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Abstract

Bone has long been established to be a highly mechanosensitive tissue. When subjected to mechanical loading, bone
exhibits profoundly different anabolic responses depending on the temporal pattern in which the stimulus is applied. This
phenomenon has been termed temporal processing, and involves complex signal amplification mechanisms that are largely
unidentified. In this study, our goal was to characterize transcriptomic perturbations arising from the insertion of
intermittent rest periods (a temporal variation with profound effects on bone anabolism) in osteoblastic cells subjected to
fluid flow, and assess the utility of these perturbations to identify signaling pathways that are differentially activated by this
temporal variation. At the level of the genome, we found that the common and differential alterations in gene expression
arising from the two flow conditions were distributionally distinct, with the differential alterations characterized by many
small changes in a large number of genes. Using bioinformatics analysis, we identified distinct up- and down-regulation
transcriptomic signatures associated with the insertion of rest intervals, and found that the up-regulation signature was
significantly associated with MAPK signaling. Confirming the involvement of the MAPK pathway, we found that the
insertion of rest intervals significantly elevated flow-induced p-ERK1/2 levels by enabling a second spike in activity that was
not observed in response to continuous flow. Collectively, these studies are the first to characterize distinct transcriptomic
perturbations in bone cells subjected to continuous and intermittent stimulation, and directly demonstrate the utility of
systems-based transcriptomic analysis to identify novel acute signaling pathways underlying temporal processing in bone
cells.

Citation: Worton LE, Ausk BJ, Downey LM, Bain SD, Gardiner EM, et al. (2013) Systems-Based Identification of Temporal Processing Pathways during Bone Cell
Mechanotransduction. PLoS ONE 8(9): e74205. doi:10.1371/journal.pone.0074205

Editor: Ryan K. Roeder, University of Notre Dame, United States of America

Received April 30, 2013; Accepted July 26, 2013; Published September 11, 2013

Copyright: � 2013 Worton et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors would like to acknowledge financial support from the University of Washington Department of Orthopaedics and Sports Medicine (RYK),
the National Institutes of Health (SS: AR056235, TSG: AR056652), and the Sigvard T. Hansen, Jr. Endowed Chair (TSG). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ronkwon@uw.edu

Introduction

Temporal processing is the process by which cells perceive

temporal variations of an applied stimulus. While this process is

most commonly associated with neural functions such as auditory

processing [1], a growing body of evidence suggests that diverse

cell types exhibit temporal processing when exposed to a broad

range of stimuli. For example, the literature is replete with cases in

which the insertion of rest periods during administration of a

particular stimulus results in enhanced or even opposite (i.e.,

sensitization versus tolerance) effects, despite the same magnitude

of stimulus being applied [2,3,4,5,6]. Interestingly, this phenom-

enon has been observed in response to diverse signals including

pharmacological [3], electrophysiological [4], biochemical [5], and

mechanical stimuli [6], suggesting the existence of conserved

signaling mechanisms that enable temporal processing at the

cellular level.

Bone has long been established to be a highly mechanosensitive

tissue, capable of undergoing rapid and robust bone formation in

response to microscopic deformations [7]. Given that mechanical

loading is one of the primary determinants of bone strength, the

mechanotransduction pathway is widely recognized as a promising

target for new bone therapeutic strategies [8,9,10]. During

mechanotransduction, bone exhibits temporal processing in a

manner that profoundly affects its anabolic response to mechanical

loading [6,11,12,13,14]. For example, it has been previously

shown that selectively removing mechanical signals via insertion of

10 s rest intervals has the potential to transform a low magnitude,

non-osteogenic cyclic loading regimen into a potent anabolic

signal in mice, despite a ten-fold decrease in the number of load

cycles [6]. In neural research, this form of temporal processing is

referred to as temporal unmasking [15], i.e., heightened percep-

tion of a stimulus when presented in a particular temporal pattern.

Though significant efforts have been made to elucidate the

molecular underpinnings of temporal processing in bone, this

phenomenon remains poorly understood. For example, only one

pathway (enhanced intracellular Ca2+ mobilization [16,17,18,19])

has been implicated in this process in the last twenty years.

Investigation of the mechanistic basis of temporal processing

presents several unique and fundamental challenges. For example,

this phenomenon involves the coordinated actions of multiple

signaling pathways, with the predominance of a particular

pathway dictated by the temporal pattern of stimulation [12]. In

accordance with this, in bone, both short- (on the order of seconds)

and long- (on the order of tens of minutes to hours) duration rest
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intervals have been found to enhance loading-induced adaptation,

with distinct molecular mechanisms suggested to underlie their

anabolic effects [12]. The potential involvement of multiple

pathways makes the systematic interrogation of this process highly

challenging, as it requires probing a spectrum of signaling

pathways within a single experimental framework. A second

challenge is the fact that temporal processing relies on the

amplification of subtle variations in signaling network dynamics.

Such amplification can occur, for example, through the cumula-

tive effect of many small perturbations in signaling dynamics as

they are propagated through an interconnected signaling network.

In this case, at the level of gene expression, acute cell responses

arising from temporal variations in stimulation may be very subtle,

with the causal pathways driving these small transcriptional

changes unapparent when observed in a single gene in isolation.

In this study, our goal was to characterize transcriptomic

perturbations arising from the insertion of intermittent rest periods

in bone cells subjected to fluid flow, and assess the utility of these

perturbations to identify signaling pathways that are differentially

activated by this temporal variation. At the level of the genome, we

found that the common and differential alterations in gene

expression arising from the two flow conditions were distribution-

ally distinct, with the differential alterations characterized by many

small changes in a large number of genes. Using bioinformatics

analysis, we identified distinct up- and down-regulated gene

expression signatures emerging from the insertion of rest intervals,

and found that the up-regulation signature was significantly

associated with MAPK signaling. Finally, we validated this

observation by demonstrating that rest intervals significantly

elevated flow-induced activity of the MAPK ERK1/2 by enabling

a second spike in phosphorylation that was not observed in

response to continuous flow. Together, these studies are the first to

characterize transcriptomic perturbations in bone cells subjected

to continuous and intermittent stimulation, and directly demon-

strate the utility of systems-based transcriptomic analysis to

identify novel acute signaling pathways underlying temporal signal

processing in bone cells.

Materials and Methods

Cell Culture and Fluid Flow
MC3T3-E1 osteoblastic cells (clone 14, passage 9–12) were

cultured on tissue culture plates in growth media (a-MEM with

10% FBS) at 37uC and 5% CO2 [20]. Seventy-two hours prior to

experimentation, cells were seeded into 6-well plates (Corning) at a

density of 2.56104 cells per well in 2 ml of growth media. For flow

experiments, plates were carefully transferred to an orbital shaker

(VWR, DS-500) placed in an incubator at 37uC and 5% CO2 one

hour prior to experimentation. To generate flow, plates were

subjected to orbital shaking (2.2 Hz), which resulted in a rotating

wave on the fluid surface and dynamic shear stress on the bottom

of the well [21]. While the use of parallel plate chambers has

several advantages over the use of orbital shaking for the

generation of fluid flow (e.g., the ability to apply a well-defined

shear stress and to decouple flow velocity from flow frequency

[22]), we used orbital shaking to alleviate the potential for

inadvertent activation of acute signaling pathways that can occur

during loading of cells into the flow chambers [23]. Shear stress

was estimated using an approximate relation for the maximal wall

shear stress [24]:

t~a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gr 2pfð Þ3

q
ð1Þ

where t is the shear stress, a is the orbital radius, g is the dynamic

viscosity, r is the fluid density, and f is the orbital frequency. Using

appropriate values for our experimental setup (f=2.2 Hz,

a=0.95 cm, g=0.01P, and r=1.0 g/ml, see Fig. 1A), we

computed t to be ,0.5Pa. It is important to note that Eq. 1 is

only a first-order approximation of the shear stress. This is evident

by the fact that shear stress is expected to depend on fluid height

above the cell surface as well as the radius of the well [25], which

are not accounted for in Eq. 1. Given that a peak shear stress of

,0.1Pa has been previously found experimentally using identical

shaking parameters to those used in this study [26], we estimate

that peak shear stresses in our system were in the range of

0.1,0.5Pa.

Real-Time RT-PCR
For real-time RT-PCR, total RNA was extracted using the

RNeasy Mini Kit (Qiagen) according to manufacturer’s protocol.

cDNA was synthesized using Super Script III reverse transcriptase

(Invitrogen), and real-time PCR was performed using SYBR green

and the Applied Biosystems 7900 HT sequence detection system

(see Table S1 for primer sequences for each gene). Gene

expression levels were quantified using the 2‘(2DDCT) method

[27], with either cyclophilin or beta-actin as the housekeeping

gene depending on the experiment.

Western Blot
To assess ERK1/2 activity, total cellular protein was isolated in

RIPA lysis buffer (50 mM Tris-HCl pH 8, 150 mM NaCl, 1%

NP-40, 0.5% sodium deoxycholate, 0.1% SDS), separated by

electrophoresis in 4–12% NuPAGE Bis-Tris gels (Invitrogen, Life

Technologies) and transferred onto PVDF membranes (GE

Healthcare). Membranes were probed with rabbit p-ERK and

ERK antibodies (Cell Signaling Technology, 1:1000). Bound

primary antibodies were detected by chemiluminescent detection

of HRP-conjugated donkey anti-rabbit IgG antibody (GE

Healthcare, 1:5000).

Microarray Analysis
For microarray analysis, RNA was isolated using procedures

identical to those described for RT-PCR. RNA was isolated from

cells exposed to one of three different flow conditions (no flow,

rest-inserted flow, and continuous flow) and one of two different

time points (immediately following cessation of flow and one hour

post-flow). This resulted in six experimental conditions, henceforth

referred to as NF0, NF1, RF0, RF1, CF0, and CF1. For each of the

six experimental conditions, RNA samples were pooled from three

independent experiments (18 individual samples total). Frozen

samples were submitted to the Genetics Core Facility at Benaroya

Research Institute and analyzed using MouseWG-6 v2.0 Beadar-

ray Chips (Illumina). Briefly, RNA integrity was measured using a

Bioanalyzer 2100 (Agilent), and concentration was assessed using a

NanoQuant (Tecan). cRNA was prepared by amplification and

labeling using the Illumina TotalPrep RNA Amplification Kit (Life

Technologies) and hybridized to Beadarray Chips. Beadchips were

scanned on a HiScanSQ (Illumina). Background subtracted data

was generated using GenomeStudio Software (Illumina). Data

were pre-processed by performing quantile normalization, flooring

(raw intensity values less than 10 were set to 10), log2

transformation, and filtering (for each probe, at least one sample

was required to have a p-value of less than 0.01). Of the 45,281

genes/probes within the array, 15,686 (34.6%) were found to meet

pre-processing filtering criteria. For simplicity, we further filtered

out an additional 3716 genes consisting of unnamed RIKEN

cDNA genes and probes in which gene symbols were not available,

Temporal Processing in Bone
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resulting in a final total of 11,970 different genes/probes for

analysis. Background subtracted and pre-processed data have been

submitted to the Gene Expression Omnibus under the series

accession number GSE48177.

Data Transformation
Using gene expression profiles obtained from the six experi-

mental conditions (NF0, NF1, RF0, RF1, CF0, and CF1), we

computed the log-transformed flow/no flow ratios for cells

subjected to continuous and rest-inserted flow for each time point

as.

x0~log2 CF0=NF0ð Þ

x1~log2 CF1=NF1ð Þ

y0~log2 RF0=NF0ð Þ

y1~log2 RF1=NF1ð Þ ð2Þ

The time-averaged values of the continuous and rest-inserted

flow/no flow ratios were computed as.

x~ x0zx1ð Þ=2

y~ y0zy1ð Þ=2 ð3Þ

Data Projection
For analysis, microarray data were projected into a two-

dimensional Euclidean gene expression space denoted as (x,y)

space. Within this space, each gene was projected as a point using

its x and y values as position coordinates. For each point, the x

coordinate measured its time-averaged fold change in expression

following exposure to continuous flow, while the y coordinate

measured the same in response to rest-inserted flow. In this case,

any gene that exhibited identical expression under the two flow

conditions laid along the diagonal y= x. Conversely, for any gene

not on the diagonal, its distance from the line y= x measured its

differential expression arising from the insertion of rest intervals.

To measure this distance, we also defined a second coordinate

system by rotating the original coordinate system by 45u as.

x0~x cos p=4ð Þzy sin p=4ð Þ

y0~x cos p=4ð Þ{y sin p=4ð Þ ð4Þ

For each gene (x,y), its x’ coordinate scaled with distance along

the line y=x and measured its common alterations in expression

under the two flow conditions. In contrast, its y’ coordinate scaled

with distance from the line y= x and measured its differential

expression under the two flow conditions.

Data Analysis
All data analysis was performed in the open source statistical

environment R (http://www.R-project.org/). Hierarchical clus-

tering of real time RT-PCR data was performed using Ward’s

method. Analysis of microarray data was performed using the lumi

package within the Bioconductor framework [28]. Computation of

kernel density estimates and relative kernel density estimates was

performed using the density function and the reldist package,

respectively. GO (Gene Ontology) and KEGG (Kyoto Encyclo-

pedia of Genes and Genomes) analyses were performed using

GATHER (Gene Annotation Tool to Help Explain Relationships)

[29] with mouse as the selected organism and network inference

enabled (Bayes Factor.6 was considered significant). For SPEED

(Signaling Pathway Enrichment using Experimental Data sets)

analysis, we used the default settings (max absolute z-score

percentile: 1%, min percent overlap across experiments: 20%,

Figure 1. In vitro model of temporal processing during bone cell mechanotransduction. (A) Bone cells were subjected to fluid shear stress
by subjecting them to orbital shaking. The schematic depicts quantities in Eq. 1 as well as others expected to influence shear stress. (B) Time course of
COX-2 and CFOS gene expression in bone cells subjected to continuous orbital shaking of different durations. Increased expression is observed after
one hour of flow for both genes, indicating that the shear stress generated via orbital flow was sufficient to stimulate acute gene expression.
***p,0.001 for flow versus no flow. (C) Schematic demonstrating flow profiles for continuous and rest-inserted flow. Rest-inserted flow consisted of
5 min of flow followed by 10 min of rest, repeated four times.
doi:10.1371/journal.pone.0074205.g001
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max expression level percentile: 50%) with all pathways enabled

(FDR ,0.05 was considered significant).

Statistics
One-way ANOVA and Fisher’s PLSD post-hoc tests were

performed for gene expression time course and p-ERK1/2 studies.

Differences in distributions were assessed using a two-sample

Kolmogorov-Smirnov test. Unless otherwise noted, p,0.05 was

considered statistically significant.

Results

Rest-inserted and Continuous Fluid Flow Give Rise to
Acute Variations in Gene Expression
We first implemented and validated an in vitro model of bone

cell mechanotransduction that exhibited acute differences in gene

expression in response to continuous and rest-inserted fluid flow.

Cells were exposed to fluid flow by subjecting them to orbital

shaking [23,24]. We estimated that peak shear stresses in our

system were in the range of 0.1,0.5Pa, slightly lower than the

0.8–3.0Pa predicted to occur on the osteocyte cell process [30,31]

but significantly greater than those on the osteocyte cell body (due

to the larger pericellular fluid space surrounding the cell body

[32,33]). To confirm the capacity for these relatively low levels of

shear to stimulate bone cells, we assessed expression of the early

response genes COX-2 [34] and CFOS [35] immediately

following 1 h, 2 h, or 4 h of flow (Fig. 1B). We found that flow

significantly increased expression of both genes (COX-2: p,0.001;

CFOS: p= 0.003), with peak expression observed following one

hour of flow for both genes (COX-2: p,0.001; CFOS: p,0.001).

Exposure to longer duration flow was not found to be stimulatory.

In particular, following one hour of flow, expression of both genes

returned back to baseline levels, with no significant differences

observed following two hours (COX-2: p = 0.053; CFOS: p= 0.61)

or four hours (COX-2: p = 0.30; CFOS: p= 0.41) of flow.

Based on our results indicating that one hour of orbital flow was

sufficient to stimulate acute gene expression, we next examined the

effects of inserting rest intervals within the flow regimen.

Motivated by previous studies indicating that rest intervals on

the order of tens of minutes enhance bone adaptation to

mechanical loading [12], we subjected cells to either one hour of

continuous flow or rest-inserted flow consisting of four serial

15 min flow bouts, with each bout consisting of 5 min of flow

followed by 10 min of rest (Fig. 1C).

We first performed a targeted RT-PCR screen to assess the

potential for these two flow conditions to give rise to differential

gene expression. In particular, using RNA harvested immediately

following flow cessation, we assessed a panel of 20 genes selected

based on their previous implication in the mechanotransduction

(e.g., CFOS, COX-2, etc.) or bone anabolic (e.g., ALP, OSX, etc.)

pathways. Consistent with previous studies, we found that most of

the genes assessed did not exhibit significant alterations by the

insertion of rest intervals [36]. However, two small gene clusters

exhibited noticeable differences in expression following exposure

to rest-inserted versus continuous flow (Fig. 2A). The first cluster of

genes (DSCR1, TNF-alpha, OPG, and RUNX2) was down-

regulated by continuous flow but not rest-inserted flow; the second

cluster of genes (HO1 and OPN) was up-regulated by rest-inserted

Figure 2. Continuous and rest-inserted fluid flow give rise to acute differences in gene expression that are highly transient. (A) Panel
of 20 genes screened for differential expression immediately following cessation of continuous or rest-inserted flow. Though most of the genes
assessed did not exhibit significant alterations by the insertion of rest intervals, we observed two sub-clusters (highlighted in blue and yellow) that
exhibited detectable differences in expression following rest-inserted and continuous flow. Of these six genes, four were found to be significantly
different under the two flow conditions: OPG, RUNX2, DSCR1, and OPN. (B–D) Time course of gene expression for these four genes following
exposure to one hour of continuous or rest-inserted flow. Differences in expression observed immediately following continuous or rest-inserted flow
were highly transient and tended to be focused within the 0–1 h period follow cessation of the flow. *p,0.05, **p,0.01, ***p,0.001 for rest-inserted
flow vs. continuous flow.
doi:10.1371/journal.pone.0074205.g002
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flow but not continuous flow. Of these six genes, four exhibited

significant differences in expression between the two flow

conditions (OPG: p= 0.002; RUNX2: p,0.05; DSCR1:

p= 0.02; OPN: p= 0.003) and were subsequently subjected to

time course analysis (0 h, 1 h, 3 h, 7 h, and 23 h post-flow). We

found that differences in expression observed immediately

following continuous or rest-inserted flow were not sustained over

long durations. Rather, these changes tended to be highly transient

and focused within the 0–1 h period follow cessation of the flow

regimen (Fig. 2B–2E).

Genome-wide Gene Expression Profiling Reveals
Transcriptomic Variations Arising from the Insertion of
Rest Intervals
We next sought to characterize variations in gene expression in

cells subjected to rest-inserted versus continuous flow at the level of

the genome. To do this, we performed genome-wide gene

expression profiling using microarray analysis. In the time course

studies described above, differential gene expression between

continuous and rest-inserted flow predominated within the 0–1 h

period following flow cessation. In this case, for microarray

analysis we assessed gene expression at two time points:

immediately following cessation of the one hour flow period,

and one hour post-flow. Using the genome-wide gene expression

profiles obtained from the microarray analysis, we computed log-

transformed flow/no flow mRNA ratios for both time points

(denoted as x0, x1, y0, and y1, see Eq. 2), as well time-averaged

quantities (denoted as x and y, see Eq. 3). In our initial analysis, we

found that the variances of the time-averaged quantities were

approximately half those of the non-time averaged quantities, with

s2 =,461023 for the former and s2 =,861023 for the latter.

We interpreted the larger variance in the non-time averaged

quantities to be due to genes that exhibited large fluctuations in

expression between the two time points, which were subsequently

smoothed by time-averaging. To increase the specificity of our

analysis, we used the time-averaged profiles x and y for the rest of

our studies, enabling us to focus our analysis on the identification

of genes that exhibited sustained differences over both time points.

Given that temporal processing relies on the amplification of

subtle variations in signaling network dynamics, we speculated that

temporal variations in fluid flow would give rise to small

perturbations in the expression of a large number of genes rather

than large perturbations in a few genes. To assess this, we first

visualized gene expression in (x,y) space (Fig. 3A). We observed

that the genes were distributed within an approximately elliptical-

shaped region with major axis aligned parallel to y = x. Impor-

tantly, genes appeared to be distributed as a single group of points,

with no discernable points outside of this group that would be

indicative of large perturbations in the expression of a few genes.

We fit the boundaries of the data to an ellipse by computing the

semi-major and semi-minor axes of the ellipse as x’max–

x’min = 0.52 and y’max–y’min = 0.29 respectively. The ellipse

defined the boundaries of an accessible gene expression space

outside of which variations under the two flow conditions was not

possible for the conditions used in this study. Given that x’

measures common gene expression under the two flow conditions,

while y’ measures differential expression, the ellipse aspect ratio of

,1.8 indicated that the range in variations in gene expression

arising from the insertion of rest was approximately half of the

range in common alterations arising from exposure to the two flow

types.

Based on the above results suggesting that the range of

differential expression arising from the insertion of rest intervals

was smaller than the range of common expression induced by flow

exposure (i.e., that the range of y’ was smaller than x’), we next

sought to determine the degree to which the shapes of the

distributions of y’ and x’ were different. In particular, we

speculated that not only would the magnitudes of y’ be smaller

than that of x’, but also that the distribution of y’ would be shifted

toward smaller changes in a larger number of genes. To assess this,

we computed the probability density functions for |x|, |y|, |x’|,

and |y’|. More specifically, we computed the kernel density

estimates for each quantity, resulting in a continuous distribution

of the number of genes associated with each value. In doing so, we

used the absolute values so that decreases and increases in

expression were represented equivalently.

When we first compared the distributions of |x| and |y|, we

found that they were nearly identical (Fig. 3B), with no significant

difference between |x| and |y| as indicated by a Kolmogorov-

Smirnov test (p = 0.15). This suggested that at the level of the

genome, the gene expression distributions in response to rest-

inserted and continuous flow were relatively indistinguishable. In

contrast, when we compared the density functions for |x’| and

|y’|, they were noticeably distinct (Fig. 3C), with the Kolmogorov-

Smirnov test revealing a highly significant difference in the two

distributions (p = 2.2610216). Further analysis revealed three

distinct differences between |x’| and |y’|. First, in regard to

range, the max value of |x’| was approximately twice that of |y’|

(|x’|: 0.55, |y’|: 0.29), consistent with the aspect ratio of ,2 we

observed for the bounding ellipse in (x,y) space. Second, we found

that the average value of |x’| was also approximately twice that of

|y’| (|x’|: 0.047, |y’|: 0.025). This suggested that on average, the

gene expression changes associated with exposure to rest were

roughly half those associated with exposure to flow. Finally, we

found that compared to |x’|, |y’| exhibited a higher density of

genes at the lower quantiles, and lower density of genes at the

higher quantiles. This was more apparent when we computed the

relative density distributions [37] for |y’|/|x’| (i.e., the kernel

density estimate for |y’| divided by that for |x’|) and |y|/|x|

(Fig. 3D). In this case, for |y|/|x|, we found that the relative

distribution was nearly uniform and approximately equal to one.

This was in contrast to the relative distribution for |y’|/|x’|,

which exhibited an inverse relation between relative density and

quantile. In particular, for the lowest quantiles (i.e., genes which

exhibited small changes), the density of |y’| was approximately

twice that of |x’|; for the highest quantiles (i.e., genes which

exhibited large changes), the density of |y’| was approximately

one tenth of the density of |x’|. Collectively, these data suggested

that the gene expression variations arising from the insertion of

rest intervals (i.e., y’) differed from the common alterations under

the two flow conditions (i.e., x’) in three distinct ways: 1) the

magnitudes tended to be much smaller, 2) the range of variation

was more narrow, and 3) the number of genes exhibiting

variations at the upper end of this range was much more limited.

Pathways Analysis of Transcriptomic Perturbations
Implicates MAPK Signaling
The above results suggested that the transcriptomic differences

between continuous and rest-inserted flow were relatively subtle in

magnitude. In this case, to identify biological mechanisms

associated with the small gene expression perturbations arising

from the insertion of rest intervals, we used over-representation

analyses. Our use of this approach was motivated by the fact that

over-representation enables the identification of biological associ-

ations independently of the specific levels of expression of each

gene, making it ideal for investigating phenomena where subtle

transcriptional variations in a large group of genes are expected

[29]. For these analyses, we assessed two gene sets, Group A (120

Temporal Processing in Bone
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genes) and Group B (119 genes), which consisted of genes with the

top 1% of positive and negative values of y’ respectively (Fig. 4A).

Our use of the top 1% as the cutoff was motivated by the fact that

it enabled a group membership of ,100 genes, a group size found

to be efficacious for the pathways analysis tools utilized in this

study [38]. Physically, Group A contained the most differentially

expressed genes which were up-regulated in response to rest,

whereas Group B contained the most differentially expressed genes

which were down-regulated in response to rest.

To characterize the gene functions within Groups A and B, we

first performed GO analysis. Analysis revealed 68 and 127

significant (i.e., Bayes factor .6 [29]) terms associated with

Groups A and B, respectively. For simplicity, we analyzed the top

five GO terms for each group, and found distinct functions

associated with Group A and B gene signatures. In particular,

Group A terms were primarily associated with morphogenesis and

developmental processes (Fig. 4B), while Group B terms were

primarily associated with inflammatory and defense responses

(Fig. 4C). The fact that Group A and B gene signatures were

associated with distinct functions suggested the potential for

distinct causal signaling mechanisms to underlie their expression.

To explore this question further, we analyzed Group A and B gene

signatures using signaling pathway analysis as described below.

We first explored pathway associations with Group A and B

gene signatures using KEGG Pathway analysis. Our use of this

approach was motivated by the comprehensiveness of the KEGG

database, as well the large body of studies demonstrating its utility

in mapping gene expression profiles to specific biological

pathways. Using this approach, we found that Group A was

significantly associated with MAPK signaling (an intracellular

signaling pathway) as well as two pathways associated with

extracellular signal transduction: focal adhesion and cytokine-

cytokine receptor interactions (Fig. 5A). In addition, we found that

Group B was significantly associated with cytokine-cytokine

receptor interactions only (Fig. 5B). The fact that MAPK signaling

was the only intracellular signaling pathway implicated in either

group was of particular interest. In particular, these data suggested

the potential involvement of the MAPK pathway in mediating

rest-induced variations in the expression of Group A genes.

However, it is important to note that the focus of KEGG analysis

is to identify pathways perturbed as a consequence of altered

expression of its components, not pathways responsible for driving

their transcription [38]. Recognizing that signaling pathways often

alter the expression of its own members through feedback

regulation, association of a gene signature in KEGG analysis

indirectly implicates it as a potential causal signaling pathway

candidate [38], but does not infer a direct causal association. Thus,

these results led us to pursue a more direct approach for assessing

causal signaling pathways involved in driving Group A and B gene

expression.

For causal pathway analysis, we analyzed Group A and B genes

using SPEED [38], which enables gene signature associations to be

Figure 3. Genome-wide gene expression profiling reveals transcriptomic variations arising from rest-inserted flow. (A) Microarray
gene expression data plotted in (x,y) space. Genes were distributed within an approximately elliptical-shaped region with major axis aligned parallel
to y = x. The quantities x’ and y’ (inset) provide measures of common and differential gene expression alterations under the two flow conditions,
respectively. (B–C) Density distributions for |x| and |y| (black and red lines respectively in B) and |x’| and |y’| (black and red lines respectively in C). (D)
Relative distributions for |y|/|x| (black) |y’|/|x’| (red). For |y|/|x|, the distribution was essentially uniform and equal to one. This is in contrast to the
relative distribution for |y’|/|x’|, which exhibited an inverse relation between relative density and quantile.
doi:10.1371/journal.pone.0074205.g003
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revealed based on causal influences as opposed to pathway

memberships alone [38]. The functionality of SPEED is rooted in

the capacity for signaling pathways to regulate a conserved set of

genes across diverse cell types and a broad range of experimental

conditions, enabling comparison of user data with signature gene

lists constructed from pathway perturbation experiments. Inter-

estingly, SPEED analysis revealed a significant overlap in Group A

genes with the MAPK gene expression signature (Fig. 5C),

indicating that two functionally distinct approaches (causally-based

SPEED analysis and membership-based KEGG analysis) associ-

ated MAPK signaling with Group A gene expression. SPEED

analysis also revealed a significant overlap of Group B genes with

the TNF-alpha pathway (Fig. 5D). To determine the sensitivity of

MAPK and TNF-alpha association on the number of genes

associated with each list, we iteratively increased the gene

membership of Group A and B up to 200 genes and computed

false discovery rate (FDR) for each 5 gene iteration. A significant

association of MAPK for Group A was only observed for group

sizes of 30 genes or greater, with the minimum FDR occurring

when the group size was 50 genes. For Group B, a significant

association of TNF-alpha was not observed until the group size

was 115 genes, which also coincided with the minimum FDR

within the range tested. The fact that a significant association for

Group A was observed over a greater range of group sizes relative

to Group B suggested that the association of the MAPK pathway

was more robust to group membership size compared to TNF-

alpha signaling. Taken together, the implication of MAPK

signaling by two functionally distinct approaches for pathway

analysis strongly suggested the involvement of this pathway in

driving Group A gene expression. Based on these results, we

focused on testing the predicted involvement of MAPK signaling.

Rest-inserted Flow Enhances p-ERK1/2 Signaling by
Enabling Recurring Activation
To confirm the predicted involvement of MAPK signaling in

driving transcriptomic perturbations arising from rest, we assessed

ERK1/2 phosphorylation dynamics in cells subjected to contin-

uous and rest-inserted flow (profiles were identical to those in our

gene expression studies). Our focus on ERK1/2 was motivated by

its role as a ubiquitous and well-characterized MAP kinase

associated with mechanotransduction [7]. We assessed p-ERK1/2

at four time points (5 min, 20 min, 35 min, and 50 min)

corresponding to the cessation of each of the four rest-inserted

flow bouts (Fig. 6). In cells exposed to continuous flow, we

observed a single spike in p-ERK1/2, consisting of a rapid

increase by 5 min, a decline by 20 min, and a return to baseline

levels by 35 min. In contrast to the single spike in p-ERK1/2

during continuous flow, cells exposed to rest-inserted flow

exhibited two significant spikes in p-ERK1/2, one during the first

flow bout, and a second during the third flow bout (p = 0.007 and

p= 0.019 for rest-inserted flow versus continuous flow and no flow,

respectively). Interestingly, the activation following each flow bout

was not uniform. In particular, though we observed modest

increases in ERK1/2 activity after the second and fourth flow

bouts, these increases were not significantly different from levels in

cells exposed to continuous flow.

Discussion

Modern gene expression profiling technologies have enabled an

unprecedented opportunity to study cellular temporal processing

from the viewpoint of the transcriptome. In this study, we used

genome-wide gene expression profiling to identify and character-

ize acute transcriptomic differences in cells subjected to continuous

versus rest-inserted mechanical stimulation. Our data establish, for

the first time, the capacity for these gene expression variations to

correctly identify acute signaling pathways underlying temporal

processing in bone cells.

In assessing the potential for the recurring ERK1/2 activity

identified in this study to occur in osteocytes residing within

mechanically loaded bone, it is important to consider aspects of

our model that may influence p-ERK1/2 dynamics. For example,

we chose to use an osteoblastic cell line (MC3T3-E1) due to their

extremely well-characterized signaling response under flow.

However, a growing body of studies indicate that osteocytes and

osteoblasts do not respond identically to flow exposure [39],

suggesting that osteocytes may exhibit distinct p-ERK1/2

dynamics relative to osteoblasts. In addition, in our investigations

we subjected cells to pulsatile flow using orbital shaking, which

differs from the oscillatory waveform that is expected to occur

in vivo [22]. While recent studies suggest that orbital flow and

Figure 4. Establishment of Group A and B gene sets. (A) Visualization of Group A (black circles) and Group B (white circles), which consisted of
genes with the top 1% of positive and negative values of y’ respectively. Physically, gene members of Group A and B were those that were the most
differentially expressed and which were up-regulated and down-regulated in response to rest, respectively. (B–C) GO analysis results for Groups A and
B. The most significant GO terms for Group A were associated with morphogenesis and developmental processes, while Group B terms were primarily
associated with inflammatory and defense responses.
doi:10.1371/journal.pone.0074205.g004
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oscillatory flow give rise to similar bone cell responses for a range

of outcomes [23], further studies are required to determine the

degree to which these two flow profiles induce similar (or distinct)

p-ERK1/2 dynamics in different bone cell lineages.

While the identified association between enhanced ERK1/2

activity and Group A gene expression was a direct result of our

transcriptomic analysis, it should be recognized that this association

does not imply causality. In particular, inferential pathway analysis

tools like those used in our framework do not discriminate between

associations that are causal or coincident. In our study, if signaling

mechanisms upstreamofERK1/2 also regulate someor all ofGroup

A genes via distinct pathways, then it is possible that ERK1/2 may

have little or no direct effect on regulating GroupA gene expression,

despite the fact that it is functionally associatedwith the expression of

these genes. While this does not detract from the utility of our

approach for pathway discovery (generally, we are equally interested

in identifying pathways that are both causal and coincident to gene

expression changes), determining the physiological relevance of the

MAPK pathway association identified here requires further study.

For example, to determine the specific contribution of enhanced p-

ERK1/2indrivingGroupAgeneexpression,apotential strategy is to

‘‘normalize’’ the ERK1/2 activity of cells exposed to rest-inserted

flowtothatofcellsexposedtocontinuous flow.Thiscouldbeachieved

byadministeringERK1/2inhibitorsafter the initialp-ERK1/2spike

(i.e., immediatelyafter thefirstboutofrest-insertedflow) to inhibitany

secondary spiking that occurs in subsequent flow bouts. Notably, the

useoforbital shaking togenerate flow iswell-suited for such studies, as

6-well plates provide open access to cell media (and thus enable

compound delivery in the absence of any further flow exposure).

It has been previously suggested that temporal processing during

bone mechanotransduction may involve multiple pathways whose

interactions are altered by the dynamics of the applied stimulus [12].

For example, both short- (0.5–14 s) and long- (0.5–8 hrs) duration

rest intervals have been found to enhance loading-induced bone

formation inrodents,withdistinct timeconstants (i.e., relativegains in

bone formation per unit time of rest) associated with their anabolic

Figure 5. Pathways analysis of transcriptomic perturbations implicates MAPK signaling. (A–B): Results from KEGG analysis for Groups A
and B. Group A was significantly associated with MAPK signaling (an intracellular signaling pathway) as well as two pathways associated with
extracellular signal transduction: focal adhesion and cytokine-cytokine receptor interactions. Group B was significantly associated with cytokine-
cytokine receptor interactions only. *Bayes Factor .6 (C–D): Results from SPEED analysis for Groups A and B. SPEED analysis revealed a significant
overlap in Group A genes with the MAPK gene expression signature, and a significant overlap of Group B genes with the TNF-alpha pathway. *FDR
,0.05.
doi:10.1371/journal.pone.0074205.g005
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effects [12,40].This timedependencehasbeenspeculatedtobedueto

the involvement of distinct mechanisms that are responsive to short-

and long-duration rest periods [10]. In our studies, mechanically-

stimulated ERK1/2 signaling had a refractory period of approxi-

mately 30 min (as evidenced by the lack of increase in p-ERK1/2

after the second and fourth flow bouts but a significant increase after

the third bout), suggesting a potential role for recurring ERK1/2

activity inmediatingenhancedanabolismarising fromlong-duration

rest intervals. Interestingly, in vitro, short-duration (10 s) rest intervals

have been found to elicit heightened intracellularCa2+mobilization

in bone cells subjected to fluid flow [14]. In addition, previous studies

suggest that flow-induced ERK1/2 activation occurs independently

of intracellular Ca2+mobilization in mechanically stimulated bone

cells [41]. This suggests that enhancedCa2+ signaling and recurring
ERK1/2 activation may dually mediate temporal processing in a

manner that is dependent onwhether the rest intervals are short (10 s

of seconds) or long (10 s of minutes) in duration. There is also the

potential for other as of yet unidentified pathways to mediate

temporal processing of intermediate rest durations (i.e., greater than

10 s but less than 30 min), an intriguing possibility that our

framework is well-suited to explore.

While the focus of our study was on assessing the utility of

transcriptomic perturbations arising from temporal variations in

stimulation for pathway discovery, these data bring forth the

question of whether such small transcriptomic perturbations may

play a role in potentiating bone anabolism in vivo. In considering

this question, it is notable that osteogenesis is mediated by a large

number of genes interacting within a vast network. If this

‘‘osteogenic gene network’’ were to be considered as being

analogous to a signaling network, its conductivity (e.g., the

amount of bone formed per unit of stimulus) may be impacted

to a much greater degree by small alterations in a large number of

network components compared to a large change in any one

component [42]. In this case, it is possible that small increases in

the expression of a large number of osteogenic genes may have a

much greater effect on bone formation relative to a large change in

any single gene. However, regardless of their biological function,

our studies suggest that identifying such transcriptomic perturba-

tions within intact bone may have significant value from an

analytical point of view. In particular, when integrated with

systems-level analysis, such perturbations may be informative of

acute mechanisms and causal signaling pathways enabling

heightened bone anabolism in response to rest-inserted loading.

A unique aspect of our temporal processing analytical frame-

work is its utility in revealing the emergence of different pathways

in mediating responses to different rest period durations. In

particular, by analyzing acute transcriptomic behavior, our

framework indirectly probes a broad spectrum of signaling

pathways rather than specific signaling pathway components.

Importantly, this spectrum of pathways will only increase as new

genome annotation databases and bioinformatics tools are

developed. In addition, new technologies that enable high-

throughput mechanotransduction studies [43,44,45] and tran-

scriptomic analyses [46] are rapidly emerging. In this case, our

studies may serve as the experimental foundation for future

investigations that map the temporal trajectory of every single

gene upon mechanical stimulation, and their variations in

response to different rest intervals. Such explorations would have

clear potential to yield fundamental insights into the mechanisms

mediating temporal processing in bone and other tissues that

exhibit this phenomenon [47,48].

Several important limitations should be considered when inter-

preting the findings fromthis study.First,ouruseof thetime-averaged

profiles x and y likely reduced our sensitivity in identifying

differentially regulated genes. In particular, genes that were

differentially regulated at one time point but not the other were

unlikely be assigned to Group A or B membership. However, it is

important to note that our use of time-averaging likely enhanced the

robustness of our predictions. In particular, Groupmembership was

restricted to genes that exhibited sustaineddifferences over both time

points, which increased the selectivity of these groups. A second

limitation is that our causal pathway analysis was performed using

SPEED,which is limited toarelatively smallnumberofpathwaysand

uses data from experiments performed in human cells. However, we

chose toutilize this approachdue to the limitedavailability of tools for

detecting causal signaling pathways and the fact that the majority of

mouse and human genes are expected to have conserved biological

function. Finally, while our studies demonstrated the ability for

transcriptomic perturbations in cells subjected to rest-inserted fluid

flow to correctly identify differential activation of the MAPK

signaling pathway, it remains to be established whether our

framework is able to correctly identify other signaling pathways in

other experimental contexts. In this regard, the predicted association

betweenTNF-alpha signalingandGroupBgeneexpressionprovides

a compelling starting point to explore this question further.

In summary, we characterized transcriptomic perturbations

arising from the insertion of intermittent rest periods in bone cells

subjectedtofluidflow,andassessedtheutilityof theseperturbations to

identify signaling pathways that are differentially activated by this

temporal variation. Our studies directly establish the capacity for

Figure 6. Rest intervals enhance flow-induced ERK1/2 activa-
tion by enabling recurring spikes in activity. (A) Western blot for
p-ERK1/2 and ERK1/2 for cells subjected to no flow (NF), rest-inserted
flow (RF), and continuous flow (CF) following cessation of each of the
four flow bouts. (B) Quantification of Western blots from three separate
experiments. Cells exposed to continuous flow exhibited a single spike
in p-ERK1/2. In contrast, cells exposed to rest-inserted flow exhibited
multiple spikes in p-ERK1/2 following each flow bout. We observed only
modest increases in ERK1/2 activity after the second and fourth bouts
but a significant increase after the third bout, suggesting that ERK1/2
may possess a refractory period of longer than 15 min but shorter than
45 min. *,**p,0.05, p,0.01 when compared to no flow at same time
point, respectively. #p,0.05 when compared to continuous flow at
same time point.
doi:10.1371/journal.pone.0074205.g006
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transcriptomic perturbations arising from rest to correctly identify

acute signaling pathways underlying these variations.

Supporting Information

Table S1 Primer sequences for real time RT-PCR.
(DOC)

Author Contributions

Conceived and designed the experiments: LEW RYK. Performed the

experiments: LEW LMD RYK. Analyzed the data: LEW RYK. Wrote the

paper: RYK. Contributed to interpretation of data: BJA EMG SDB SS

TSG. Edited the manuscript: LEW BJA LMD EMG SDB SS TSG RYK.

References

1. Mauk MD, Buonomano DV (2004) The neural basis of temporal processing.
Annual Review of Neuroscience 27: 307–340.

2. Post R (1980) Intermittent versus continuous stimulation: effect of time interval
on the development of sensitization or tolerance. Life Sciences 26: 1275–1282.

3. Samaha A–N, Reckless GE, Seeman P, Diwan M, Nobrega JN, et al. (2008) Less

is more: antipsychotic drug effects are greater with transient rather than
continuous delivery. Biological Psychiatry 64: 145–152.

4. Goddard GV, McIntyre DC, Leech CK (1969) A permanent change in brain
function resulting from daily electrical stimulation. Experimental Neurology 25:

295–330.

5. Frolik CA, Black EC, Cain RL, Satterwhite JH, Brown-Augsburger PL, et al.
(2003) Anabolic and catabolic effects of human parathyroid hormone (1–34) are

predicted by duration of hormone exposure. Bone 33: 372–379.
6. Srinivasan S, Weimer DA, Agans SC, Bain SD, Gross TS (2002) Low-

magnitude mechanical loading becomes osteogenic when rest is inserted
between each load cycle. Journal of Bone and Mineral Research 17: 1613–1620.

7. Jacobs CR, Huang H, Kwon RY (2012) Introduction to Cell Mechanics and

Mechanobiology. New York: Garland Science.
8. Kwon RY, Meays DR, Tang WJ, Frangos JA (2010) Microfluidic enhancement

of intramedullary pressure increases interstitial fluid flow and inhibits bone loss
in hindlimb suspended mice. Journal of Bone and Mineral Research 25: 1798–

1807.

9. Kwon RY, Meays DR, Meilan AS, Jones J, Miramontes R, et al. (2012) Skeletal
adaptation to intramedullary pressure-induced interstitial fluid flow is enhanced

in mice subjected to targeted osteocyte ablation. PloS One 7: e33336.
10. Sugiyama T, Saxon LK, Zaman G, Moustafa A, Sunters A, et al. (2008)

Mechanical loading enhances the anabolic effects of intermittent parathyroid
hormone (1–34) on trabecular and cortical bone in mice. Bone 43: 238–248.

11. Umemura Y, Sogo N, Honda A (2002) Effects of intervals between jumps or

bouts on osteogenic response to loading. Journal of Applied Physiology 93:
1345–1348.

12. Robling AG, Burr DB, Turner CH (2001) Recovery periods restore
mechanosensitivity to dynamically loaded bone. Journal of Experimental

Biology 204: 3389–3399.

13. LaMothe JM, Zernicke RF (2004) Rest insertion combined with high-frequency
loading enhances osteogenesis. Journal of Applied Physiology 96: 1788–1793.

14. Srinivasan S, Agans SC, King KA, Moy NY, Poliachik SL, et al. (2003) Enabling
bone formation in the aged skeleton via rest-inserted mechanical loading. Bone

33: 945–955.

15. Shinn JB (2003) Temporal processing: the basics. The Hearing Journal 56: 52.
16. Hung CT, Pollack SR, Reilly TM, Brighton CT (1995) Real-time calcium

response of cultured bone-cells to fluid-flow. Clinical Orthopaedics and Related
Research: 256–269.

17. Batra NN, Li YJ, Yellowley CE, You L, Malone AM, et al. (2005) Effects of
short-term recovery periods on fluid-induced signaling in osteoblastic cells.

Journal of Biomechanics 38: 1909–1917.

18. Donahue TLH, Haut TR, Yellowley CE, Donahue HJ, Jacobs CR (2003)
Mechanosensitivity of bone cells to oscillating fluid flow induced shear stress may

be modulated by chemotransport. Journal of Biomechanics 36: 1363–1371.
19. Donahue SW, Jacobs CR, Donahue HJ (2001) Flow-induced calcium oscillations

in rat osteoblasts are age, loading frequency, and shear stress dependent.

American Journal of Physiology - Cell Physiology 281: C1635–C1641.
20. Kwon RY, Jacobs CR (2007) Time-dependent deformations in bone cells

exposed to fluid flow in vitro: investigating the role of cellular deformation in
fluid flow-induced signaling. Journal of Biomechanics 40: 3162–3168.

21. Thomas JMD, Chakraborty A, Sharp MK, Berson RE (2011) Spatial and
temporal resolution of shear in an orbiting petri dish. Biotechnology Progress 27:

460–465.

22. Jacobs CR, Yellowley CE, Davis BR, Zhou Z, Cimbala JM, et al. (1998)
Differential effect of steady versus oscillating flow on bone cells. Journal of

Biomechanics 31: 969–976.
23. Young SRL, Hum JM, Rodenberg E, Turner CH, Pavalko FM (2011) Non-

overlapping functions for Pyk2 and FAK in osteoblasts during fluid shear stress-

induced mechanotransduction. Plos One 6: e16026.
24. Ley K, Lundgren E, Berger E, Arfors KE (1989) Shear-dependent inhibition of

granulocyte adhesion to cultured endothelium by dextran sulfate. Blood 73:
1324–1330.

25. Berson RE, Purcell MR, Sharp MK (2008) Computationally determined shear
on cells grown in orbiting culture dishes. Advances in Experimental Medicine

and Biology 614: 189–198.

26. Dardik A, Chen L, Frattini J, Asada H, Aziz F, et al. (2005) Differential effects of

orbital and laminar shear stress on endothelial cells. Journal of Vascular Surgery

41: 869–880.

27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using

real-time quantitative PCR and the 22DDCT method. Methods 25: 402–408.

28. Du P, Kibbe WA, Lin SM (2008) lumi: a pipeline for processing Illumina

microarray. Bioinformatics (Oxford) 24: 1547–1548.

29. Chang JT, Nevins JR (2006) GATHER: a systems approach to interpreting

genomic signatures. Bioinformatics (Oxford) 22: 2926–2933.

30. Zeng Y, Cowin SC, Weinbaum S (1994) A fiber-matrix model for fluid-flow and

streaming potentials in the canaliculi of an osteon. Annals of Biomedical

Engineering 22: 280–292.

31. You L, Cowin SC, Schaffler MB, Weinbaum S (2001) A model for strain

amplification in the actin cytoskeleton of osteocytes due to fluid drag on

pericellular matrix. Journal of Biomechanics 34: 1375–1386.

32. Anderson EJ, Kaliyamoorthy S, Alexander JID, Tate MLK (2005) Nano-

microscale models of periosteocytic flow show differences in stresses imparted to

cell body and processes. Annals of Biomedical Engineering 33: 52–62.

33. Kwon RY, Frangos JA (2010) Quantification of lacunar-canalicular fluid flow

through computational modeling of fluorescence recovery after photobleaching.

Cellular and Molecular Bioengineering 3: 296–306.

34. Kwon RY, Temiyasathit S, Tummala P, Quah CC, Jacobs CR (2010) Primary

cilium-dependent mechanosensing is mediated by adenylyl cyclase 6 and cyclic

AMP in bone cells. FASEB Journal 24: 2859–2868.

35. Chen NX, Ryder KD, Pavalko FM, Turner CH, Burr DB, et al. (2000) Ca2+
regulates fluid shear-induced cytoskeletal reorganization and gene expression in

osteoblasts. American Journal of Physiology - Cell Physiology 278: C989–C997.

36. Plunkett NA, Partap S, O’Brien FJ (2010) Osteoblast response to rest periods

during bioreactor culture of collagen–glycosaminoglycan scaffolds. Tissue

Engineering: Part A 16: 943–951.

37. Handock MS, Morris M (1998) Relative distribution methods. Sociological

Methodology 28: 53–97.

38. Parikh JR, Klinger B, Xia Y, Marto JA, Bluthgen N (2010) Discovering causal

signaling pathways through gene-expression patterns. Nucleic Acids Research

38: W109–W117.

39. Kamel MA, Picconi JL, Lara-Castillo N, Johnson ML (2010) Activation of b-
catenin signaling in MLO-Y4 osteocytic cells versus 2T3 osteoblastic cells by

fluid flow shear stress and PGE2: Implications for the study of mechanosensation

in bone. Bone 47: 872–881.

40. Srinivasan S, Ausk BJ, Poliachik SL, Warner SE, Richardson TS, et al. (2007)

Rest-inserted loading rapidly amplifies the response of bone to small increases in

strain and load cycles. Journal of Applied Physiology 102: 1945–1952.

41. Liu D, Genetos DC, Shao Y, Geist DJ, Li J, et al. (2008) Activation of

extracellular-signal regulated kinase (ERK1/2) by fluid shear is Ca2+- and ATP-

dependent in MC3T3–E1 osteoblasts. Bone 42: 644–652.

42. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005)

Gene set enrichment analysis: A knowledge-based approach for interpreting

genome-wide expression profiles. Proceedings of the National Academy of

Sciences of the United States of America 102: 15545–15550.

43. Kim D-H, Wong PK, Park J, Levchenko A, Sun Y (2009) Microengineered

platforms for cell mechanobiology. Annual Review of Biomedical Engineering

11: 203–233.

44. Worton LE, Srinivasan S, Kwon RY (2013) Fluid dynamic gauging-based assays

for high-throughput investigation of cellular mechanotransduction. 2013

Proceedings of the ASME Summer Bioengineering Conference.

45. Riehl BD, Lim JY (2012) Macro and microfluidic flows for skeletal regenerative

medicine. Cells 2012: 4.

46. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for

transcriptomics. Nature Reviews Genetics 10: 57–63.

47. Sen B, Xie Z, Case N, Styner M, Rubin CT, et al. (2011) Mechanical signal

influence on mesenchymal stem cell fate is enhanced by incorporation of

refractory periods into the loading regimen. Journal of Biomechanics 44: 593–

599.

48. Hanson AD, Marvel SW, Bernacki SH, Banes AJ, van Aalst J, et al. (2009)

Osteogenic effects of rest-inserted and continuous cyclic tensile strain on hASC

lines with disparate osteodifferentiation capabilities. Annals of Biomedical

Engineering 2009: 5.

Temporal Processing in Bone

PLOS ONE | www.plosone.org 10 September 2013 | Volume 8 | Issue 9 | e74205


