoptosis [64]. Leiomyoma cells also showed increased
proliferation in response to fenvalerate due to down-regulation
of the cyclin inhibitor p27 compared to normal uterine
myometrial cells [65].

In ULs an increased presence of and response to growth
factors such as PDGF have been documented [66—68] along
with alterations in EMC collagens. The results of our
proliferation studies support such findings but the observed
synergistic effect of monomeric collagen in augmenting the
stimulatory effects of PDGF in LSMC proliferation, which was
not present in cells cultured on fibrillar collagen, is novel.
Indeed, similar observations in other cell types including
vascular SMCs suggest the presence of a cross-talk between
collagens and PDGEF in regulating cell proliferation [31,69-76].
Moreover, stimulation of LSMCs with PDGF resulted in the
activation of the MAPK signaling pathway on both collagen
matrices but in distinct ways. The dynamics of PDGFR
activation were similar on both monomeric and fibrillar collagen
matrices in response to PDGF treatment. PDGFR activation
upon PDGF stimulation was rapid and transient in LSMCs on
both matrices. However, the presence of PDGFR activation in
the absence of any PDGF stimulation for LSMCs grown on
monomeric collagen suggests interplay between ECM/collagen
receptors and PDGF/PDGFR leading to differential modulation
of downstream molecules such as FAK as discussed above.

Activation of PI3K/AKT or JAK/STAT in cells grown on
different matrices has been reported. In hepatocytes matrix
stiffness enhanced ERK1/2, protein kinase B (PKB/AKT) and
signal transducer and activator of transcription-3 (STAT3)
phosphorylation and resulted in enhanced mitogenic signaling
in response to hepatocyte growth factor [77]. Similar activation
of MAPK and AKT pathways was observed in mesenchymal
stem cells cultured on different matrices [58]. While we did not
observe the involvement of the AKT pathway or a1 integrin in
the interaction of LSMCs with collagen matrices, there remains
the question of whether other signaling pathways and collagen
receptors may play a role in the differential response of LSMCs
on specific collagen matrices.

We also observed different activation patterns for ERK1/2 on
monomeric collagen versus fibrillar collagen matrix. Rapid
activation of ERK1/2 on monomeric collagen nicely followed
the activation of PDGFR in response to PDGF treatment. In
contrast, we observed persistent ERK1/2 activation in LSMCs
cultured on fibrillar collagen in response to PDGF stimulation.
The duration of ERK1/2 activity in response to growth factors
has been linked to differential regulation of cellular responses
and cell fate in a cell-type dependent manner. Treatment of
PC12 pheochromocytoma cells with nerve growth factor
caused sustained activation of ERK1/2 for 2-3 hours leading to
cell differentiation whereas epidermal growth factor induced a
transient ERK1/2 activation required for cell proliferation
[78,79]. On the other hand, mitogenic stimulation in fibroblasts
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contributes to sustained ERK1/2 activation which in turn
maintains decreased expression levels of anti-proliferative
genes [80,81]. Mechanisms involved in transient or sustained
activation of ERK1/2 are known to be modulated by both
spatio-temporal regulation as well as diverse chemical and
mechanical stimuli [82,83]. Activation of ERK1/2, in general,
leads to progression through the cell cycle. However, there are
several reports indicating that long term activation of ERK1/2
promotes cell differentiation or even apoptosis [84—86]. Such
effects are mediated by upregulation of p21 and coordinated
through PI3K/AKT [82,87-89]. In addition, differential sensitivity
to the duration of ERK1/2 activity, stimulus and phosphatase-
specific mechanisms involved in MAPK regulation, along with
the involvement of the non-catalytic site in ERK1/2 may play a
role in the pattern of ERK1/2 activation [90-92]. The
involvement of any or all of the above-mentioned factors in
LSMCs stimulated with PDGF is of importance considering that
these cells were also exposed to different ECM environments
and mechanical cues. A similar convergence of chemical and
physical signaling by PDGF and different forms of collagen was
recently reported for vascular SMCs [41]. Future investigations
to identify the underlying molecular mechanisms using MAPK
specific inhibitors or mutants in LSMCs are warranted.

In conclusion, our significant findings on the characterization
of LSMCs cultured on different forms of collagen as a simple
model to better replicate the ECM environment in normal
myometrium and fibrotic leiomyoma tissue were two fold. First,
the findings demonstrate the importance of carefully defining
the culture systems for studying specific cell functions. This
study along with others, using various cell lines including
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