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Abstract

Simple, inductive mathematical models of oncolytic virotherapy are needed to guide protocol design and improve
treatment outcomes. Analysis of plasmacytomas regressing after a single intravenous dose of oncolytic vesicular stomatitis
virus in myeloma animal models revealed that intratumoral virus spread was spatially constrained, occurring almost
exclusively through radial expansion of randomly distributed infectious centers. From these experimental observations we
developed a simple model to calculate the probability of survival for any cell within a treated tumor. The model predicted
that small changes to the density of initially infected cells or to the average maximum radius of infected centers would have
a major impact on treatment outcome, and this was confirmed experimentally. The new model provides a useful and
flexible tool for virotherapy protocol optimization.

Citation: Bailey K, Kirk A, Naik S, Nace R, Steele MB, et al. (2013) Mathematical Model for Radial Expansion and Conflation of Intratumoral Infectious Centers
Predicts Curative Oncolytic Virotherapy Parameters. PLoS ONE 8(9): e73759. doi:10.1371/journal.pone.0073759

Editor: Brian Lichty, McMaster University, Canada

Received May 7, 2013; Accepted July 21, 2013; Published September 11, 2013

Copyright: � 2013 Bailey et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Al and Mary Agnes McQuinn and the National Institute on Health grant R01 CA1006364 and RO1 CA129966. A.K. is funded
by the Mayo Clinic Gary and Anita Klesch Predoctoral Fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: In the spirit of full disclosure the authors declare the following possible conflicts of interest: David Kirk is president of Consulpack, Inc. Dr.
Russell is Chief Manager and Dr. Peng is secretary and treasurer of ImaNIS Life Sciences, LLC. Dr,’s Peng and Naik are co-founders of Omnis Pharma (Naik,
Federspiel, Russell and Peng). This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: sjr@mayo.edu

. These authors contributed equally to this work.

Introduction

Oncolytic virotherapy is an experimental cancer treatment in

which viruses of evolved or engineered cancer tropisms are

exploited for their ability to induce selective killing of tumor cells.

Preclinical studies have demonstrated anticancer activity for a

broad range of viruses in diverse tumor models, and several

virotherapies have advanced to clinical trials [1,2]. The need for

mathematical modeling is readily apparent because, unlike all

other established or experimental cancer therapies, oncolytic

therapies amplify in the body to a variable extent after

administration. Each oncolytic virus possesses unique character-

istics that define how it interacts with the intratumoral environ-

ment, including extravasation, infection, replication, spread, cell

killing, and immune response induction. Mathematical models

which capture the resulting complexity of virus-tumor interactions

have been developed to improve intuitive understanding of

oncolytic therapy, predict tumor response and long-term recur-

rence, and guide the development of more effective oncolytic

virotherapy approaches [3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,

19,20]. Many existing models are theoretical rather than

inductive, and treat infected tumors as dynamic systems with

considerations for the kinetic interplay between concurrent

processes of exponential virus spread, tumor growth, and the

antiviral immune response [3,4,5,6,7,8,9,10,13,15,16,17,18,20].

While some models do account for spatial constraints on virus

spread, they remain complex, time dependent stochastic models

[7,12,15,17]. Importantly, existing models do not distinguish

between wholesale tumor destruction that occurs during the

oncolytic phase in which virus-infected tumor cells are killed and

the residual destruction that occurs during the immunotherapeutic

phase in which residual uninfected tumor cells are killed via an

antitumor immune response. Therefore the aim of this work was

to develop a simplified inductive mathematical model to guide

virotherapy development. Our experimental evidence justifies the

development of a simplified, spatially constrained model that

estimates the probability of tumor cell survival solely after the

oncolytic phase. The simplified model is based on the novel

observation that certain virotherapies propagate very rapidly in

cancerous tissue, almost exclusively through spatially-restricted

spread at rates that diminish the relevance of complex population

dynamics during the oncolytic phase. Therefore, this new

mathematical model is designed to accurately describe observed

PLOS ONE | www.plosone.org 1 September 2013 | Volume 8 | Issue 9 | e73759



processes of virus-induced tumor destruction prior to immuno-

therapeutic interactions.

Materials and Methods

Ethics Statement
Animals were maintained and cared for in strict accordance

with the recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Institutional Animal Care and Use

Committee of Mayo Clinic (A23810).

Cell Lines and Virus Manufacture
Cell lines were cultured in media supplemented with 10% fetal

bovine serum (FBS), 100 U/ml penicillin and 100 mg/ml

streptomycin. Vero cells were obtained from American Type Cell

Culture (ATCC, Manassas, VA) and cultured in Dulbecco’s

Modified Eagles Medium (DMEM). 5TGM1 murine myeloma

cells were obtained from Dr. Babatunde Oyajobi (UT Health

Sciences Center, San Antonio, TX USA, originally established

from the parent murine 5T33 (IgG2bk) myeloma [21]) and

cultured in Iscove’s Modified Dulbecco’s Medium (IMDM). KAS

6/1 human myeloma cells were a kind gift from D.F. Jelinek

(Mayo Clinic, Rochester, MN, originally established from

myeloma patients [22]). KAS 6/1 cells were cultured in 10%

RPMI-1640 supplemented with 1 ng/ml IL-6. All cell lines tested

negative for mycoplasma contamination. 5TGM1 cells are

syngeneic to the C57Bl6/KalwRij mouse strain and successful

tumor growth confirms cell line identity. These cell lines were not

otherwise authenticated.

In vivo studies evaluating VSV efficacy utilized VSV-mIFNb-

NIS, a recombinant VSV containing transgenes coding for murine

interferon-b (IFNb) and the human sodium iodide symporter

(NIS), generated as previously described [23]. Viruses were

manufactured in the Mayo Clinic Viral Vector Production

Laboratory (VVPL). Viral titer was quantified by measuring

50% tissue culture infective dose (TCID50) on Vero cells calculated

using the Spearman-Karber equation. Virus was stored at 270uC
or lower until use.

In vivo Studies Evaluating VSV Therapy in Murine
Myeloma Models

Immunocompetent 5TGM1 myeloma model. 56106

5TGM1 murine myeloma cells (suspended in 100 ml sterile saline)

were subcutaneously implanted in the right flank of , 6 week-old

female syngeneic C57Bl6/KalwRij mice (Harlan, Netherlands).

Immunocompromised KAS 6/1 myeloma model. 16107

KAS 6/1 murine myeloma cells were subcutaneously implanted

on the right flank of ,6 week-old female CB17 ICR SCID mice.

Mice received 250 cGy total body irradiation 24 hr prior to

implantation.

Immunocompromised U266 myeloma model. p16107

U266 human myeloma cells (ATCC, Manassas, VA) were

subcutaneously implanted on the right flank of ,6 week-old

female CB17 ICR SCID mice. Mice received 250 cGy total body

irradiation 24 hr prior to implantation.

When tumors measured ,0.5 cm in diameter, mice were

injected with a single intravenous dose of either 100 ml sterile

saline or VSV-mIFNb-NIS at a dose of 105, 106, 107, or 108

TCID50. Prior to injection, virus was diluted in sterile saline to

required dose for 0.1 ml total injection volume per mouse. Tumor

response was monitored by serial caliper measurements in two

dimensions and tumor volume was calculated using the formula

V = 0.5a2b (where a#b). Mice were euthanized if tumors reached

greater than 10% of mouse body weight, if tumors were severely

ulcerated, if weight loss was greater than 20%, or if mice were

unable to access food and water or were in obvious distress.

Tumor volume was used to determine therapeutic response.

Response was defined as a reduction in tumor size at day 12 post

treatment relative to tumor size at day 0, both for individual mice

and for average tumor size of treatment groups. Partial response is

defined as $50% reduction in tumor volume compared to day 0.

High-resolution Immunofluorescence Tumor Analysis
5TGM1 tumors were implanted in syngeneic mice as previously

described. Mice were treated with a single intravenous dose of

sterile saline, 26108 TCID50 VSV-mIFNb-NIS, or 16107

TCID50 spread-deficient VSV(DG). Tumors from treated mice

were harvested at various time points ranging from 6 hr to 72 hr

post injection and frozen in optimal cutting medium (OCT) for

sectioning. Tumor sections were subject to immunofluorescence

staining for (i) VSV antigens (red for 5TGM1 and KAS 6/1

models, green for U266 model) using a primary rabbit polyclonal

antibody generated by the Mayo Clinic VVPL followed by an

Alexa-labeled anti-rabbit secondary antibody (Invitrogen, Molec-

ular Probes) (ii) cell death using TUNEL (Terminal deoxynucleo-

tidyl transferase dUTP nick end labeling) staining (Promega) and

(iii) cellular nuclei using Hoescht 33342 (Invitrogen).

Intratumoral VSV extravasation was visualized by harvesting

tumors 24 hr post intravenous administration of spread-deficient

VSV(DG), which undergoes a single cycle of infection and cannot

undergo subsequent rounds of infection, allowing visualization of

cells infected upon viral extravasation within a 24 hr period.

Expansion of intratumoral foci of infection was quantified in

tumor sections harvested at 6 hr intervals following intravenous

spread-competent VSV administration, and sections were subject

to staining for VSV antigens. Intratumoral foci were quantified by

measuring 7–8 foci from multiple sections from two tumors

harvested at each time point. Each focus diameter was divided by

average tumor cell diameter (measure as an average diameter of

50 individual tumor cells) to obtain focus diameters in number of

cells. The volume of each approximately spherical focus was

estimated using the formula V = (4/3)p(d/2)3 expressed as number

of cells and plotted versus time. The rim of viable infected cells was

similarly quantified by measuring approximate rim width at the

advancing edge of infection from three tumors harvested 48 hr

post VSV administration (difference between advancing edge of

anti-VSV staining and advancing edge of TUNEL staining). This

width was divided by average cell diameter to approximate the

number of cells that are progressively infected before cells

succumbed to cell death.

Statistical and Analytical Methods
Tumor growth curves were generated to compare tumor growth

and response in C57Bl6/KalwRij mice bearing 5TGM1 tumors

and CB17 ICR SCID mice bearing KAS 6/1 tumors after single

IV administration of VSV-mIFNb-NIS at doses of 105, 106, 107,

or 108 TCID50 compared to saline treated mice using PrismH
(GraphPad, Software Inc., La Jolla, CA).

Expansion of intratumoral foci and tumor growth was fitted to

the exponential growth equation [Y = Y0*e(k*X)] using PrismH to

obtain an approximate doubling time and R2 value.

The mathematical model derived here was analyzed for

relationships between k, R, and r using mathematical software

packages. MathcadH 7 Professional (PTC, Needham, MA, USA)

was used to analyze integrals for 100 values of K and 100 values of

r/R to generate a matrix of 10,000 data points describing

relationship between the above variables. The matrix was then

Math Model Predicts Curative Oncolytic Parameters
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analyzed using Excel 2010H (Microsoft Corporation, Redmond,

WA, USA). Further data manipulation, analysis and visualization,

including heatmaps and 3-D perspective plots, were performed

using custom R scripts with R programming language.

Results

We previously showed that plasmacytomas regress after a single

intravenous (IV) administration of oncolytic vesicular stomatitis

virus (VSV) [23]. To investigate intratumoral viral extravasation in

the absence of spread, a spread-defective VSV missing a critical

gene (VSVDG) was administered intravenously and immunostain-

ing of tumor sections 24 hr later revealed single infected tumor

cells dispersed throughout the tumor parenchyma (Fig. 1A).

Immunohistochemical analysis of tumors explanted 6, 12, 18, 24

and 48 hr post IV administration of spread-competent oncolytic

VSV showed a striking pattern of radially expanding, roughly

spherical, infectious centers (Fig. 1B, C). Virus transmission is

spatially constrained, expanding outward from initially infected

cells to uninfected tumor cells. Cell death follows infection, and

initially infected cells die first followed by more recently infected

cells near the perimeter (Fig. 1C). Consequently, curative

plasmacytoma regression due to oncolytic VSV therapy is the

result of rapidly expanding infectious centers in which infected

cells die, and foci in close proximity conflate causing massive

tumor destruction and complete regression at high doses during

the oncolytic phase (Fig. 1B, C, E).

Quantification of immunofluorescence data showing viral

spread revealed an approximate radial expansion rate of ,0.7

cells/hr during the first 48 hrs, by which time foci reach maximum

size and coalesce with nearby foci, often becoming indistinguish-

able from nearby foci (Fig. 1B, 1D). A rim of viable infected cells at

the advancing edge of infection averaged 10.55 cells in width

(Fig. 2). Thus, the time from cellular infection to death is

approximately 15 hours. This rate is much greater than that of

implanted 5TGM1 or MPC11 tumor growth which can therefore

Figure 1. Extravasation and spatially constrained spread of systemic oncolytic therapy. Immunofluorescence analysis and quantification
of 5TGM1 tumors harvested following IV VSV administration, sectioned and stained to detect VSV (red), dying cells (TUNEL, green) and tumor cell
nuclei (Hoescht, blue). (A) Seeds of infection established following virus extravasation 24 hr post-VSV(DG). (B) Expansion and conflation of
intratumoral foci and destruction of tumor cells 48 hr post-VSV. (C) Radial expansion of infection and subsequent cell death of intratumoral focus in
tumor harvested at 6, 12, 18, 24, and 48 hr post-VSV(i-v). (D) Quantification of mean infectious focus diameter (n = 7–9/interval) in tumors harvested
at 6 hr intervals post-VSV. (E) Schematic representation of proposed model of systemic oncolytic therapy showing (i) extravasation and infection of
tumor cells seeding randomly distributed infectious centers, (ii) spatially constrained expansion, and (iii) conflation of foci resulting in viral destruction
of tumor cells, though voids of uninfected, surviving cells remain.
doi:10.1371/journal.pone.0073759.g001
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be assumed negligible during the oncolytic phase (Fig. 3). The

contributions of adaptive antiviral and antitumor immune

responses, the latter dependent on cross-priming of reactive T-

cells in the context of the antiviral response, are also assumed

negligible during the initial oncolytic phase of the therapy as they

occur after the initial phase of tumor destruction caused by the

established infectious foci. Anti-VSV neutralizing antibodies are

not detected in serum until day-5 post VSV administration in

C57Bl6/KaLwRij mice bearing subcutaneous syngeneic 5TGM1

myeloma tumors, confirming that the rapid spread of viral

infection that creates the infectious foci modeled here is completed

before antiviral antibodies become detectable in the bloodstream

[24].

The innate antiviral response, including cellular interferon

responses and tumor resident inflammatory cells, is recognized as

an important factor limiting intratumoral virus spread [25]. We

also recognize that infiltrating neutrophils and tumor vascular

shutdown can limit viral spread, although those are not seen in this

model [23]. The model, looking at a distinct time after foci spread,

accounts for all innate immune response components, in addition

to all other virus-tumor interactions that contribute to kinetics of

replication and spread, in a single variable describing final focus

size so that innate immune responses do not need to be considered

separately. Based on these observations, the following assumptions

allowed for a simplistic, easy to use mathematical model of

oncolytic virotherapy to be developed.

Model Assumptions
The following assumptions were made for the purpose of

modeling the probability of tumor cell survival at a fixed time

Figure 2. Quantification of viable infected rim at the leading
edge of infection to determine cell death rate. Immunofluores-
cence analysis of 5TGM1 tumors harvested 48 hr post IV-VSV
administration, sectioned and stained to detect VSV (red), dying cells
(TUNEL, green) and tumor cell nuclei (Hoescht, blue). Quantification of
the mean viable rim width(n = 36 measurements), expressed in terms of
cell diameters, at the leading edge of infection allows for the time from
cellular infection by the VSV to cell death to be determined. Yellow bars
indicate example locations of rim width determination.
doi:10.1371/journal.pone.0073759.g002

Figure 3. Tumor growth rates are negligible in comparison to growth of infectious foci. Kinetics of tumor growth. (A) Subcutaneous
5TGM1 or KAS 6/1 myeloma tumors were measured by serial caliper measurements following implantation in immunocompetent C57Bl6/KaLwRij or
immunocompromised SCID mice respectively. Volume was calculated using the formula (l*h2/2). Tumor growth was fitted using the exponential
growth equation Y = Y0e(kX), where tumor doubling time was approximately 3.2 and 5.3 days respectively. (B) Kinetics of intratumoral infectious foci
expansion based on average infectious focus volume determined by the equation V = 4

3 p(d=2)3 where d is the focus diameter (Fig. 1D). Focus
expansion was fitted using the exponential growth equation Y = Y0e(kX), where focus doubling time was approximately 3.2 hours. (C) Exponential
growth rate, doubling time and goodness of fit for approximated growth curves of tumor models and infectious focus expansion. (D) Comparison of
infectious foci expansion rate and subcutaneous 5TGM1 of KAS 6/1 myeloma tumor growth rates relative to size of tumor at time of virotherapy
administration.
doi:10.1371/journal.pone.0073759.g003
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point after systemic administration of an oncolytic virus. We

recognize that these are assumptions and will address modifica-

tions to these assumptions in the discussion.

Virus delivery. Intravenously administered virus extrava-

sates randomly (Poisson distribution) throughout the entire tumor

so that only the density of focus initiating cells must be accounted

for. Infection of normal cells is neglected due to natural tumor

tropism of oncolytic viruses.

Virus spread. Virus spreads only to cells in direct vicinity of

an infected cell, such that infection radially expands at a

predictable rate (time of transmission ,0.7cells/hr, Fig. 1D) and

decelerates and stops at a predictable time due in part to innate

antiviral immune response and interactions with tumor microen-

vironment. At this time, each infectious center is static and has

reached an equal maximum size, and there is no other mode of

virus spread (e.g. secondary viremia).

Tumor cell killing. All infected cells die. All uninfected cells

survive the oncolytic phase.

Tumor growth. Tumors are spherical and growth is expo-

nential with an empirically determined doubling time which is

sufficiently slow compared to virus spread so that it can be

assumed that the rate of tumor cell division is negligible with

respect to the rate of virus spread and is therefore neglected (Fig. 3).

Immune response. Innate immunity in part determines the

maximum focus size and is therefore not considered independent-

ly. Changes in adaptive immune response do not occur during the

period of virus spread [24], and is therefore neglected during the

modeled oncolytic phase that occurs prior to adaptive response.

Mathematical Modeling
The mathematical model assumes a spherical tumor of radius R

is subject to K infection foci (determined by initially infected cells

dependent on viral dose and extravasation) distributed indepen-

dently and randomly (Poisson distribution) inside the tumor. If

each focus grows to an equal maximum radius, r, the probability of

survival at a given intratumoral location–the probability that all K

foci of radius r ‘‘miss’’ a given point of consideration ‘‘xo’’– can be

determined. The average survival probability for all points xo

within the tumor gives the predicted proportion of the tumor

surviving and is defined by the mathematical model derived here.

This very high resolution in vivo experimental data sheds new

light on the mechanism of intratumoral virus spread that occurs

almost exclusively through radial expansion of randomly distrib-

uted infectious centers generating spherical foci of virally infected

cells allows consideration of tumor survival as a static geometric

problem. We begin by calculating the probability that a single

randomly distributed infection sphere fails to include xo by

considering that xo is surrounded by a volume of vulnerability. A

volume of vulnerability can be determined by noting that any

infection that initiates within a distance r from xo will create an

infectious focus that includes the point xo after viral spread, thereby

making xo vulnerable to infection (Fig. 4A). Hence, the volume of

vulnerability defines the volume required to be void of infection-

initiating centers. Rather than modeling infectious spheres, we

have generated this negative space model that allows for simplified

probabilistic modeling.

The volume of vulnerability for xo is defined as a function of the

distance of xo from the center of the tumor, x, and is a complete

intratumoral sphere of radius r when 0#x# R-r (Fig. 4B). Near the

tumor periphery, (R-r),x#R, the spherical volume of vulnerability

intersects the tumor sphere, creating a lens of vulnerability

contained within the tumor rather than a sphere (Fig. 4B). This

loss of volume of vulnerability at the tumor periphery has been

termed the edge-effect.

Lens volume can be determined by integrating the volume of

circular disks over the span of the lens, as determined in two

distinct cases: xo can be positioned inside or outside of the chord of

intersection created by the intersection of the spheres of radius R

and r relative to the tumor center, creating the interior lens when

R-r,x#
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2{r2
p

and the outer lens when
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2{r2
p

,x#R

(Fig. 4C, Table 1). The interior lens volume is determined by

first defining the distance of xo from the chord of intersection, zi, in

terms of the tumor radius, R, focus radius, r, and distance from the

center of the tumor, x. We then integrate the volume of circular

disks of height h, with thickness of dy over the entire lens when –

r,y,zi and for zi,y,R where y is the position along the same axis

as distances x and z relative to the position of xo (File S1, Fig. S1,

Table 1). The similar formulation is done for the outer lens

volume, using the distance from the chord of intersection zo

integrated over the entire lens when –(r+zo),y,-zo and for –

zo,y,R. (Fig. S1, Table 1).
The volume of vulnerability can be expressed as a proportion of

total tumor volume (Table 1). The proportion of tumor outside

this volume of vulnerability remains open to focus initiating

infection and is equivalent to the probability of xo escaping a single

infectious focus (Table 1). Following rules of multiplicity, this can

be expanded to include escape of K infectious foci (Table 1). Given

that the probabilities of survival are functions of distance from the

center of the tumor, we must calculate and analyze this probability

Figure 4. Diagram of mathematical model variables. (A)Volume
of vulnerability (yellow) is defined as the volume surrounding xo that
must be void of focus initiating cells (white) to remain uninfected after
oncolytic viral spread (red). (B) Diagram of a spherical tumor depicting
foci of infection (red) and (i) a spherical volume of vulnerability (yellow)
for the tumor interior and (ii) a lens of vulnerability (yellow) near the
tumor periphery. (C) Three unique volumes of vulnerability defined by
the value of x; (i) a complete intratumoral sphere when 0#x#R-r, (ii) a
lens formed when the center of the sphere of radius r lies inside of the
chord of intersection, R-r,x#

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2{r2
p

, and (iii) a lens formed when the
center of the sphere of radius r lies outside of the chord of intersection,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2{r2
p

,x #R. (D) A table of model variables.
doi:10.1371/journal.pone.0073759.g004
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for all points xo as a function of all distances x. The probability of

having a point of consideration xo at a distance x in any direction

from the tumor center varies with respect to x such that the

probability of considering a point positioned at a small value of x

away from the center is less than considering a point positioned at

a greater value of x away from the center. We can define this

probability using an integral in which we consider the volume of a

spherical shell with a thickness of dx with respect to the total tumor

volume.

pxo~

ðR

0

4px2

4
3

pR3
dx

We then integrate the probability of being positioned at a

distance x multiplied by the probability of survival for points at

that distance x, distinctly defined for 3 regions: interior, inner

lens, and outer lens. This yields 3 integrals that effectively

describe the probability of any point being located within

each distinct region and escaping K infectious foci (Table 1).

The summation of these integrals yields the average survival

probability for any point within the entire tumor.

paverage survival~

ðR{r

0

3x2

R3

� �
1{

r3

R3

� �� �K

dx

( )
z

Ð ffiffiffiffiffiffiffiffiffiffiffiR2{r2
p

R{r
3x2

R3 1{

Ð zi

{r
p(r2{y2)dyz

Ð R

xzzi
p(R2{y2)dy

4
3
pR3

 !" #K

dx

8<
:

9=
;z

ÐRffiffiffiffiffiffiffiffiffiffiffi
R2{r2
p 3x2

R3 1{

Ð{zo

{r
p(r2{y2)dyz

Ð R

x{zo
p(R2{y2)dy

4
3pR3

 !" #K

dx

8<
:

9=
;

This probability will define the average probability that any

single point within the tumor will survive after oncolytic phase of

systemically delivered VSV.

In order to simplify this model, we recognize that the outer lens

volumes are vanishingly small, especially in instances when R..r.

This allows us to simplify the volume of intersection for foci at the

tumor periphery. When we assume the curvature of the sphere

radius R is negligible within the overlapping region with sphere of

radius r, we can approximate the volume outside of this intersection

to be a spherical cap (Fig. S2). This allows the volume of vul-

nerability to be defined without integration (Table S1, [26]). The

corresponding manipulations can be performed as above to derive

the probability of avoidance of K infection spheres (Table S1).

The probability of escaping K infectious foci for xo at distance x

from the center of the tumor is then integrated over all values of x

and weighted by the proportion of the tumor sphere located at

distance x from the tumor center, to give the approximate average

probability of any point within the tumor surviving after the

oncolytic phase of systemically delivered VSV.

paverage survival~

ðR{r

0

3x2

R3

� �
1{

r3

R3

� �� �K

dx

" #
z

ðR

R{r

3x2

R3

� �
1{

4
3

pr3
� �

{ 1
3

p xzr{Rð Þ2 2r{xzRð Þ
h i

4
3

pR3
� �

2
4

3
5

K

dx

2
64

3
75

If it is assumed that the difference in volume between the lens of

vulnerability and the corresponding sphere of vulnerability in the

border case is minimal, the model can be further simplified to

neglect the edge effect altogether. Then we are only concerned

with the number and size of foci. This allows the model to simply

describe relationships between viral distribution, in terms of K, and

infectious center size, r, on the resulting survival probability of the

tumor.

paverage survival~ 1{
r3

R3

� �K

Both approximations can be used without substantial loss in the

model’s predictive power (Fig. S3). This final model approxima-

tion provides a simple alternative way of conceptualizing oncolytic

virotherapy that will be of practical use as it distills optimization of

viral parameters to two key issues; increasing viral distribution and

increasing viral spread.

The complete mathematical model or the model approxima-

tions can be evaluated for relationships between K, R, and r to

determine parameters necessary for tumor cure following the

oncolytic phase of VSV. The model can be graphed two- and

three-dimensionally to yield a heatmap (Fig. 5) and surface plot of

survival probability respectively (Fig. S4). These visualizations

provide insight into therapeutic optimization by defining the

relationship between foci density, viral spread, and changes in

Table 1. Components of mathematical model derivation.

Interior case
0#x# R-r
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tumor survival. Most significantly, the model reveals a threshold of

therapeutic efficacy that is dependent on both viral dose and

distribution and viral spread. Small changes in density or size of

infectious centers result in drastic changes in survival probability.

Prior to the threshold, tumor survival is very high. Beyond this

threshold, tumor survivability dramatically and rapidly decreases.

This dramatic change in survivability occurs within 2 logs of

foci density; for any focus diameter, tumor survivability drops

from 100% to 0% over an approximate 100 fold increase in

density above the threshold density. The dramatic change in

survivability can also be achieved by increases in viral spread.

For initially very small, high density foci, the drop in survivability

due to increased viral spread is very rapid. As the threshold

shifts with increasing focus size or decreasing density, the change

in viral spread necessary to achieve a substantial drop in

survivability increases, and the influence of viral spread plateaus.

Therefore limits of therapeutic efficacy are reached for both

increases in r or K, beyond which minimal increases in efficacy are

gained.

Model Validation
The model predicts increased density will cause increased tumor

destruction, measured by tumor regression. Since virus dose drives

the density of infected cells, the model predicts a dose-response

relationship (Fig. 5B). To validate this relationship, immunocom-

petent mice bearing 5TGM1 myeloma tumors were administered

log-fold increasing viral doses. As predicted, increasing viral doses

(increasing K) had progressively greater impact on tumor

regression. Minimal tumor regression occurred at doses up to

106 TCID50 while doses above this level showed increasing tumor

response, and profound regression occurred at a dose of 108

TCID50 (Fig. 6). Slight increases of the dose above 108 TCID50

resulted in a high frequency of complete cure [23]. To test the

prediction that increasing infectious center size could also have a

major impact on the probability of tumor regression (Fig. 5C),

escalating doses of virus were administered to immunocompro-

mised SCID mice bearing subcutaneous plasmacytomas. In these

immunodeficient mice, expansion of infectious centers is not

constrained by the immune system, substantially increasing r. In

line with the model predictions, compared to the responses seen in

the immunocompetent plasmacytoma-bearing mice, similar re-

sponses to treatment in the SCID mice were achieved at 100-fold

lower virus doses (Fig. 6). Furthermore, efficacy is dependent on

the oncolytic therapy and tumor type, both of which are reflected

by the experimentally determined variable r. Different tumor

systems with comparable focus density but vastly different

maximum focus diameters showed regression in tumors with large

foci and no regression in tumors with small foci (unpublished data),

further demonstrating the influence of foci diameter (Fig. S5). This

also demonstrates the flexible nature of this model to portray

different tumor-virus systems through the manipulation of simple

variables. These studies validate the predictive power of the model,

particularly with respect to the effects of dose-escalation and

extended focus expansion on oncolytic efficacy.

Figure 5. Math modeling of oncolytic tumor destruction and experimental validation. (A) Heatmap depicting average probability of
tumor survival with respect to modeling parameters r/R and K determined using the spherical-cap approximation. Values of r/R and K have been
converted to standard units of focus diameter (cell diameters) and percent of tumor cells infected at time zero of foci expansion respectively.
Red = 0.00 probability of survival. Purple = 1.00 probability of survival. Sharp gradient from purple to red reveals drastic drop in survival upon small
change in viral parameters. This gradient defines threshold of therapeutic efficacy. (B) Dose-response relationship: When the relative size of foci radius
is kept constant, small changes in foci density, K, cause drastic changes in survivability beyond threshold dose. (C)When the density of foci is kept
constant, small changes in the relative radius of infection foci cause changes in survivability. An increase in relative foci size achieves greater
survivability at greater doses.
doi:10.1371/journal.pone.0073759.g005
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Discussion

The simplistic mathematical model presented here provides a

new approach to optimizing oncolytic virotherapies that is both

practical and pertinent. The model treats oncolytic virotherapy as

a two phase system in which the efficacy of the first phase is

dependent on viral infection, spread, and infected cell oncolysis. It

is novel as it presents a refined and simplified method of predicting

tumor response to systemic oncolytic viral therapy that was

derived from experimental observations. These experimental

observations allowed this model to be set apart from previous

models for fundamental reasons- it depicts systemic therapy,

distinguishes efficacy gained in the oncolytic phase, justifies

simplicity, and highlights the significance of the virotherapy dose

response. This model is able to generate predictions about tumor

eradication that align with existing literature but is able to do so

based on novel insights that simplify the approach to therapeutic

optimization by reducing the parameters of consideration to two

fundamental parameters; viral distribution and viral spread.

Furthermore, the model is malleable to fit new experimental

observations and different tumor systems.

Previous mathematical models, although informative, are

theoretically derived and then fit to experimentally observed

parameters [3,4,5,6,7,8,9,10,13,15,16,17,18,20]. Conversely, this

model was developed from in vivo experimental observations. This

approach allowed for the differentiation of therapeutic phases due

to data that revealed the rapid speed of viral spread relative to the

rate of tumor growth or adaptive immune response results in the

formation of finite foci of infection at the end of the oncolytic

phase of therapy. This justifies the exclusion of complex

population dynamics considered by theoretical approaches, as

they occur in the later immunotherapeutic phase [3,5,10,

11,12,13,15,16,17,18,19,20]. The current model is thereby sim-

plified to predict therapeutic parameters to achieve cure prior to

the involvement of complex population dynamics. This simplifi-

cation is applicable to all scenarios in which the rate of virus

spread is much greater than the rate of tumor cell growth or

adaptive immune response and when virus spread achieves stable

infection foci.

This simplicity extends to the resulting predictions. Previous

models estimate probability of time-dependent tumor cell survival

and estimate resulting tumor size with respect to time post

treatment. These outcomes rely on the time-dependent dynamics

that emerge from the interactions between the virus and tumor cell

populations [3,4,5,7]. Neglecting the impact of time by differen-

tiating therapeutic phases reduces the complexity of the model

prediction.

Figure 6. Dose escalation in immunocompetent and immunocompromised myeloma tumor models validates model predictions. (A)
Tumor volume monitored by serial caliper measurements in C57Bl6/KaLwRij mice bearing 5TGM1 tumors after single IV administration of sterile saline
or VSV-mIFNb-NIS at doses of 105, 106, 107, or 108 TCID50 (top) and in CB17 ICR SCID mice bearing KAS 6/1 tumors after single IV administration of
sterile saline or VSV-mIFNb-NIS at doses of 105, 106, 107, or 108 TCID50 (bottom) is plotted against time. Dotted line represents tumor volume sacrifice
criteria. Dose escalation is used to model increasing K. Immunocompromised mice allow for extended periods of infectious foci expansion, increasing
r/R. The model is validated by (B) dose-dependent tumor response, defined as proportion of mice with tumor regression at day 12 relative to baseline,
and (C) partial remission, defined as tumor regression $50% compared to baseline after a single IV injection of VSV-IFNß-NIS in immunocompetent
C57Bl6/KaLwRij or immunocompromised SCID mice bearing subcutaneous plasmacytomas.
doi:10.1371/journal.pone.0073759.g006
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Our model agrees with previous models that show the efficacy

of virotherapy to be determined by entry efficiency and resulting

location of infection, replicative capacity, and ability to spread, all

of which determine the extent of damage incurred during the

oncolytic phase [9,12,13,14,15,17,18,19,20]. Previous models

predict that the location of infectious centers occurring from

intratumoral injections and subsequent virus spread or extravasa-

tion within the tumor effect tumor destruction [12,15,19,20]. This

supports our consideration of edge effects on virotherapy efficacy.

However, these models do not accurately portray patterns of

delivery achieved by systemic therapy. The importance of viral

spread kinetics on therapeutic outcomes have also been supported

previously, however it was not recognized that viral spread stops,

producing stable infectious foci [9,10,13,18]. Our model is

different in its ability to take into account focus-initiating infection

and subsequent spatially-restricted spread at all locations of the

tumor while maintaining the influence of infectious center

location. Lastly, the dose- response and therapeutic threshold

predicted by our model is consistent with other work [14,18]. The

novelty of our insight is in the drastic nature of the predicted dose

response above therapeutic thresholds. Small changes in virother-

apy protocol can lead to extreme changes in oncolytic phase

efficacy.

Our model also illustrates the important interplay between

changes in dose and viral spread that will lead to curative

therapeutic parameters. This reconciles discrepancies between

previous models. While previous models disagree whether

increases in viral infection, spread, kill rates, and immunomodu-

lation impede or improve therapeutic efficacy [7,8,9,10,11,14,18],

it appears an adequate balance between these parameters is most

efficacious. With this model, many of these interactions are defined

in a single experimentally observed term. The maximum infectious

radius r inclusively accounts for the influence of viral spread and

cell death rates, burst size, and innate immunity. Additionally, a

dose response relationship exists between viral dose and focus-

initiating centers (K) that directly impacts therapeutic efficacy.

Therefore, an optimal balance of K and r will lead to maximum

oncolysis, shown experimentally by modifying virus dose and

immune response respectively. Previous assumptions that because

the virus replicates, dose does not matter is squelched by this

model. The model underscores the critical importance of dose

escalation and developing drugs to combat innate immune

responses to allow the intratumoral infectious foci to grow to a

larger average size. The results of these in vivo experiments are in

agreement with the predictions and assumptions of the model,

providing important experimental validation.

These predictions are in alignment with existing model

predictions, and to put our work in the context of existing

literature, our results are compared with the predictions of

previous mathematical models, specifically three recent models

that also focus on spatially constrained viral spread, Wodarz et al

[17], Mok et al [12], and Wein et al [15]. These existing models,

although complex in nature, support our model assumptions and

predictions.

Wodarz and colleagues [17]used a recombinant adenovirus in

an in vitro setting to observe spatial patterns of virus spread and

then used an agent-based stochastic computational model to

predict survival. In their model time-dependent and probabilistic

stochastic events are maintained while contributions of complex

factors such as immune system, tumor vasculature, and physical

barriers are neglected at a theoretical level. Our model also

neglects such contribution on the basis of experimental observa-

tions of viral kinetics that justify such neglect. Like our in vivo

observations, the authors saw in the two-dimensional setting that

virus was transmitted to uninfected cells in the immediate vicinity

of infected cells, forming three distinct patterns of spread. In our

three-dimensional in vivo models we also saw this spatial constraint

of virus spread to the immediate vicinity of originally infected cells

such that foci of infection are formed. Our observations most

closely resembles the ‘‘hollow ring’’ pattern observed by Wodarz

et al, however our observations allow for simplified modeling as

only one pattern of viral spread was observed. Our observations

not only support the theoretical neglections made by the authors,

but also allow added simplicity relative to Wodarz et al. as only

one pattern of spatial restricted viral spread was observed. Their

prediction that the hollow ring structure is formed when the virus

outruns the antiviral factors is in support of our experimental

observations and subsequent modeling assumptions that virus

spread is sufficiently fast during the oncolytic phase that other

complex population dynamics are moot during this phase.

A model by Mok et al [12] also considers complex population

dynamics in a stochastic model of intratumoral injected HSV

virotherapy. This model considers complex parameters of therapy

including tumor permeability and viral diffusion and binding

kinetics, all of which are taken into account by r in our model. The

overall conclusion is that improving penetration and diffusivity of

HSV in tumors will increase efficacy. Our model, based on the

assumption of random viral distribution within the tumor from

systemic delivery, predicts that oncolytic virotherapy will be able

to achieve cure as long as r and K are sufficient, which we also

acknowledge will benefit from increased distribution of virus in the

tumor. Another prediction of our model relates to increases in r

through immune suppression and is consistent with the model by

Wein et al [15] who state that in addition to diffuse intratumoral

infection, tumor eradication by oncolytic adenovirus will probably

require potent suppression of innate immune clearance mecha-

nisms. This model uses intratumoral injection of a replication

competent virus that is able to spread infection to nearby cells,

presenting patterns of viral spread that is also spatially contained.

This complex model comprises a system of partial differential

equations that follows five distinct entities within the tumor while

we are able to simplify the system to two discrete entities at the end

of oncolysis-uninfected tumor cells and infected tumor cells. The

authors predict threshold conditions for tumor clearance in the

absence of immune mediated clearance, consistent with the

therapeutic threshold demonstrated by our model, although we

provide direct evidence to substantiate the absence of immune

contributions. Their model implies that tumor is eradicated if virus

infection can outpace the tumor proliferation, consistent with our

model assumptions and observations. The authors conclude that

tumor eradication will require a diffuse pattern of infection within

the tumor mass, that the rate of viral spread is critical, and

immune-mediated viral clearance must be suppressed. The

conclusions from this complex model of intratumoral injection of

oncolytic virus are consistent with our simple model’s predictions

regarding the importance of viral distribution (K) and viral spread

(r) and support the use of systemically delivered virus. Our model

aligns nicely with previous models both in the support our

experimental observations lend to previous model assumptions

regarding contributions of immune components and in the

consistency of the resulting predictions regarding the importance

of disperse viral distribution and enhanced viral spread.

Lastly, our model provides a starting point for future

experimentation and is flexible to be adjusted for different

experimental systems. The model is based on a series of

assumptions that are approximations regarding viral and tumor

parameters that can be refined through future experimentation in

order to more accurately reflect the biology of the system while
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maintaining the model’s simplistic nature. The assumption that K

infected cells are distributed randomly may be an oversimplifica-

tion, as virus extravasation from tumor blood vessels is impacted

by regional variations in intratumoral vascular permeability, blood

flow, and interstitial fluid pressure [27,28,29]. Future refinements

could account for variability in extravasation, effectively helping to

refine the volume of vulnerability or the distribution of this volume

in cooperation with the proposed method. The uniform maximum

focus size is an approximation of mean focus radius within a

normally distributed sample. It is dependent on the specific

oncolytic therapy and tumor type, both of which are reflected by

the experimentally determined variable r. The assumption that

tumor growth rate is negligible with respect to the rate of virus

spread during the oncolytic phase was based on experimental

evidence (Fig. 3). We recognize that regional variations in tumor

cell growth rates could impact therapeutic outcomes estimated by

this model. For example, it is unknown whether tumor cell growth

takes place predominantly at tumor center or periphery, which is

important when considering modeled edge effects [30]. For

scenarios based on slower replicating viruses, inclusion of tumor

growth during the oncolytic phase may be a necessary refinement.

Adaptive antiviral and antitumor immune responses after initial

oncolytic phase that can hinder or improve oncolytic therapy

outcomes add further complexity [25,31,32]. They can be

addressed in future studies where the current model can be

modified to describe adaptive immunological responses and

subsequent tumor growth responses beyond the oncolytic phase.

In this way, the model maintains simplicity while remaining

flexible to adjustments reflecting observed viral parameters.

To summarize, this novel spatial mathematical model predicts

the probability of tumor cell survival after a single IV administration

of oncolytic VSV. The model is based on immunofluorescence

analysis of intratumoral virus propagation and is experimentally

validated by detailed dose-response relationships in myeloma

models. In contrast to previous models, the new model is explicitly

spatial, neglecting all dependencies on time or population dynamics

due to evidence showing virus spread occurs at rates much greater

than tumor cell growth or immune modulation. While other models

predict future survivability or recurrence rate, the new model aims

only to predict probability of any tumor cell surviving after the

oncolytic phase of a single dose administration and will therefore be

useful in optimization of single-shot curative therapies [23].

Supporting Information

Figure S1 Modeling parameters for determination of
lens of vulnerability volume. The volume of the lens created

by the overlap of spheres of radii R and r is determined for two

unique cases, (A) when xo lies inside the chord of intersection and

(B) when xo lies outside the chord of intersection but within the

tumor. Lens volume is determined by the sum of two spherical cap

volumes using integration of circular disks of radius h and height dy

for all values of y for each cap; (i) one cap generated by the

curvature of sphere radius r and the chord of intersection, and (ii)

one cap generated by the curvature of sphere radius R and the

chord of intersection.

(TIF)

Figure S2 Mathematical model diagram of spherical
cap approximation. Diagram of a spherical tumor depicting

volumes of vulnerability for points within the interior and border

case. Inset depicts the spherical cap approximation for calculating

edge-effect. The model is presented as the average survival of any

point xo in the spherical tumor radius R after expansion of K foci to

maximum radius r. A simplified model neglecting edge-effect

completely can be written in terms of foci per unit volume, d, and

maximum radius r.

(TIF)

Figure S3 The influence of edge effect on model
prediction of tumor survivability becomes increasingly
negligible as viral parameters r/R and K increase.
Comparison of the predicted average probability of tumor cell

survival with the three models, the complete model, the spherical

cap approximation model, and the model neglecting edge effect

plotted for (A) different constant values of r with changing values of

K and for (B) different constant values of K with changing values of

r/R.

(TIF)

Figure S4 Three-dimensional surface plot depicting
probability of tumor cell survival. Relationship between

average probability of tumor cell survival and viral parameters r/R

and K. Values of r/R and K have been converted to standard units

of focus diameter (cell diameters) and percent of tumor cells

infected at time zero of foci expansion respectively. The plot

predicts viral parameter thresholds beyond which rapid decreases

in survival probabilities occur with minimal changes in r or K.

(TIF)

Figure S5 Model parameter r is dependent on tumor
type and influences therapeutic efficacy. Immunocompro-

mised SCID mice bearing U266 myeloma tumors or immunocom-

petent mice bearing syngeneic 5TGM1 myeloma tumors were

injected with a single IV dose of VSV (16107 and 16108 TCID50

respectively). Tumors were harvested at 24 or 48 hr post treatment

as indicated and analyzed by immunofluorescence for VSV antigens

(green in U266 tumor, red in 5TGM1 tumor) and tumor nuclei

(blue). Immunofluorescence images show small, dispersed foci of

infection with restricted expansion in U266 myeloma tumors, with

larger, rapidly expanding and converging foci in 5TGM1 myeloma

tumors at the same time point. Different tumor systems (5TGM1

compared to U266 myeloma tumors) with comparable foci density

but vastly different foci diameters corresponded to regression of

tumors with large foci and no regression in those with small foci,

demonstrating the influence of foci diameter on therapeutic efficacy.

(TIF)

Table S1 Components of the approximate spherical cap
model derivation.

(DOCX)

File S1 Supplemental text describing mathematical
derivation and approximations.

(DOC)
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