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Abstract
Rationale—Accumulating evidence indicates that brain kappa-opioid receptors (KORs) and
dynorphin, the endogenous ligand that binds at these receptors, are involved in regulating states of
motivation and emotion. These findings have stimulated interest in the development of KOR-
targeted ligands as therapeutic agents. As one example, it has been suggested that KOR
antagonists might have a wide range of indications, including the treatment of depressive, anxiety,
and addictive disorders, as well as conditions characterized by co-morbidity of these disorders
(e.g., post-traumatic stress disorder [PTSD]) A general effect of reducing the impact of stress may
explain how KOR antagonists can have efficacy in such a variety of animal models that would
appear to represent different disease states.

Objective—Here we review evidence that disruption of KOR function attenuates prominent
effects of stress. We will describe behavioral and molecular endpoints including those from
studies that characterize the effects of KOR antagonists and KOR ablation on the effects of stress
itself, as well as on the effects of exogenously-delivered corticotropin-releasing factor (CRF), a
brain peptide that mediates key effects of stress.

Conclusion—Collectively, available data suggest that KOR disruption produces anti-stress
effects and under some conditions can prevent the development of stress-induced adaptations. As
such, KOR antagonists may have unique potential as therapeutic agents for the treatment and even
prevention of stress-related psychiatric illness, a therapeutic niche that is currently unfilled.
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Background
Neuropsychiatric conditions ranging from depressive disorders to addiction can be caused
by environmental factors (e.g., life experiences), genetic factors, or interactions of the two.
One environmental factor that can serve as a common trigger for all of these conditions is
stress. Severe stress has many damaging effects; as one example, it can have acute
cognitive-disrupting effects (Campeau et al. 2011; Putnam 2013) that lead to injury or death.
There is compelling evidence that even a single exposure to a severe stressor can cause
chronic psychiatric illnesses such as major depressive disorder (MDD), generalized anxiety
disorder (GAD), and post-traumatic stress disorder (PTSD) (Kendler et al. 1999; Kessler
1997; 2000; Pine et al. 2002). Stress can also promote substance abuse and addiction (Koob
and Volkow 2010), which are often co-morbid with depressive and anxiety disorders
(Brown and Wolfe 1994; Koob and Kreek 2007; Logrip et al. 2012). In addition to causing
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new cases of psychiatric illness, stress can exacerbate existing illnesses (Pittenger and
Duman 2008) and trigger relapse of drug-seeking behaviors in humans and laboratory
animals (Beardsley et al. 2005; Marchant et al. 2013; Shaham and Stewart 1995; Wee and
Koob 2010). Collectively, the disorders caused or exacerbated by stress are costly and
frustrating because they tend to be debilitating, persistent, and resistant to existing
treatments.

There is accumulating evidence that brain kappa-opioid receptors (KORs) play an important
role in transducing the effects of stress. Activation of KORs produces aversive and
depressive-like states in humans (Pfeiffer et al. 1986) and in laboratory animals (Carlezon et
al. 2006; Mague et al. 2003; Todtenkopf et al. 2004) that may mimic, at least in part, those
caused by stress (Land et al. 2008; McLaughlin et al. 2003a). Although the mechanisms by
which KOR activation produces stress-like effects are not understood, recent studies suggest
that interactions with brain corticotropin-releasing factor (CRF) systems are critical. CRF is
a neuropeptide that is released in the brain in response to stress (Koob 1999), and
administration of exogenous CRF produces many of the same physiological and behavioral
effects as stress (Hauger et al. 2009). Interestingly, key behavioral and molecular effects of
stress and CRF are blocked by selective KOR antagonists (Land et al. 2008; McLaughlin et
al. 2003a; Van't Veer et al. 2012), which is consistent with other evidence that these agents
have antidepressant-like (Mague et al. 2003; Pliakas et al. 2001) and anxiolytic-like effects,
including attenuation of fear-potentiated startle (Knoll et al. 2007; Knoll et al. 2011) and
stress-induced reinstatement of drug-seeking behavior (Beardsley et al. 2005; Graziane et al.
2013). A broad effect of reducing the impact of stress may explain how KOR antagonists
can have efficacy in such a wide variety of animal models that would appear to represent
different disease states.

Regardless of mechanism, KOR antagonist-induced blockade of stress effects may serve as
the basis for improved medications that relieve the signs and symptoms of depressive,
anxiety, and addictive disorders. It may also represent an opportunity to develop an entirely
new therapeutic area: prevention of certain types of psychiatric illness (i.e., those directly
caused by stress). In this review, we describe existing data from studies utilizing behavioral
pharmacology and genetic engineering to manipulate KORs or their endogenous agonist,
dynorphin (Chavkin et al. 1982). We highlight strengths and limitations of existing studies,
and identify gaps in current knowledge that should be filled.

Overview of stress effects
Stress is an organism's response to internal or external challenges (stressors) and can
negatively impact psychological and physical well-being. Acutely, stressors lead to
involuntary hormonal (e.g., increased free fatty acid generation, inhibition of the immune
system), autonomic (e.g., increased heart and breathing rate, increased blood flow to the
brain and muscle), and behavioral (e.g., feelings of anxiety and fear, heightened vigilance)
changes—often collectively called “the stress response”—that prepare the body to maintain
homeostasis in response to a real or perceived threat (Chrousos and Gold 1992). This
adaptive response is generally activating and protective in the short-term (Keay and Bandler
2001), but can become impairing with increasing intensity, duration and frequency of the
stressor (Buydens-Branchey et al. 1990; Miczek et al. 2008; Sapolsky 1996). Further,
predictability and controllability of the stressor are key parameters of the stress response as
even brief, low intensity stressors can have negative effects if unpredictable and
uncontrollable (Adell et al. 1988; Foa et al. 1992). Severe or sustained stressors can disrupt
cognitive processes and cause confusion (Campeau et al. 2011; Janis and Mann 1977;
Keinan 1987; Putnam 2013; Shaham et al. 1992), and often precede the development of
anxiety disorders, clinical depression, and substance abuse (Fox et al. 2007; Kendler et al.
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1999; Kessler 1997; Koob and Kreek 2007; Pine et al. 2002; Volkow and Li 2004). In
humans, clinical depression in characterized by depressed mood, anhedonia, and reduced
energy while anxiety disorders entail excessive worrying that is difficult to control and
problems concentrating. Some signs of psychiatric illness can be observed; thus testing in
animals to quantify, for example, hedonic state, avoidance, escape, and physiologic state can
be used to infer depression- and anxiety-like behaviors. In laboratory settings, stress
procedures often trigger depressive- and anxiety-like behaviors and drug-seeking in animal
models. Discrete stressors including footshock, maternal deprivation, and restraint induce
depressive-like behaviors including increased immobility in the forced swim test [FST])
(Aisa et al. 2008; Platt and Stone 1982), an effect that is opposite to that of antidepressants
(Detke et al. 1995; Porsolt et al. 1977) and thus interpreted to indicate a prodepressive-like
effect (Pliakas et al. 2001), as well as elevations in brain reward thresholds (Zacharko and
Anisman 1991) that indicate anhedonia. More naturalistic stressors also produce similar
outcomes: as an example, subordinate mice in a chronic social defeat stress (CSDS)
paradigm—an ethologically relevant stressor involving daily exposure to an aggressor—
show anxiogenic-like responses such as spending less time in the lit area of a light/dark box
and the open arms of an elevated plus maze (EPM) (Keeney and Hogg 1999; Slattery et al.
2012), as well as decreases in social interaction with other mice (Avgustinovich et al. 2005;
Berton et al. 2006). These studies demonstrate how models of stress in rodents may provide
valuable insights into the mechanisms of stress-induced illness in humans.

Several mediators have been implicated in the stress response, including the CRF,
catecholamine, serotonin, and vasopressin systems (see Carrasco and Van de Kar 2003;
Tsigos and Chrousos 2002). Here we focus on CRF because it plays a well-characterized
role in stress-induced behaviors, its function can be dysregulated in people with psychiatric
illness, and its effects are linked to KOR systems. First described by Vale and colleagues
(1981), CRF is the principal regulator of the stress response (Majzoub 2006; Spiess et al.
1981). The peptide is produced by cells in the paraventricular nucleus of the hypothalamus
(PVN) and triggers hormonal stress responses by activating the hypothalamic-pituitary-
adrenal (HPA) axis, which leads to the release of adrenocorticotropic hormone (ACTH)
from the pituitary (Antoni 1986). In turn, ACTH stimulates glucocorticoid release from the
adrenal glands, which produces subsequent metabolic and cardiovascular changes (Fig. 1).
Glucocorticoid actions are mediated by two receptors: glucocorticoid receptors (GRs) and
mineralocorticoid receptors (MRs) which are expressed throughout the brain including areas
involved in emotion, memory, and behavior such as the septum, hippocampus (HIP), and
prefrontal cortex (PFC) (Ahima and Harlan 1990; Cintra et al. 1994; Fuxe et al. 1985;
Morimoto et al. 1996; Reul and de Kloet 1985; Viengchareun et al. 2007). GRs and MRs
regulate hormonal, autonomic and behavioral responses to stress via their widespread
expression (Munck et al. 1984), and trigger negative feedback circuits that terminate HPA
axis activation following stress (Autelitano et al. 1990; Herman et al. 1989; Swanson and
Simmons 1989).

HPA axis regulation is achieved through actions integrated within the PVN. Afferents from
cicumventricular organs, brainstem nuclei, and hypothalamic-basal forebrain systems can
directly activate PVN neurons (Ziegler and Herman 2002) and relay information on the state
of the body such as cardiovascular tone, blood oxygenation, arousal and osmotic state. In
particular, the bed nucleus of the stria terminalis (BNST) sends projections from multiple
subregions (Dong et al. 2001; Dong and Swanson 2004; Ziegler and Herman 2002),
suggesting that this region plays a crucial role in regulation of PVN activity. Inputs to the
BNST include regions demonstrated to regulate the HPA axis such as the amygdala (AMY),
HIP and PFC despite having sparse or no direct connections with the PVN (Canteras et al.
1995; Crane et al. 2003; Cullinan et al. 1993; Gray et al. 1989; Herman et al. 2005; Ziegler
and Herman 2002), suggesting the BNST may represent a relay station where limbic
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information feeds in and is passed to the PVN (Cullinan et al. 1993; Herman et al. 2005).
Other regions with direct input to the PVN (e.g., nucleus of the solitary tract) may also relay
information from afferent connections (e.g., AMY) (Beaulieu et al. 1987; Schwaber et al.
1982; Xu et al. 1999; Ziegler and Herman 2002). Additionally, CRF receptors are expressed
within circuits implicated in motivation and emotion (Dautzenberg and Hauger 2002; De
Souza et al. 1985; Millan et al. 1986; Van Pett et al. 2000), such as the mesocorticolimbic
system, where they can alter behavior by modulating reward, anxiety and depressive
responses independent of HPA axis activation (Dautzenberg and Hauger 2002; Koob et al.
1993; Merchenthaler 1984; Sakanaka et al. 1987; Swanson et al. 1983). Indeed, CRF is
implicated in the detrimental consequences of prolonged stress, and hypersecretion of CRF
has been hypothesized to be the primary contributing factor in the development of
depressive and anxiety disorders (De Souza 1995; Nemeroff 1992; Owens et al. 1993). In
humans, major depressive disorder has been associated with higher levels of cerebrospinal
fluid CRF (Arato et al. 1989; Kasckow et al. 2001; Nemeroff et al. 1984; Widerlov et al.
1988), and CRF levels are also elevated in patients with post-traumatic stress disorder
(PTSD) (Baker et al. 1999; Bremner et al. 1997; de Kloet et al. 2008).

Administration of exogenous CRF induces anxiety- and depressive-like behavior in
laboratory animals, enabling studies of cause-effect relationships between stress and
behaviors that reflect the signs of psychiatric illness. For example, socially housed
nonhuman primates exhibit depressive-like behaviors such as huddling and wall-facing after
intracerebroventricular (ICV) CRF infusion (Kalin 1990; Strome et al. 2002). In rodents,
CRF administration or genetic overexpression also precipitates depressive- and anxiety-like
behaviors (Britton et al. 1982; Dunn and File 1987; Liang et al. 1992; Stenzel-Poore et al.
1994; Swiergiel et al. 2008; van Gaalen et al. 2002). In contrast, antagonism or genetic
knockout of CRF receptors may produce antidepressant- and anxiogenic-like effects in
laboratory animals (Britton et al. 1986; Deak et al. 1999; Griebel et al. 2002; Smith et al.
1998; Timpl et al. 1998), especially when animals are exposed to acute stress before testing
(Zorrilla et al. 2013). For example, administration of a CRF receptor antagonist to non-
human primates decreases anxiety and fear behavior and increases exploratory and sexual
behavior when animals are exposed to stressful stimuli (Habib et al. 2000). Similarly, CRF
antagonists block drug withdrawal-induced anxiety-like behaviors (Basso et al. 1999;
Heinrichs et al. 1995; Rassnick et al. 1993; Sarnyai et al. 1995) and reduce self-
administration to drugs including cocaine, nicotine and heroin in dependent animals (George
et al. 2007; Goeders and Guerin 2000; Greenwell et al. 2009; Specio et al. 2008).

Despite these promising effects in preclinical studies, the development of CRF receptor
antagonists as therapeutics has been hindered by the high lipophilicity of initial drugs,
although several novel compounds are in clinical trials (Zorrilla and Koob 2010).
Nevertheless, further investigation into the systems downstream of CRF receptor activation
may provide new targets for treatment. One mediator of stress effects that may provide
unique drug targets is the KOR system.

Links between stress and KORs
It is well established that endogenous opioid systems play important roles in stress, reward
processing, and mood regulation. These systems consist of the neuropeptides endorphins,
enkephalins, and dynorphins and their cognate receptors (mu, delta, and kappa,
respectively). Biologically active peptides for all opioid receptors are derived from inactive
prohormones that are post-translationally processed. The dynorphin family of peptides arises
from processing of prodynorphin (Pdyn) into major products (see Bruijnzeel 2009;
Schwarzer 2009) that preferentially bind to and activate KORs (Chavkin et al. 1982),
although with differing potency (James et al. 1984).
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KORs are G protein-coupled receptors (GPCRs) that mainly interact with inhibitory Gα
subunits (Law et al. 2000). KOR activation by endogenous or synthetic agonists can produce
inhibition of adenylate cyclase activity (Attali et al. 1989; Konkoy and Childers 1989; 1993;
Lawrence and Bidlack 1993) and can decrease cell excitability and neurotransmitter release
by altering calcium and potassium currents (Gross et al. 1990; Henry et al. 1995; Hjelmstad
and Fields 2003; Rusin et al. 1997; Simmons and Chavkin 1996; Tallent et al. 1994). KOR
activation has also been shown to activate mitogen activated protein kinase (MAPK)
pathways in neurons and astrocytes (Belcheva et al. 2005; Belcheva et al. 1998; Bohn et al.
2000; Bruchas et al. 2007a; Bruchas et al. 2006; Kam et al. 2004). The MAPK family
includes several kinases that respond to a variety of cell stimuli and regulate diverse
functions such as proliferation, differentiation, apoptosis, and gene expression. Thus KOR-
mediated effects on ion channels and signaling cascades allows for rapid effects on cell
excitability and neurotransmitter release that may underlie acute stress effects, while delayed
effects such as gene expression may play a role in conditions of chronic stress (Knoll and
Carlezon 2010).

Consistent with a role in mediating stress effects, moderate to high levels of dynorphin and
KOR mRNA expression have been detected in stress-responsive brain regions including the
PVN, AMY, HIP, and BNST of rodents (Lin et al. 2006; Mansour et al. 1987; 1988; Meng
et al. 1993; Merchenthaler et al. 1997; Morris et al. 1986; Peng et al. 2012). A similar
expression profile exists in human brain (Hurd 1996; Nikoshkov et al. 2005; Simonin et al.
1995; Zhu et al. 1995), suggesting the KOR system plays an evolutionary conserved role.
The expression pattern of KORs and its overlap with the systems traditionally implicated in
the stress response raises the possibility that they may participate in HPA axis regulation
(Fig. 1). Indeed, stress induces dynorphin release and activation of KORs with synthetic
agonist increases corticosterone (CORT) levels in rats (Hayes and Stewart 1985; Iyengar et
al. 1986) and cortisol levels in rhesus monkeys and humans (Pascoe et al. 2008; Ur et al.
1997). The mechanism through which KORs activate the HPA axis is unclear, but likely
involves stimulation of CRF release in the hypothalamus as well as CRF-independent
mechanisms (Buckingham and Cooper 1986; Calogero et al. 1996; Nikolarakis et al. 1987).
Data from these studies suggest that disruption of KORs may reduce HPA axis activation.
Consistent with this possibility, CORT levels are reduced in both Pdyn knockouts and wild-
type mice treated with the prototypical KOR antagonist nor-binaltorphimine (norBNI).
Furthermore, injection stress-induced increases in CORT are attenuated in these knockouts
(Wittmann et al. 2009) suggesting KOR activation facilitates HPA axis activation. Reduced
CORT levels are also observed in norBNI-treated rats in response to food restriction and
cocaine challenge (Allen et al. 2013). However, it does not appear that KOR activation is
necessary for all stress-induced HPA axis activation. For example, there are no differences
between norBNI-treated or Pdyn knockouts and wild-type mice at either baseline or
following forced swim stress (McLaughlin et al. 2006a). In yet a third Pdyn knockout strain,
CORT levels following exposure to an elevated zero maze reach a lower peak concentration,
but are prolonged compared to controls (Bilkei-Gorzo et al. 2008). These differences may
arise from the type of stress used, blood collection time points, differences in targeting
construct or strain differences, but overall suggest the KOR system can modulate stress-
induced glucocorticoid release in some instances. As many of these studies used systemic
KOR agonist treatment and constitutive Pdyn knockouts, additional studies are needed to
identify the sites in which KORs regulate HPA axis activation.

Role of Kappa-opioid receptors in stress-induced behaviors
Key aspects of KOR-mediated behaviors resemble those observed following stress or CRF
administration, suggesting common mechanisms of action. Like stress or CRF, KOR
agonists elevate brain reward thresholds (Carlezon et al. 2006; Dinieri et al. 2009;
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Todtenkopf et al. 2004; Tomasiewicz et al. 2008), and produce depressive-like effects
including increased immobility in the FST (Carlezon et al. 2006; Mague et al. 2003). In
humans, selective KOR agonists produce negative mood states including dysphoria, anxiety,
and abnormal behavior along with psychotomimesis at higher doses (Pfeiffer et al. 1986).
There is now considerable evidence that KOR antagonists block KOR agonist effects and
have antidepressant- and anxiolytic-like effects on their own. For example, KOR antagonism
produces anxiolytic-like effects in the EPM, fear-potentiated startle, novelty-induced
hypophagia and defensive burying tests (Carr and Lucki 2010; Knoll et al. 2007; Wiley et al.
2009), suggesting that KOR activation is necessary for the acquisition and/or expression of
anxiety-like behavior. Anxiolytic-like effects have been observed in KOR system-deficient
mice (Van't Veer et al. 2013; Wittmann et al. 2009), although it is important to note that
some lines of constitutive KOR knockout mice do not differ from controls in measures of
anxiety-like behavior (Filliol et al. 2000; Simonin et al. 1998), and that Pdyn ablation can
reportedly increase anxiety (Bilkei-Gorzo et al. 2008). These discrepant results may be
explained by differences in compensatory changes that occur during development in these
lines, differences in genetic background, as well as differences in the stressfulness of the
procedures, environment and factors including husbandry (e.g., Crabbe et al. 1999) among
labs. Indeed, restricting KOR ablation to dopamine systems produces a clearer anxiogenic-
like phenotype, with increased center exploration in an open field and shorter latencies to
enter the lit compartment of the light/dark box (Van't Veer et al., 2013). Furthermore, effects
of KOR blockade may not be apparent until after an initial stressor, at which time putative
KOR-dependent neuroadaptations occur (for review, see Knoll and Carlezon, 2010). For
instance, KOR antagonists and KOR system gene disruption reduce immobility in the FST,
but the effects are typically detected during the second exposure to forced swim stress
(Mague et al. 2003; McLaughlin et al. 2006a; McLaughlin et al. 2003a; Pliakas et al. 2001,
but see Carey et al. 2009). Antidepressant-like effects are also observed when KOR
antagonists are administered after the first swim sessions suggesting that blockade of KOR
activation following stress may be sufficient to prevent neural adaptations that facilitate
immobility during the second swim session (Beardsley et al. 2005; Carr et al. 2010; Wiley et
al. 2009). Similarly, central administration of norBNI following footshock stress produces
antidepressant-like effects in the learned helplessness paradigm (Newton et al. 2002). The
mechanisms of KOR-dependent behaviors are not yet understood, but may involve distinct
neural circuits and reflect the differences in immediate actions of KOR activation versus
delayed effects such as gene expression changes (see Bruchas and Chavkin 2010; Knoll and
Carlezon 2010), which may be especially important in animal models involving initially
normal (i.e., non-depressed) subjects.

In addition to forced swimming, stressors including footshock and social defeat also activate
the KOR system (Beardsley et al. 2005; Land et al. 2008; McLaughlin et al. 2006b;
McLaughlin et al. 2003a; Redila and Chavkin 2008), suggesting it plays an important role in
generalized stress effects. In conditioned place preference (CPP) tests, the rewarding effects
of a treatment (e.g., a drug of abuse) become associated with the environment in which it
was paired, thereby causing a preference for this environment during subsequent drug-free
exposure. This effect can be extinguished by repeated access to the testing apparatus, and
then rapidly reinstated by stress or drug priming. Disruption of KOR signaling blocks stress-
induced but not drug-primed reinstatement (Aldrich et al. 2009; Carey et al. 2007; Eans et
al. 2013; Jackson et al. 2013; Redila and Chavkin 2008), suggesting the KOR system plays a
highly specific role in mediating the motivational effects of stress. Exposure to stress can
also increase the magnitude of drug reward, as measured in the CPP test. Potentiation of
drug-induced CPP following social defeat and forced swim stress is blocked by the KOR
antagonist norBNI and absent in Pdyn and KOR knockout mice (McLaughlin et al. 2006a;
McLaughlin et al. 2006b; McLaughlin et al. 2003a; Schindler et al. 2010; Smith et al. 2012;
Sperling et al. 2010). Further, disruption of KOR signaling attenuates the potentiation of

Van't Veer and Carlezon Page 6

Psychopharmacology (Berl). Author manuscript; available in PMC 2014 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



cocaine-induce locomotor sensitization by stress (Allen et al. 2013). In contrast, activation
of KORs mimics the effects of stress on reward (McLaughlin et al. 2006a; Schindler et al.
2010), demonstrating that KOR activation is a necessary and sufficient element of at least
certain stress effects on behavior. These data, together with findings that KOR antagonists
block stress-induced drug-seeking behavior in drug self-administration models (Beardsley et
al. 2005; Beardsley et al. 2010; Graziane et al. 2013) and withdrawal-induced anxiogenic-
and depressive-like behavior (Chartoff et al. 2012; Jackson et al. 2010; Valdez and
Harshberger 2012), without reward-related effects in drug self-administration tests
(Beardsley et al. 2005; Todtenkopf et al. 2004), raise the possibility that KOR antagonist
treatment may reduce relapse in drug abusers attempting to abstain from use.

Dynorphin release appears critical for encoding the aversive (dysphoric) effects of stress. It
is known that mice will develop a conditioned place aversion (CPA) to an odorant that was
previously paired with stress. The avoidance behavior is abolished by pretreatment with
norBNI before stress (forced swim or footshock) and absent in Pdyn knockout mice (Land et
al. 2008), suggesting reduced aversions. Treatment with norBNI blocks both psychological
(Takahashi et al. 1990) and physical stress-induced antinociception (McLaughlin et al.
2006a; McLaughlin et al. 2003a) a phenomenon in which stress reduces sensitivity to pain.
Both norBNI and Pdyn gene disruption block stress-induced antinociception observed
immediately after the first and subsequent days of social defeat (McLaughlin et al. 2006b).
During CSDS sessions, rodents display characteristic immobility and social defeat postures,
which tend to increase progressively (Miczek et al. 2004). Postures reflecting social defeat
are reduced in norBNI-treated and Pdyn knockout mice, suggesting that KOR blockade
produces signs of stress resilience. However, these differences are not apparent proceeding
the first day of stress, revealing that KOR signaling is not necessary for initial defeat-
induced postures in this paradigm, but instead in the progressive, neuroadaptive effects of
chronic stress.

Stress produces KOR-dependent effects in learning and memory tasks which may reveal a
role for KORs in stress-induced deficits in cognitive function. Mice subjected to repeated
forced swim stress or systemic KOR agonist show a deficit in novel object recognition that
can be prevented with KOR antagonist treatment and is absent in Pdyn knockout mice
(Carey et al. 2009; Paris et al. 2011). Further, chicks treated with a KOR agonist show
impairments in a one-trial peck avoidance task while norBNI treatment facilitated
performance (Colombo et al. 1992). Pdyn- and KOR-knockout mice have enhanced
performance in the spatial Morris water maze (MWM), suggesting that KOR activation,
perhaps induced by swim, may inhibit performance (Jamot et al. 2003; Nguyen et al. 2005).
KOR effects on memory may depend, at least in part, on receptors in the HIP as intra-CA3
HIP infusions of KOR agonist induce deficits in the MWM (Daumas et al. 2007). These
results are consistent with the hypothesis that stress-induced dynorphin release impairs
memory, although there is evidence that KOR activation can improve memory (Hiramatsu
and Hoshino 2004; Hiramatsu et al. 1996; Kuzmin et al. 2006). These improvements may be
the result of non-KOR effects (Hiramatsu and Hoshino 2004; 2005; Kuzmin et al. 2006) or
may represent acute activating effects of KORs as is seen with stressors. Regardless,
considering that memory impairments are a symptom of a variety of mood disorders and
other psychiatric illnesses, therapeutic agents that mitigate them may have broad indications
that cut across conditions previously conceptualized as being unrelated (Morris and Cuthbert
2012).

As described above, CRF is the primary regulator of the stress response; when centrally
administered, it can recapitulate many of the behavioral, hormonal and autonomic effects of
stress, including dynorphin release. CRF has been shown to stimulate release of dynorphin
from spinal cord (Song and Takemori 1992), hypothalamus (Almeida et al. 1986;
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Nikolarakis et al. 1986), globus pallidus and striatum (Sirinathsinghji et al. 1989). It also
produces increases in KOR phosphorylation—a marker of receptor activation (McLaughlin
et al. 2003b)—in components of stress and anxiety circuits including the striatum, dorsal
raphe nucleus (DRN), AMY, HIP, and NAc that are reduced or absent in norBNI pretreated
mice and Pdyn knockouts (Land et al. 2008). The fact that CRF and KOR agonists produce
aversive and anxiogenic-like effects raises the possibility that CRF effects may be mediated
by the KOR system. To address this question, Land et al. (2008) examined the effect of
KOR blockade on CRF-induced CPAs in mice. In these experiments, central CRF
administration induced aversion to the context in which mice were placed following
infusion. CRF-induced CPA was abolished with norBNI pretreatment and in Pdyn knockout
mice (Land et al. 2008), suggesting that CRF receptor activation promotes dynorphin release
and subsequent KOR activation to mediate the aversive component of stress. Important
interactions also exist between the CRF and KOR systems as measured in the 5-choice serial
reaction time task (5CSRTT), a test of cognitive behavior analogous to the continuous
performance task used to study attention in humans (Beck et al. 1956; Robbins 2002). CRF
dose-dependently disrupts several performance measures in the 5CSRTT, and these deficits
are attenuated by systemic administration of the KOR antagonist JDTic at a dose without
effects of its own (Van't Veer et al. 2012). These findings further demonstrate that KOR
antagonists can prevent acute CRF-related effects, including those that degrade performance
in tasks requiring attention.

Brain regions implicated in KOR-mediated effects
Identifying the brain regions in which drugs have their effect has become a crucial element
of neuroscience research, in part because characterizing the substrates and mechanisms of
drug action may ultimately lead to dramatic improvements in therapeutics. It is important to
emphasize that it is already established that systemic administration of KOR agonists
produce depressive-like effects whereas KOR antagonists have antidepressant- and
anxiolytic-like effects, as well as general anti-stress effects that can attenuate reinstatement
of drug-seeking behaviors. The efficacy of KOR antagonists in these various preclinical
models has provided sufficient rationale for moving them into human studies; indeed, there
have been early clinical trials of JDTic, as well as novel proprietary agents from Alkermes,
Lilly, and Pfizer (see Carroll and Carlezon, 2013). Unfortunately, peer-reviewed reports on
these trials are yet to appear in the literature. There is a report that buprenorphine—which
has weak partial KOR agonist effects (Zhu et al. 1997)—has antidepressant effects (Bodkin
et al. 1995), but broad use of this agent to treat depressive illness is limited by mu agonist
effects that may engender abuse liability. A better understanding of the brain regions in
which KOR ligands produce behavioral effects may facilitate the development of new—and
potentially non-pharmacological—methods of targeting specific brain areas. Our research
has traditionally focused on the mesocorticolimbic system (Fig. 2), which plays an important
role in affective behavior despite not being implicated in classical theories of depression and
anxiety (Nestler and Carlezon 2006). The neurons of the mesocorticolimbic DA system
originate in the VTA and project to the NAc, HIP, AMY, PFC and BNST (Swanson 1982).
Historically, the VTA and its dopaminergic projections have been studied primarily in the
context of motivation and reward (Wise and Bozarth 1987). However, accumulating work
has led to greater recognition of the role of this system in aversion as well (Carlezon and
Thomas 2009; Pezze and Feldon 2004; Salamone 1994). Aversive stimuli can increase DA
neuron population activity (Valenti et al. 2011) and activate the mesocorticolimbic system
resulting in postsynaptic DA release (Abercrombie et al. 1989; Imperato et al. 1993;
Pascucci et al. 2007; Piazza and Le Moal 1998; Thierry et al. 1976) that may promote or
antagonize stress effects on behavior. A key area where additional research is needed is how
activation of the VTA might participate in both rewarding and aversive stimuli; indeed, even
studies utilizing the most modern and sophisticated techniques can provide somewhat
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conflicting information (Chaudhury et al. 2013; Lammel et al. 2012; Tye et al. 2013). One
possibility is that these stimuli have similar effects on the VTA but different effects upon
other brain areas, which thereby regulate the activity of the many VTA target regions and/or
affect signal gating in the NAc (Carlezon and Thomas, 2009).

Early investigations into the neural substrates of KOR-induced aversion using CPA
identified the VTA as a key area of activation (Bals-Kubik et al. 1993). Aversion was
postulated to be the result of KOR-mediated decreases in DA release. Indeed, KOR agonists
decrease DA release in VTA cell cultures (Dalman and O'Malley 1999; Ronken et al. 1993)
and directly inhibit DA cell firing through G-protein-coupled inwardly rectifying potassium
channels (GIRKs) in slice (Margolis et al. 2003). In addition to postsynaptically inhibiting
DA release through hyperpolarization, KOR activation in the VTA can induce presynaptic
inhibition of somatodendritic DA at its release sites (Ford et al. 2007). KORs can also
regulate VTA activity through the control of glutamate input (Margolis et al. 2005)
demonstrating the broad range of KOR control over DA function. Dynorphin terminals
synapse onto both TH-labeled (presumably DA neurons) and unlabeled dendrites as well as
terminals and astrocytes in the VTA (Pickel et al. 1993) where KOR activation can produce
differential responses. Because several dynorphin-expressing nuclei project to the VTA
including those from the hypothalamus, AMY, CPu, and NAc (Fallon and Leslie 1986),
VTA cells expressing KORs may be involved in integrating information from multiple brain
circuits or have unique responses based on input and/or projection target. For example,
KOR-mediated inhibition of DA neurons varies as a function of projection target (Ford et al.
2006; Margolis et al. 2006; Margolis et al. 2008). KORs are also located on the terminals of
DA projections from the VTA to the NAc and PFC where they can presynaptically inhibit
DA release (Carlezon et al. 2006; Di Chiara and Imperato 1988; Grilli et al. 2009; Spanagel
et al. 1992; Werling et al. 1988). Indeed, intra-PFC KOR agonist decreases local DA
overflow, while KOR antagonist enhances it (Tejeda et al. 2013). Furthermore, direct
infusion of KOR agonist into the PFC can cause place aversions (Bals-Kubik et al. 1993)
whereas intra-PFC KOR antagonist attenuates place aversions induced by systemic KOR
agonism (Tejeda et al. 2013), suggesting these effects may be due at least in part to changes
in DA transmission. Similarly, infusion of KOR agonist into the NAc induces depressive-
like behaviors in rodents including place aversions and increases brain reward thresholds
(Bals-Kubik et al. 1993; Muschamp et al. 2011) while intra-NAc norBNI decreases escape
failures in a learned helplessness paradigm, an antidepressant-like effect (Newton et al.
2002; Shirayama et al. 2004). These effects are also observed following intra-HIP infusions
of norBNI (Shirayama et al. 2004), although it is unclear whether the KORs mediating this
effect are expressed on terminals from the VTA.

Additional evidence for a role of the mesocorticolimbic system in KOR effects on behavior
has come from studies utilizing the transcription factor cAMP-response-element-binding
protein (CREB) (for review, see Carlezon et al. 2005; for a Muschamp and Carlezon 2013).
Cell signaling events can activate CREB which in turn alters expression of CREB-regulated
genes, including Pdyn. Stress has been shown to cause behaviors characteristic of depression
such as anhedonia, behavioral despair, and dysphoria in rats (Land et al. 2008; Moreau et al.
1992; Pliakas et al. 2001) that are mimicked by elevating CREB levels in the NAc using
viral-mediated gene transfer (Barrot et al. 2002; Pliakas et al. 2001). In contrast, decreasing
CREB activity in the NAc through expression of a dominant-negative form of CREB leads
to antidepressant-like effects in rodents (Newton et al. 2002; Pliakas et al. 2001). Notably,
these changes in behavior due to increases or decreases in CREB activity were shown to be
mediated largely by CREB-induced changes in dynorphin expression. Dynorphin is a target
of CREB induced gene expression in vitro (Cole et al. 1995; Douglass et al. 1994; Turgeon
et al. 1997) and manipulating CREB levels changes dynorphin expression in vivo (Carlezon
et al. 1998; Pliakas et al. 2001). Administration of norBNI attenuates the behavioral effects
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of elevated CREB levels within the NAc (Carlezon et al. 1998; Pliakas et al. 2001), whereas
blockade of endogenous dynorphin actions through direct injection of norBNI into the NAc
is sufficient to produce antidepressant-like effects (Newton et al. 2002). It is postulated that
some features of depression are the result of dynorphin control of mesocorticolimbic DA
function, either by actions at KORs on VTA cell bodies or terminals that project to the NAc
(Nestler and Carlezon 2006). Given the high comorbidity of depressive and anxiety
disorders (Kaufman and Charney 2000; Kessler 2000), KOR signaling and control of DA
function may underlie the pathophysiology of both. The question of whether these effects
are mediated within the NAc itself, or the result of alterations in NAc-to-VTA feedback that
subsequently affect neural activity in regions that receive VTA input, remains open.

The AMY is another target of VTA dopamine neurons, and is the brain region most often
considered to be the epicenter of fear responsiveness. Much preclinical work has elucidated
AMY cellular and molecular mechanisms in fear as reviewed elsewhere (Davis 1997; Davis
and Shi 2000). Recent evidence indicates that fear conditioning induces plasticity in KOR
systems leading to upregulation of KOR mRNA in the basolateral nucleus of the AMY
(BLA) suggesting that KOR signaling in this region may mediate the expression of
conditioned fear. Indeed, microinfusions of KOR antagonist into the BLA reduces
conditioned fear responses and produces anxiolytic-like effects in the EPM (Knoll et al.
2011). Induction of stress-like states through central administration of CRF induces
avoidance of the open arms of an EPM, an effect that is abolished with prior norBNI
treatment or Pdyn gene disruption (Bruchas et al. 2009). In agreement with fear conditioning
studies, the basolateral nucleus of the AMY (BLA) is critical for this anxiogenic effect,
because direct injection of norBNI into this region is sufficient to block CRF-induced
decreases in open arm time (Bruchas et al. 2009). Microinjections of KOR antagonist into
the AMY also attenuate the stress-related effects of withdrawal from nicotine (Smith et al.
2012). Although the AMY is clearly involved in the expression of fear and anxiety
behaviors, it is embedded within a circuit of highly interconnected brain structures that are
known to be involved in processes that reflect motivation and emotion. Recent work
suggests that KORs are expressed on the terminals of AMY inputs to the BNST (Li et al.
2012), a brain area strongly implicated in anxiety behavior (Walker et al. 2003). It is
increasingly evident that structures with amygdalar afferent and/or efferent projections
contribute to normal and pathologic anxiety. A deeper understanding of how these
interconnected regions function in isolation as well as in circuits may enable new insights
into the neurobiology of stress and anxiety responses as well as the pathophysiology of
psychiatric disorders.

In studies of stress-induced aversion and potentiation of drug reward, the DRN is implicated
in an elegant mechanism that explains how KORs expressed on terminals of axon
projections from the DRN to the NAc are involved in stress-induced responses (Land et al.
2009; Schindler et al. 2012). KOR-dependent activation of p38 MAPK by stress in DRN
serotonergic neurons is necessary and sufficient to induce a negative affective state (Bruchas
et al. 2007a; Bruchas et al. 2011; Land et al. 2009). These effects are hypothesized to result
from decreased serotonergic tone considering that KOR activation in DRN slice preparations
induces p38 MAPK-dependent activation of GIRKs and presynaptic inhibition of excitatory
neurotransmission resulting in decreased serotonergic neuron excitability and increased
serotonin uptake in nerve terminals (Bruchas et al. 2011; Lemos et al. 2012).

Although the role that KORs within these regions play on stress and anxiety-related
behavior has not been thoroughly examined, future studies using the recently generated
floxed KOR mouse in combination with promoter-driven Cre viral vectors (Van't Veer et al.
2013) have the potential to elucidate the function of KORs within particular cell populations
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and brain regions and lead to a more comprehensive understanding of interactions between
stress and KOR systems.

Systemic administration of KOR antagonists to prevent stress-related
illness

The idea of preventing psychiatric illness may seem fanciful or provocative, in part because
our understanding of the brain and the pathophysiology of neuropsychiatric disorders
remains incomplete. However, if stress can cause psychiatric illness and KOR antagonists
can block stress, the concept of prevention becomes feasible. The discovery that systemic
(or central) administration of KOR antagonists can block the effects of stress has at least
some of its basis in the unusual pharmacodynamics of the prototypical KOR antagonist
norBNI: slow onset, lack of initial selectivity for KORs, and exceptionally long duration of
action. Early work indicated that norBNI initially blocks all opioid receptors non-selectively
and requires 4-24 hr to reach maximal kappa-selective antagonism (Endoh et al. 1992) and
that a single injection produces behavioral effects that persist for weeks (Bruchas et al.
2007b; Horan et al. 1992; Jones and Holtzman 1992). Indeed, we have found that a single
injection of norBNI blocks the depressive-like effects of the highly selective KOR agonist
salvinorin A for at least 84 days, at which time the experiments were terminated (Potter et
al. 2011). The mechanisms by which norBNI and other KOR antagonists (JDTic) produce
long-lasting effects are not understood, but may involve a process known as biased agonism
(or ligand-directed signaling) (see Carroll and Carlezon 2013). These unique properties
made it necessary to use experimental designs in which KOR antagonists were administered
far in advance of exposure to stress, to ensure selective KOR antagonism at the time of
initial stress exposure (Pliakas et al. 2001), since the long-lasting effects of the drug made
concerns about time course irrelevant. The interpretation of these original studies, which
demonstrated that norBNI produced antidepressant-like effects, were focused on the
similarities between the effects of KOR antagonists and standard antidepressant drugs in the
FST rather than the fact that the data also raised the possibility of anti-stress actions.
Subsequent studies in which the effects of KOR antagonists were evaluated in the EPM and
fear-potentiated startle (FPS) test also used this experimental design—administration of the
drug before exposure to stress (Knoll et al. 2007). These studies provided clear evidence that
these agents had acute anxiolytic-like effects and could reduce the persistent behavioral
consequences of fear conditioning. To the extent that fear conditioning can accurately model
key aspects of PTSD (Mahan and Ressler 2012) the ability of KOR antagonists to reduce
FPS may reflect an ability to prevent stress-related neuroadaptations that can cause
psychiatric illness. It is important to note that some studies showing anxiolytic or
antidepressant effects of KOR antagonists use pretreatment times and/or drug doses capable
of antagonizing other opioid receptors (Endoh et al. 1992; Thomas et al. 2004), suggesting
these behavioral effects may occur through non-KOR receptors. Because delta-opioid
receptor-deficient mice and those treated with delta receptor antagonist show prodepressant-
and anxiogenic-like effects (Filliol et al. 2000; Perrine et al. 2006), it seems unlikely that the
effects of KOR antagonists on depressive and anxiety behavior in these studies are due to
blockade of delta receptor function. However, mu opioid receptor knockout mice or mice
treated with mu antagonists demonstrate antidepressant- and anxiolytic-like behaviors
(Filliol et al. 2000; Komatsu et al. 2011; Yoo et al. 2004), which could potentially underlie
KOR antagonist effects in some instances, although the preponderance of data are collected
at time points of selective KOR antagonism. In addition, non-selective opioid antagonists
produce anhedonia in the ICSS test (West and Wise 1988), suggesting that blockade of mu
and/or delta receptors can induce a prominent sign of depressive illness. The combination of
acute antidepressant-like and anxiolytic-like effects distinguishes KOR antagonists from
standard antidepressant drugs, which tend to have acute anxiogenic effects (Knoll et al.,
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2007). The ability of KOR antagonists to block the cognitive-disrupting effects of CRF
(Van't Veer et al. 2012), as well as other behaviors that characterize PTSD (e.g., persistent
hyperarousal; Van't Veer et al. 2011), provides converging evidence for the anti-stress
effects of these agents.

Preclinical studies that provide support for the concept that systemic administration of KOR
antagonists might be useful for mitigating stress effects and thus preventing the development
of stress-related psychiatric illness are summarized in Table 1. Clearly the ability of KOR
antagonists to block reinstatement of addiction-like behaviors does not qualify prevention of
addiction, per se. However, addiction and psychiatric illness are often co-morbid, and it is
not always clear which condition precedes which (Kessler 1997). As such, KOR antagonist-
induced reductions in addictive behaviors may serve to prevent psychiatric illnesses that are
secondary consequences of addiction.

Summary
It is often easier and less costly to prevent illness than to treat it. Familiar examples of broad
efforts to prevent disease include campaigns to decrease smoking, promote exercise, and
outlaw harmful foods. Vaccines have been developed to prevent debilitating diseases
ranging from polio to, more recently, influenza. The best-selling prescription medication of
all time (atorvastatin [Lipitor™]) treats a risk factor for disease (high cholesterol) rather than
a disease itself. The idea of preventing psychiatric illness, however, can seem fanciful.
Although there have been advances in early diagnosis and intervention to mitigate
conditions such as bipolar disorder, schizophrenia, and attention-deficit hyperactivity
disorder (ADHD) (Andersen 2003; McNamara et al. 2012; Sonuga-Barke et al. 2011), as
well as increasing efforts to identify the biological basis of resilience (Russo et al. 2012),
there are still no widely accepted methods of actually preventing psychiatric illness. One
strategy is to attenuate the effects of stress, a major cause of new illness and a precipitating
factor in existing illness. While it is certainly true that stress can be unpredictable in the
context of everyday life, there is often adequate lead-time preceding exposure to some of the
most severe, debilitating, and costly forms of stress (e.g., those encountered during a combat
mission or while responding to a disaster). In animal models, KOR antagonists appear to
have a general effect of mitigating the perception and/or consequences of stress, which may
account for their ability to produce such a wide variety of beneficial effects. Perhaps most
importantly, these agents produce combined antidepressant and anxiolytic effects, whereas
standard antidepressants initially produce anxiogenic effects that, in humans, may contribute
to problems with tolerability and adherence. Together these results indicate that KOR
antagonists may be useful in humans to prevent the development and expression of stress-
induced illnesses such as anxiety, depressive disorders, and addiction. While there are
numerous gaps in our knowledge with regard to the mechanisms of their beneficial effects
(e.g., how KOR antagonists might block stress, the brain areas in which their effects are
mediated) as well as their pharmacodynamics (e.g., why the effects of the prototypical
antagonists are so persistent despite little apparent structural overlap, if shorter-acting agents
would also be effective), there is an increasing appreciation that this class of agents may fill
a novel and unique therapeutic niche.
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Figure 1. HPA axis and neuronal inputs
Stress causes the release of CRF and AVP from parvocellular neurons in the PVN that
project to the anterior pituitary. ACTH secretion then leads to glucocorticoid synthesis and
release from the adrenal cortex. Glucocorticoid actions are mediated by GRs and MRs
throughout the brain and periphery. Glucocorticoids activate negative feedback loops within
the PVN, pituitary and HIP denoted with minus signs in the illustration. Neuronal inputs
from the HIP, BNST, PFC and AMY regulate HPA axis (red arrows) activity. Dashed lines
represent indirect connections to the PVN. KORs are expressed in organs of the HPA axis
and brain regions that influence HPA axis activation. ACTH, adrenocorticotropic hormone;
AMY, amygdala; AVP, arginine vasopressin; BNST, bed nucleus of the stria terminalis;
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CRF, corticotropin-releasing factor; GR, glucocorticoid receptor; HIP, hippocampus; HPA,
hypothalamic-pituitary-adrenal; MR, mineralocorticoid receptor; PFC, prefrontal cortex;
PVN, paraventricular nucleus of the hypothalamus.

Van't Veer and Carlezon Page 30

Psychopharmacology (Berl). Author manuscript; available in PMC 2014 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. The KOR system in anxiety- and depressive-like behaviors
Schematic illustration of mesocorticolimbic brain areas involved in KOR effects on
depressive- and anxiety-like behaviors in preclinical models. Relevant references are noted
on the representation. Regions implicated in KOR effects on anxiety-like behavior are
colored orange and those so far only implicated in depressive-like behavior are colored blue.
AMY, amygdala; BNST, bed nucleus of the stria terminalis; DA, dopamine; DRN, dorsal
raphe nucleus; HIP, hippocampus; KOR, kappa-opioid receptor; PFC, prefrontal cortex;
NAc, nucleus accumbens; VTA, ventral tegmental area
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