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Abstract

Can people make perfect use of task-relevant information in working memory (WM)?
Specifically, when questioned about an item in an array that does not happen to be in WM, can
participants take into account other items that are in WM, eliminating them as response
candidates? To address this question, an ideal-responder model that assumes perfect use of items
in a capacity-limited WM was tested against a minimal-responder model that assumes use of only
information about the queried item. Three different WM tasks were adopted: change detection,
identity recognition, and location recognition. The change-detection task produced benchmark
WM results. The two novel tasks showed that only the minimal responder model provided
convergence with this benchmark. This finding was replicable even when the change-detection
task was replaced by a feature-switch detection task. Thus, it appears that people do not make full
use of information in WM.

After the field of cognitive psychology superseded the behaviorist approach in the 1950s,
researchers started to study mental processes that could not be directly observed. One key to
transforming the unobservable into the measurable was in assumptions about the processes.
Some fundamental assumptions, however, are still made through introspection or subjective
reasoning, without empirical test. An assumption we examine pertains to working memory
(WM), the small amount of information that is held in mind at once and, in particular, how
efficiently WM information can be used. Studies of visual WM may be especially useful to
address this issue. In a typical visual WM task, a spatial array of unique objects is followed
by a recognition probe for one specific object or its location. We will examine one question
of efficiency: whether a recognition judgment querying the characteristics of a particular
item in an array can be guided by a process of elimination of other relevant items present in
WM.

Visual WM refers to visual information that can be actively maintained and processed by
attention over a short period of time. The capacity of visual WM has been intensively
studied in recent years (e.g., Awh, Barton, & Vogel, 2007; Bays & Husain, 2008; Cowan,
2001; Luck & Vogel, 1997; Rouder, et al., 2008; Song & Jiang, 2006; Vogel, Woodman, &
Luck, 2001; Zhang & Luck, 2008). Behavioral, electrophysiological and neural imaging data
have consistently indicated that people at best can remember about 3~4 identifiable objects
from a brief glance of a scene (Cowan, 2001; Luck & Vogel, 1997; McCollough,
Machizawa, & Vogel, 2007; Todd & Marois, 2004). However, it is still unclear how people
use WM representations to make responses in a WM task.
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One idea about WM efficiency is that an observer is capable of making full use of task-
related WM to achieve perfect performance, which is called the ideal-responder model in
this paper. It includes the assumption that a limited number of items can be present in WM
at once, but also the assumption that the information that is present in WM will be used
whenever it is relevant to the task. A manifestation of this idea is seen in Alvarez &
Thompson (2009). They assessed participants’ object-based visual WM capacity with a
four-alternative-forced-choice, cued-recognition task, in which the observer was cued to
recognize either the location or the color feature of a critical item that was no longer in sight,
by selecting one of four options. In their Equation 2 (p. 148), Alvarez and Thompson
assumed that if the critical item had been encoded into visual WM, the observer should be
able to recognize one of its features; if the critical item was not in WM, the observer would
first eliminate from the option set the features of items that were remembered, and then
guess the critical feature by randomly picking one out of the remaining options. For
example, suppose that there are four visual items, A, B, C, and D, to be remembered and an
observer remembers only A and B. When the observer is prompted to recognize the location
of item C, the ideal-responder model, Alvarez and Thompson presumed, would predict that
the probability of a successful guess is 50% because the observer is supposed to eliminate
the location features of items A and B from the four options in the first place and then
choose at random the location of either C or D.

A contrasting assumption is seen in the model of Zhang and Luck (2009, p. 425). Also with
a forced-choice cued-recognition visual WM task, but with an option set of 180 choices,
they assumed that if the critical item is unavailable in WM, the response will be a random
guess among all options. The idea that information of non-critical items is useless in WM
during the responding process is what we term the minimal-responder model. Given the
huge option size in Zhang and Luck’s WM tasks, the two theoretically distinct models make
little quantitative difference in predicting the successful guessing rate. However, for Alvarez
and Thompson’s (2009) WM task, with two of four items in WM but the probed item not
represented, the minimal-responder model would predict a 25% successful guessing rate
when the probed item is not in WM, in contrast to the 50% rate in the ideal-responder
model. According to the minimal-responder model, WM cannot sustain the eliminating
processes that an ideal responder is supposed to do. Instead, a minimal responder would
ignore memory of items A and B before making one random choice out of four options.

As there is little research in the literature on responder efficiency with WM, the current
paper seeks to fill the gap by testing side-by-side the ideal-responder model and the
minimal-responder model. Here is a simple rationale for such a test. Each observer’s WM is
assessed separately by three models, including a benchmark model, an ideal-responder
model, and a minimal-responder model. Out of the two competing responder models, the
one that yields a WM estimate consistent with that from the benchmark model is considered
the valid model.

Benchmark Model from Cowan (2001)

The benchmark model, theoretically neutral to the two possible responding processes, is a
capacity model (Cowan, 2001). It is a conventional model for measuring object-based WM
capacity. The model applies to a change-detection task in which an array of items is
followed by a single probe item to be judged the same as the item from the corresponding
location in the array, or changed. Because the probe item provides the location information,
the task requires only memory of the other feature of the item from that location in the array.
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Within this model from Cowan (2001), it takes two steps to obtain a WM estimate. Step 1 is
to measure accuracy (proportion correct) in both change and no-change trials. Step 2 is to
compute K the number of objects in WM, based on these accuracies.

In the present research, each trial includes an array of letters, with no repetitions within an
array (Figure 1), followed by a probe item. The probe in this task is a letter at a location of
one of the array items (termed the critical item) and, in the change-detection task of
Experiment 1, it either is the same as the critical item or is a letter not found in the array. A
correct response to a change trial is considered a hit and the proportion correct of change
trials is taken as an estimate of the probability of a hit, namely, the hit rate (/r), whereas a
correct response to a no-change trial is a correct rejection and the proportion correct of no-
change trials, an estimate of the probability of a correct rejection, i.e., the correct rejection
rate (cr).

In Step 2, the model is constructed to estimate items in WM by making three assumptions.
First, the representation of any item in the sample array is either present in or absent from
WM. Second, if the critical item has been encoded in WM, the probability of a correct
response should be 1, as detection of the change is certain upon comparing the critical item
with the probe item in WM. Third, if the critical item has not been encoded into WM, a
correct response may still occur, but only by random guessing.

As first described by Cowan (2001), these assumptions lead to a formula for K'that we term
the benchmark formula, the derivation of which is reproduced in Appendix A and shown
there as Equation 3:

K=N X (hr+cr—1)

Presumably, Kincreases as a function of set size Auntil the participant’s capacity is
reached, after which the function becomes asymptotic. It is assumed that the performance in
each trial is independent and identically distributed and the frequencies of hits and correct
rejections are distributed as conditionally independent binomials (Rouder, et al., 2008).

Although considered to be just a first approximation of WM capacity, our benchmark model
has been shown to be an excellent estimate of the object-based WM that is (1) limited to 3-4
items in adults (Cowan, 2001), (2) consistent with other neural imaging and
psychophysiological indexes of WM capacity (Todd & Marois, 2004; Vogel & Machlzawa,
2004) and (3) able to survive selective influence on the guessing biases (Rouder, et al.,
2008). Most important to our current goal, the change-detection task that the model is built
upon is neutral to the two possible responding processes. Unlike a forced-choice cued-
recognition task, the change-detection task does not make remembering non-critical items
beneficial to the performance. In the change-detection task, there are no options to eliminate
and the probe item never changes into a non-critical item. Therefore, the change-detection
task coupled with the model of Cowan (2001) is adopted as a benchmark measurement of
WM to distinguish the two competing responder models.

In our study, two forced-choice cued recognition tasks and the change-detection task were
interwoven into a single test session. As shown in Figure 1, any trial of the three tasks
consisted of a sample array, a delay interval, a mask array, and a test array. No difference
between the three tasks could be perceived until the test array came up, so that the
participant had no information to encode the stimuli differently across tasks. In the change-
detection task, a probe item was given in the test array, whose identity, compared to that of
the critical item, awaited a change-or-no-change judgment by the participant. In the identity-
recognition task, the location of a probe item was given and the participant was asked to
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recognize the identity of the critical item. Similarly, in the location-recognition task, the
identity of a probe item was given and the participant was asked to recognize the location of
the critical item. The assumption underlying our approach is that the estimate of the number
of items in WM should not depend on what kind of probe task is presented, given that the
task is unknown until after the retention interval.

Here is the detailed rationale for our experimental design. Given that the three tasks were
indistinguishable during encoding, the amount of visual information loaded into WM should
be equivalent across task types. The change-detection task coupled with the model of Cowan
(2001) yielded a benchmark WM measure, which was denoted as K 4 With a subscript ¢
for Cowan’s model and det for the change-detection task. In parallel, a recognition task
coupled with two responder models produced responder-model-specific WM measures.
With a denotation rule similar to K. g4 K; jgen denoted the visual WM measure by the
identity-recognition task coupled with the ideal-responder model; K; s,z by the location-
recognition task with the ideal-responder model, K}, jze, by the identity-recognition task
with the minimal-responder model and K, s,¢ by the location-recognition task with the
minimal-responder model. The criterion of our test was that whichever model that generates
WM estimates consistent with the benchmark K, gwould be the valid one.

The reason we included both identity and location recognition tasks was to monitor whether
the identity and location features of our visual stimuli are well bound, which is indicated by
how closely the performances in the two feature recognition tasks match each other. An
object-based WM measure, like that of Cowan (2001), is justified only if the visual stimuli
are familiar and with all features well integrated (Alvarez & Cavanagh, 2004; Chen, 2009;
Davis & Holmes, 2005; Eng, Chen & Jiang, 2005).

Ideal-Responder and Minimal-Responder Models

The main theoretical issue under consideration here is whether participants use all of the
information presumably available in WM as in what we will call the ideal-responder model,
or whether they only use the minimally necessary information. Models distinguishing these
possibilities are developed in Appendix A and can be easily explained by example. Consider
the identity recognition trial shown in Figure 1 (with the probe as in the middle panel of the
figure). The task is to decide whether the probed location of the studied array contained a J,
K, B, or H. According to either model, this question can be answered correctly if the
location of B is stored in WM. The issue distinguishing the models is what happens if B is
not stored. According to the ideal-responder model, other choices can be ruled out if their
locations are known. For example, if a participant knows the location of K, he or she knows
that this location differs from the probed location, ruling out K as a response option. If the
locations of J, K, and H were all stored in WM, then they all could be ruled out as response
options and the participant would answer correctly by the process of elimination. According
to the minimal-responder model, in contrast, none of this inferential process is applied and,
instead, the participant either knows the probed location and responds correctly, or else
guesses randomly among the choices. Likewise, in the location recognition procedure,
according to the ideal-responder model, the participant is able to rule out incorrect choices if
those items are present in WM; whereas, according to the minimal-responder model, the
participant either knows the location of the probed letter or guesses randomly among the
location choices. Behaving according to the minimal responder model would be expected to
be quite possibly less effortful, but less accurate than the ideal-responder model.

Testable Predictions

The models, as detailed in Appendix A, lead to the following mutually exclusive
predictions.
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Prediction 1: if K, ge=Kj ider=Ki 1o the ideal-responder model would be shown to be
valid.

Prediction 2: if K, ge=Kin ider=Km_loc: the minimal-responder model would be shown
to be valid.

Prediction 3: if K, ger# Ki joer=Ki tocand K¢ ger# K ider=Km_loc, both of the two
responder models would be shown to be invalid.

Prediction 4: if K jgen# Kj jocand/or K joen# Km_ 1oc, the features of our visual
stimuli would not be well-bound, so that the test of the models would be inconclusive.

We rely upon conventional inferential statistics to establish differences between estimates
but we use judgment to decide when different estimates are close enough to be considered
the same for theoretical purposes. It is our belief that the outcome was too simple and
straightforward to benefit from sophisticated statistical model-fitting. We present two
experiments with slightly different change-detection tasks, leading to the same conclusion.

Experiment 1

Method

Design—In the experiment, a condition was a unique combination of one of 4 array sizes
(3, 4,5, or 6 letters) and one of 3 task types (change detection, identity recognition, or
location recognition). It thus formed 12 conditions and each condition had 40 trials, totaling
480 trials in the test session. The change-detection task had an equal number of change trials
and no-change trials, but the participants were not informed of the frequency of two types of
trials. The presented order of all trials was randomized over 12 conditions.

Participants—15 undergraduates (9 females and 6 males, aged 18-25 years old) from
introductory psychology courses at University of Missouri-Columbia participated in the
experiment in exchange for course credit. They were native speakers of English, with
normal hearing and normal or corrected-to-normal vision.

Apparatus & stimuli—The WM tasks were programmed with E-prime software
(Schneider, Eschman, & Zuccolotto, 2002) and administered on personal computers
equipped with a 15-inch CRT monitor, loudspeaker and mouse-pointing device in quiet,
private booths.

To ensure high familiarity and high feature integrity, English consonants were adopted as
stimuli. A set of seven English consonants, including B, G, H, K, N, J, and T, were chosen
to form a visual stimulus pool. In each trial, the sample array included a random subset of 3
to 6 items without repetition from the stimulus pool. One of them was assigned to be the
critical item, which would be probed for change-detection, identity recognition, or location
recognition.

As shown in Figure 1, the displays of the sample and test arrays had the computer screen
area divided by a white horizontal line into a stimulus area (30x20 cm, above the line) and a
response area (30x4 cm, below the line). Within the stimulus area, each item contained a
black English consonant filling up a 2.5%2.5 cm white box (about 3° x 3° visual angle, given
the viewing distance of 50 cm). All items were displayed on a gray background and pseudo-
randomly distributed within a 27x15 cm area (about 30° x 17° visual angle) that was
centered in the stimulus area. The minimal side-to-side distance among items was about 2°
of visual angle. Each quadrant of the stimulus area had no more than two items at any time.
The response area was always blank during the display of a sample array, but showed option
buttons for the response during the display of a test array.

J Exp Psychol Learn Mem Cogn. Author manuscript; available in PMC 2014 September 01.
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Procedure—Each participant was tested separately in a quiet booth equipped with a 15-
inch CRT monitor. First came a practice session, during which the experimenter made sure
the participant understood the three WM tasks and monitored the participant while carrying
out two practice trials for each task. The order of the practice tasks was random for each
participant. The participants were told to bring out their best performance but nothing about
the two possible responding strategies.

After the practice, the participant was left alone to complete the test. To initiate a trial, the
participant pressed the space bar and a fixation sign was then shown for 400 msec. It was
followed by a sample array for 500 msec. The sample array was replaced by a clear gray
screen for 1000 msec. Next came a mask array that covered each item in the sample array
with a 2.5x2.5 cm white square. The mask array lasted for 500 msec for the purpose of
removing any lingering visual sensory memory of the sample array, but without introducing
unnecessary interference.

Following the mask array, a test array was shown until the participant made a response. The
procedure at the test array varied from task to task (Figure 1). For the change-detection task,
all but the probe item were masked by white squares. The probe item could be identical to
the critical item in both identity and location or could have changed to a new identity
originally not in the sample array. The participant was supposed to mouse click on either the
“Change” or “Same” option button in the response area accordingly. For the identity-
recognition task, all items in the stimulus area were masked by white squares and the probe
item had a black question mark on it. In the response area, all item identities in the sample
array were lined up in a random order, from which the participant was supposed to mouse
click the identity of the critical item. For the location-recognition task, all items in the
stimulus area were masked by white squares and a probe item shown in the response area
provided the identity of the critical item. The participant was supposed to mouse click on
one of the white squares to indicate the location of the critical item.

Both visual and auditory feedback was provided immediately following the participant’s
response. A correct response would release a text message “good job” on the screen and a
pleasant chime from the loud speaker; otherwise, a text message “work harder” and a
zapping tone were given. The participant was allowed to take breaks between trials as long
as needed.

Descriptive statistics—Mean WM estimates of K. ges Ki jgens Ki 1o Km icens @nd
K 1ocappear in Table 1 and mean proportions correct (i.e., estimates of Ar, cr, Acjgen and
Acy,0) appear in Table 2, separately for each set size in both cases. It is noteworthy that
ACjgenand Acyyc Were almost identical in means and standard errors of mean, suggesting
that identity and location features of our visual stimuli were integrated so well that
recognition of identity almost always led to recognition of location, and vice versa.

Testing predictions—In order to test Prediction 1, values of K ger Kj jgern and Kj joc
were taken as the measures of items in WM for three different task types (change-detection,
identity recognition, and location recognition) and were included as a factor along with array
size NVin a two-way (3 task types x 4 array sizes) repeated-measures ANOVA. As shown in
Figure 2, the result was a significant and fairly large main effect of task type, F(2,
28)=72.08, p<.001, and npz = .84. Follow-up post hoc Newman-Keuls tests indicated that
the main effect was due to K 4 being significantly greater than either Kj jgen OF Ki joc
(p’s< .001). The main effect of array size was also significant, F(3, 42)=35.11, p<.001, and
r]p2 =.71, but the interaction between array size and task type was not. In addition, a
separate two-way (2 task types x 4 array sizes) repeated-measures ANOVA including only
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K igenand Kj o0 produced no significant main effect of task type and no significant
interaction between array size and task type, only a significant main effect of array size,
F(3,42)= 39.57, p<.001, np? = .74. In short, this analysis indicates K 42> Kj jger=Ki foc @
pattern inconsistent with Prediction 1, suggesting that the ideal-responder model is not
supported.

In order to test Prediction 2, similarly, a two-way (3 task types x 4 array sizes) repeated-
measures ANOVA was conducted between K; gen K jgens and Kpy oo AS |IIustrated in
Figure 3, no significant main effect of task type was found, F(2, 28)=.23, p=.798, r] =.02,
and there was no interaction between array size and task type either, F(6, 84)=.35, p=.911,
r]p2 =.02. Only the main effect of array size was significant, F(3, 42)=21.28, p <.001, npz =.
60. To further compare K. ger K jgen, aNd Ky joc at €ach array size, a series of post hoc
Newman-Keuls tests were conducted, but not a single significant difference among the three
K values was found at any array size, with .33 < p’s < 1. In short, this analysis indicates

Ke ge Km ider= Km 10c @n almost perfect confirmation of Prediction 2, suggesting that the
minimal-responder model is supported. Furthermore, Prediction 3 and Prediction 4 are
directly contradicted by the significant effects that were obtained, so that only Prediction 2
was not contradicted.

Assessment of the pattern of K values: Inasmuch as we varied the array size N from 3 to
6, from below to over the typical WM capacity (Cowan 2001), it should result in a series of
K values increasing to asymptote. This way, we can assess whether the K values derived
from different models really reflect the number of items loaded into WM, which is supposed
to change along an upward asymptotic line with increasing array sizes. Without an array size
of 3, K values would align pretty much along a horizontal line with little variance between
conditions. It may be important to show the growth of K across set sizes in order to reveal
minor inadequacies of the model. For example, participants may make a few errors even at
sub-capacity set sizes, possibly due to inattentiveness (Rouder et al., 2008), and it is
important to show that these factors are small in the data.

To examine this theoretical prediction, the trajectory of K, ger K jgenand Ky, joc Were
analyzed. As Figure 3 shows, the three mean K values all started at about 3 at an array size
of 3 and increased gradually with the array size rising. They became asymptotic at about 4
for the array sizes of 5 and 6. This observation was confirmed by the following statistical
tests. Three one-way repeated-measures ANOVAs on array size revealed a similar
significant main effect of array size, for K¢ e F(3,42)=11.46, p <.001, n, 2 = 45; for

K iden F(3, 42)=13.52, p<.001, ny? = .49, and for Ky, jor F(3, 42)=15. 88 p<.001, np? =.
53. Post hoc Newman-Keuls tests showed significant differences in the K values between
N=3 and N=4 (p’s < .001) but no significant difference between N=4 and N=5 (.05 <p’s <.
35) and between N=5 and N=6 (.32 < p’s < .50). Given that the upper limit of K values
could reach up to the maximum array size of 6, their leveling off at about 4 was not likely a
ceiling effect. These findings are consistent with the theoretical predictions and are
empirically in line with previous behavioral, electrophysiological and neural imaging data
on humans’ visual WM capacity (Cowan, 2001; Luck & Vogel, 1997; McCollough, et al.,
2007; Todd & Marois, 2004).

Comparing observed accuracies and predicted accuracies by two responder models.
Comparing the observed accuracies with the predicted accuracies by the two responder
models in the recognition conditions provides another perspective to assess whether the
minimal-responder model fits the data better. The predicted accuracies by the ideal-
responder model were derived from Appendix A, Equation 4, whereas those by the minimal-
responder model from Appendix A, Equation 6. The accuracies, in terms of proportion
correct, were capped at 1.0. The values of K;and K}, in Equations 4 and 6 were estimated by
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averaging K, g/S over array sizes 5 and 6 for each participant. In case that a participant’s
estimated WM capacity was greater than or equal to the sample array size, s’he would
presumably perform perfectly and thus had an accuracy of 1. The predicted accuracies were
calculated by averaging all participants’ predicted proportion correct by each model, while
the observed accuracies by first taking the mean proportion correct over the two recognition
conditions and then averaging the individual mean proportion correct across all participants.
A series of one-way (i.e., observed accuracy versus predicted accuracy) repeated-measures
ANOVA were carried out at each array size to examine which model would have predicted
accuracies significantly different from the observed values.

Echoing the divergence between K, 4/ and K}'s, the mean predicted accuracies by the
ideal-responder model were significantly greater than the observed values at all array sizes (.
0002 < p’s<.001). In a stark contrast, the mean predicted accuracies by the minimal-
responder model were not statistically different from the observed values at all array sizes (.
33 < p’5<.90), remarkably consistent with the convergence between K, /s and K,;’s (see
Figure 4).

Assessment of an alternative hypothesis: There could be an alternative explanation of our
results to be in favor of the ideal-responder model. Theoretically, the recognition tasks might
involve a more difficult retrieval process in WM than the change-detection task, so that
accuracies cannot be modeled simply with Equation 4 that assumes a perfect retrieval
likelihood for both the recognition and the detection tasks. As shown in Figure 4, the ideal-
responder model is predicting accuracies too high. The reason for that may be that the model
takes into account only the gain from full use of WM of non-critical items but not the loss
from a low retrieval likelihood in the recognition task. In other words, if the perfect retrieval
assumed by Equation 4 is adjusted to a level low enough to cancel out the performance gain
from full use of WM of noncritical items, the predicted accuracies by the ideal-responder
model (graphically, the dash line with open circle markers in Figure 4) would move
downward to converge with the observed accuracies (graphically, the solid lines with black
square markers in Figure 4). We show this mathematically in the last section of Appendix A,
on the possible role of retrieval likelihood. With a new retrieval parameter added to the
ideal-responder model and with just one specific value of this new parameter, this model
becomes identical to the minimal-responder model.

This alternative account, however, creates more problems than benefits. First of all, with an
extra parameter /, the revised ideal-responder model is mathematically less parsimonious
than the original minimal-responder model. It seems conceptually invalid in that it is
determined solely by the array size but not individual WM capacity, and we can find nothing
in the research literature suggesting that there is a psychological process corresponding to
this extra parameter. More importantly, the empirical data shows that /correlates negatively
(r=-.36, p<.01) with individual WM capacity, indicating a direct violation of the usual
expectation that the WM retrieval likelihood /should be positively correlated with WM
capacity (see Figure 5). Taking the above three problems into account, we believe that the
revised ideal-responder model is not a viable alternative explanation for our findings.

The result of Experiment 1 precisely verifies Prediction 2, which is a necessary condition to
rule out the ideal-responder model but to justify the minimal-responder model. Also, the
assessment of capacity measures, including K; ger Kim igenand Kp, joo provides further
assurance that the minimal-responder model meets theoretical and empirical requirements of
a valid WM model.
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It should be noted that for the smaller set sizes, N=3 and N=4, the ideal responder model

cannot be fairly tested. According to Appendix A’s Equation 5, Ki=N x (Acl'—%). With this
equation for N=3, perfect performance would result in a K=2; with N=4, perfect
performance would result in K=3. These values of Kjwith perfect performance are still
considerably smaller than the obtained benchmark values (as shown in Figure 2, for N=3,
mean K, g~2.9; for N=4, mean K, 4~3.7). However, this methodological concern would
not be an issue for array sizes 5 and 6, where K7's are not restricted by the observed
accuracies to converge with K, ge/'s. For these set sizes, the recognition task accuracies that
would be needed for the ideal-responder model to produce K estimates convergent with the
change-detection model (.98 and .84, respectively) were possible, but the actual recognition
task accuracies for these set sizes were considerably lower (.82 and .75).

Our much more impressive result is not just ruling out the ideal-responder model per se, but
also showing the close correspondence of the benchmark and minimal-responder models
(Figures 3 and 4). Note that the results at the larger set sizes strongly confirming the
minimal-responder model and ruling out the ideal-responder model are in no way dependent
on the presence of smaller set sizes in the procedure or results. Our results clearly show that
the participants behaved as minimal responders who did not utilize memory of non-critical
items when the critical item was unavailable in WM, although we cannot rule out the
possibility that the non-critical items still exist in WM and would be used under some other
circumstances.

Experiment 2

It is possible that participants’ response strategy in the recognition tasks might have been
influenced by the change-detection task, in which keeping in mind the non-critical items was
useless once the probe appeared. That is the case because in that task, any change in the
identity of the probe was a change to a letter that was not in the array, and the identity of any
array item at a different location was irrelevant. In order to rule out the possibility that this
aspect of the change-detection task might have implicitly encouraged the minimal-responder
strategy in the recognition tasks, we conducted Experiment 2, in which a changed probe
always consisted of a letter presented at a location that had been occupied by a different
letter in the array. This we term a probed feature-switch detection task. The purpose of using
this task was to make the ideal-responder strategy, with its elimination of irrelevant options
based on memory of noncritical items, beneficial to all three types of tasks. If this responder
strategy still loses, participants’ failure to use it cannot be attributed to an inappropriate
carryover in strategy from change detection to recognition trials.

We analyze the second experiment using the same models as in the first experiment (see
Appendix A), but we refer to the probed feature-switch detection result as K, g instead
of K, The rationale is that if the minimal-responder model is true in change detection, then
the only relevant item in the feature-switch detection process is the critical item, i.e., the
letter from the array in the location of the probe, just as in Experiment 1. If that is the case
and if the identity and location recognition tasks are carried out in the same way as before,
then K, ggerand K, should converge, just as K. and K, converged in Experiment 1. If, on
the other hand, in this kind of change detection task participants also use information about
the letter at another location when it is relevant in determining that there was a change of
location (e.g., if the ideal-responder model applies to change detection), then K, ggerand
K, will not converge as in Experiment 1. Although K f;is not a proven benchmark
model for the probed feature-switch task in Experiment 2 as K- was for the change-detection
task in Experiment 1 (e.g., Rouder et al., 2008; Todd & Marois, 2004), the design of
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Experiment 2 is theoretically effective in examining the strategy carryover effect that the
change-detection task might have on the recognition tasks.

Participants—16 undergraduates (15 females and 1 male, aged 17-20 years old) from
introductory psychology courses at University of Toronto-Mississauga participated in the
experiment in exchange for course credit. They were fluent speakers of English, with normal
hearing and normal or corrected-to-normal vision.

Apparatus, Stimuli, and Procedure—Experiment 2 was identical to Experiment 1 in
almost all aspects with only one exception that the probed item in a change trial was
randomly chosen from the non-critical items in the sample array. Given that each item was
unique in the sample array, remembering non-critical items might help to detect a location
switch if a noncritical item in WM happened to emerge at the location of the critical item.

The number of items loaded into WM in the probed feature-switch detection task, denoted as
K. fsger Was estimated with the K. model. As in Experiment 1, we also calculated K jgen
and K; jocaccording to the ideal-responder model and Ky, jgenand K joc according to the
minimal-responder model. As Table 3 shows, values of K fsges Ki igenand Kj jon and

Ko jgenand Ky, 1o were all comparable to their counterparts in Experiment 1 (cf. Table 1).

A two-way (3 task types x 4 array sizes) repeated-measure ANOVA was first carried out
between K¢ fsger K igenand Kj joc As shown in the left panel of Figure 6, there was a huge
main effect of task type, F(2, 30)=123.65, p<.001, and Np 2 = 89. A series of post hoc
Newman-Keuls tests revealed K sgqeras the source of the main effect (i.e., significantly
greater than either Kj jgen OF Kj joe P’S< 001) The other significant main effect was from
array size, F(3, 45)=66.10, p<.001, and r]p .82, but the interaction between task type and
array size was not significant. As for the two recognition tasks, a two-way (2 task types x 4
array sizes) repeated-measures ANOVA including only Kj jgenand K; j,c found no
significant main effect of task type and no significant interaction between array size and task
type, except for a significant main effect of array size, F(3,45)= 60.40, p<.001, npz =.80.
Therefore, the first half of Experiment 1 has been replicated, as the pattern,

K. fsaer Ki iger=Ki 10 Was almost identical to that in Experiment 1. These results reassure
us that the ideal-responder model could not be true, even though there was good reason to
use the ideal-responder strategy in all conditions of Experiment 2.

The second half of the replication was confirmed by another two-way (3 task types x 4 array
sizes) repeated-measures ANOVA between K¢ fsger, K jdem and Kipy jo- As shown in the
right panel of Figure 6, there were no significant main effect of task type, F(2, 30)=.22, p=.
800, np 2 = 01, and no significant interaction between array size and task type either, F(6,
90)=1. 32 p=.255, npz = .08, except for a significant main effect of array size, F(3,
45)=38.40, p <.001, r]p2 =.72. In addition, a series of post hoc Newman-Keuls tests showed
not a single significant difference among K, fger Kim iden, and Ky o0 at any array size,

with .08 < p’s < 1. These results indicated, statistically, Kz fspe= Kim ider= Km foo
replicating the major finding of Experiment 1 that the minimal-responder model converged
with the benchmark model K in measuring WM items.

Experiment 2 was designed to check whether the findings from Experiment 1 could be
replicated when a potential confound in strategy use was eliminated. It arose from the
change-detection task, which was likely to encourage the minimal-responder strategy.
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Experiment 2 replaced the change-detection task with the probed feature-switch detection
task, which made all array items relevant to the response in order to encourage the ideal-
responder strategy instead.

The result was a successful replication of the important finding of Experiment 1, with all K
values being consistent with those in Experiment 1 (see Table 1 versus Table 3) and the K-
K convergence and the Kq-K; divergence being almost identical to those found in
Experiment 1 (see Figure 2 and 3 versus Figure 6). The concern about a potential confound
in Experiment 1 was ruled out, reassuring the conclusion that the participants were minimal-
responders in the recognition tasks.

It is noteworthy that K, #q.rapparently displays an ascending trend, although it statistically
converges at all array sizes with Ky, jzenand Ko, joe Which actually level off over array
sizes 5 and 6. The increases in the means of K e from array sizes 4 to 5 and from 5 to 6
did not reach statistical significance, but the ascending pattern in K, fgerrenders it a little
bit different from K 4 in Experiment 1. This slight discrepancy in K estimate should not
have a bearing on the test of the minimal-responder model against the ideal-responder model
for the recognition tasks, but would instead warrant further research in the future on the
responder efficiency difference between the change-detection task and the probed feature-
switch detection task.

General Discussion

To investigate the efficiency of WM processes, we designed WM tasks to test two
competing responder models, the ideal-responder model and the minimal-responder model.
The basic rationale for the test was to compare WM measures by the two models with that of
a benchmark measure. The tasks were intermixed with no forewarning of what kind of
information would be required when the post-array, post-retention-interval probe appeared,
so estimates of items in WM should not differ for the three tasks when an appropriate model
is used. Given that the visual stimuli are highly familiar and integrated items, the model of
Cowan (2001) was chosen as the benchmark measure of the object-based visual WM. The
results showed that WM measures based on the minimal-responder model converged
beautifully with the benchmark model, whereas WM measures based on the ideal responder
model were much lower than those based on the benchmark model. The results provide clear
support for the minimal-responder model, suggesting that it is unlikely that people make full
use of important but not immediately executable information in WM, such as information
about the non-critical items that doesn’t directly lead to a successful response but is useful
for increasing the chance of a successful response by allowing some options to be
disqualified.

It is possible that the participants might be capable of using the non-critical items but might
still tend to rely on an easier strategy that did not require holding non-critical items in WM
until a response was finished. To address this concern, we tried to minimize the difficulty of
tasks by using stimuli (i.e., English consonants) whose representations enjoyed supports
from both semantic and lexical codes in long-term memory (Stuart & Hulme, 2000) and
phonological codes in WM (Baddeley, 1986). We also provided strong feedback to motivate
the participants to maximize their performance rather than to settle on an easy response
strategy. Nevertheless, we cannot completely rule out the possibility that the participants
might simply choose to be minimal responders because that is easier than being ideal
responders.

It is a well-known consensus that WM is severely limited in capacity but highly accessible
to various higher level cognitive activities (Baddeley, 1986; Conway, Kane, & Engle, 2003;
Cowan, 2001; Cowan, 2005; Daneman & Carpenter, 1980; Miyake & Shah, 1999). One
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might expect that, given its scarcity and accessibility, task-related WM should be fully
utilized by the mind. Ironically, the minimal-responder model verified by our data suggests
that people might tend to unwisely ignore important but not immediately usable task-related
information from WM. Perhaps this occurs because an ideal responder has to keep multiple
items at once in WM so as to eliminate the non-critical items from the option set. Such
processes might require switching attention from one item to another (Barrouillet, Portrat, &
Camos, 2011; Oberauer, 2002), which can cause interference and make the task more
challenging. Alternatively, items in WM may need to be continuously and concurrently
refreshed by attention (e.g., Chen & Cowan, 2009). At the test array, the probe item attracts
attention away from the non-critical items and, as a result, they might have faded away over
time in the absence of attentional rehearsal before they could be mentally compared to the
response choices. Future research is needed to investigate these possible alternative accounts
of the cognitive mechanisms behind minimal responding.

The present findings have important implications for how an item’s identity is bound to its
location. Change-detection procedures have shown that accuracy is sometimes higher in
procedures in which a new item identity must be detected than in procedures in which the
change that must be detected is a recombination of attributes, namely the identity of one
former array object presented in the location of another (e.g., Cowan, Naveh-Benjamin,
Kilb, & Saults, 2006; Morey, 2009; Wheeler & Treisman, 2002). The comparison leading to
this result has typically been carried out, though, using an accuracy measure, whereas much
is to be gained by using models that allow an estimation of the number of items in WM
according to certain assumptions. To enable such models, we used a change-detection task
with changes to letters not found in the studied array, in order to ensure that only the array
item in the probed location could be of use; in contrast, though, we also used identity and
location recognition tasks with recombination changes, to ensure that array items other than
just the probed item could indeed be of use. We obtained near-perfect convergence of these
tasks with the assumption of a minimal processing mode in which participants do not
actually use their WM information about items other than the one probed. This convergence
of the benchmark and minimal-responder models suggests that the minimal-responder
assumption is apt. The additional implication we are pointing out here has to do with the
nature of the WM representations. Given that the participant did not know what task was to
be carried out on a trial until the probe was presented at the end of the trial, the
representation of items in WM had to be the same in all tasks. The finding of a good match
between the benchmark model and one model that required letter-location combination
information suggests that the WM representations comprised bound identity-location pairs
(cf. Morey, 2009; Treisman & Zhang, 2006).

Given the findings of our study, the ideal-responder model assumed by Alvarez &
Thompson (2009) should have underestimated the number of visual objects stored in WM in
their Experiment 1, exemplifying the need to consider responder efficiency in future
modeling of the contents of WM. More importantly, the theoretical importance of our study
is to open up a new perspective on WM research, and the notion of responder efficiency
introduced in this paper should be particularly useful in quantitatively characterizing the
WM system, such as assessing WM capacity and WM decay rate. In fact, no investigation of
WM can be done without assumptions about how the WM that cannot be directly observed
is channeled into a participant’s observable responses to a WM task. As we show in this
study, some common assumptions are not always justifiable. On the road to understanding
the WM system at the algorithmic level (Marr, 1982), many more assumptions about WM
should be subjected to rigorous empirical examination in the near future.
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Appendix A. Models of Working Memory Capacity

Benchmark Model

To develop the benchmark mathematical model, let A/denote the number of items in a
sample array and K'the number of items loaded into WM. Given that the critical item is

K
randomly chosen from the A items, the probability of its being held in WM would be 7. In
case of the critical item being held in WM, the conditional probability of a successful
detection is 1. Otherwise, the probability of the condition that the critical item is not in WM

is (1—5) and the conditional probability of a correct response is the successful guessing
rate. Overall, the probability of a correct response would be the probability of a successful
detection plus the probability of a successful guessing. Let g denotes the probability of
guessing a change, which is assumed constant throughout the test session. It follows that the
successful guessing rate would be g for a change trial and Z-g for a no-change trial.
Accordingly, the hit rate (/) and the correct rejection rate (¢r) can be expressed as a
function of K; NVand gin Equations 1 and 2, respectively.

K K
hr—ﬁ+(1—ﬁ)xg 1)

K K
Cr:N-F(]—N)X(l—g) (2)
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The parameter g can be cancelled out by combining Equations 1 and 2, so that K can be
expressed as a function of A, Arand cras follows.

K=N X (hr+cr-1) (3)

Ideal-Responder and Minimal-Responder Models

These two models apply to situations in which alternative types of information can be used
to solve the problem (i.e., the identity-recognition and location-recognition tasks illustrated
in Figure 1). Specifically, although a feature of one item is queried by the probe, information
about other items in the array can provide useful clues to the correct response. If an item’s
location (or identity) is presented as a probe and the item is well-known in WM as a bound
unit, then its identity (or location) can be retrieved as a response. If the probed item is not in
WM, then the participant still might have some relevant information to infer a correct
response because any other item in WM can be ruled out as a response choice, as the other
items do not have the correct combination of identity and location. Participants use that
other relevant information according to the ideal-responder model, but not according to the
minimal-responder model. The latter is considered minimal in that it is based on a
simplifying heuristic (e.g., Kahneman, 2003), which decreases the amount of calculation
that must be performed to give a response.

Four WM measure formulae were used to calculate Ki jgen Ki 100 Km idenand Km joc
Although the identity-recognition and the location-recognition tasks appeared quite different
in format, they share similar cognitive processes and thus are compatible with the same WM
formulae. Therefore, both the identity-recognition and location-recognition tasks used one
formula for an ideal responder and another one for a minimal responder.

For the ideal-responder model, let K;denote the number of visual items loaded into WM by
an ideal responder and A/the number of visual items in the sample array. Given that the
critical item is randomly selected from A visual stimuli, the probability of the critical item

being held in WM is % The probability of the critical item not in WM is 1—%. In that case,
1
the probability of selecting the correct option by chance would be 3— K; asan ideal
responder is presumably able to first eliminate from the A/ options Kjnon-critical items held
in visual WM and then make a random selection among the remaining (NV-Kj) options. Given
that a response would be correct either when the critical item is indeed recognized from WM
or when the right option is guessed with no memory of the critical item, the probability of an
accurate response (Ac) in a particular recognition task can be expressed as a function of K;
and N by Equation 4.

Ac=%+(1—%) X (N+K,) when K;<N

4
Ac=1 when K;=N )

where Ac=Ac;ye, Tor the identity-recognition task and Ac=Acy, for the location-recognition
task. Rearranging terms, Kjcan be expressed as a function of AVand Ac as follows.

Ki=N x (Ac—%) ©)
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For the WM formula for a minimal responder who cannot benefit from the memory of non-
critical items, let K, denote the number of visual items loaded into WM and Nthe array

K
size. The probability of a critical item being held in WM is N In case of no critical item in

m

K
visual WM, which happens at a probability of 1—7, the probability of selecting the correct

1
option by chance would be =, as a minimal responder can only make a random choice out of
N options (rather than out of NV-Kjoptions, as only an ideal responder is supposed to be able
to do). Parallel to Equations 4, the minimal-responder model can be specified by Equation 6.

1

A —Km+(1 Km)x 6
N NN ©

Rearranging terms, K, can be expressed as a function of Acand N as follows.

K,,=N x (A 1)>< N 7
m= NN O]

In summary, all formulae for items in WM are as follows, with subscripts ¢ for the model of

Cowan (2001), 7for the ideal-responder model, /7 for the minimal-responder model, /iden for
the identity-recognition task, and /oc for the location-recognition task.

K. get=N X (hr+cr—1)

Ki_ igen=N X (Aciden_%)
K; =N X (ACIOC—%)
Kin_ igen=N X (Aciden_%) X %
K. ZOC:N(ACZOC_%) X %

The Possible Role of Imperfect Retrieval Likelihood

This explanation can be more precisely described with the following mathematical
reasoning. Let /denote the WM retrieval likelihood (0< /< 1) and Ac;sthe accuracy of the
recognition condition under the revised ideal-responder model with a retrieval likelihood
parameter / Conceptually, /is a function of an individual’s WM capacity, as the bigger an
individual’s WM capacity, the higher his/her WM retrieval likelihood. Acjequals to the
sum of probabilities of two events: 1) a correct response based on successful retrieval of
Kxlitems, which include the critical item, from WM and 2) a correct response based on
random guessing among A~ Kx/items from the option set in case the critical item is not
among the retrieved items.

A ._K[Xl+(] Kl'XZ % 1
CGITTN N 'O N-K;xI

After some algebraic transformation, we have

K,'Xl+l 9
N N 9)

Cil=
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In parallel, the performance accuracy of a minimal responder (Acy;) is specified by Equation
6 as follows.

A —K’”+(1 K’") X ! 10
Cm=" XN (10)
In order to give Acjsthe same degree of fit as Acy, has with the observed accuracies, we first
rearrange Equation 10 to express Ac,, in the same form as Equation 9 for Acjy.

Km X N-1 1
Acy=—"N 4~ (11)
N N

As a comparison of Equations 9 and 11 reveals, Ac,; and Acjyare mathematically

— N—
indistinguishable when =—=—. In other words, if we assign the value of —— to the retrieval
likelihood parameter /, the revised ideal-responder model will fit the data as close as the
minimal-responder model does.
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Figure 1.
Schematic illustration of the experimental procedure for the three WM tasks. In the change-

detection task, on a change trial in Experiment 1, the B in the probe display would be
replaced with an item that had not appeared in the array, such as T; on a change trial in
Experiment 2, the B would be replaced instead with an item that had appeared in the array,
such as H.
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Figure2.

Mean WM estimates in Experiment 1, K; ger Kj jgen, aNd K; joc, as a function of array size
and task type. In the subscript, ¢_detstands for the Cowan model coupled with the change-
detection task, /_iden for the ideal-responder model with the identity-recognition task and
[_locfor the ideal-responder model with the location-recognition task. The error bars
indicate standard errors of the mean.

J Exp Psychol Learn Mem Cogn. Author manuscript; available in PMC 2014 September 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Chen and Cowan Page 20

5.0

4.5

4.0

357

3.0

25

Estimated Mean K Value

2.0

1.5+ == Kc_det
- Km_iden
=% Km_loc

1.0

Array Size

Figure 3.

Mean WM estimates in Experiment 1, K¢ ges K jder @nd Ky, joc @S a function of array size
and task type. In the subscript, ¢_detstands for the Cowan model coupled with the change-
detection task, /m_iden for the minimal-responder model with the identity-recognition task
and m_/oc for the minimal-responder model with the location-recognition task. The error
bars indicate standard errors of the mean.
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Figure4.

Mean proportion correct in Experiment 1 in the recognition conditions predicted by the
ideal-responder model and by the minimal-responder model, along with the observed mean
proportion correct over two recognition conditions as functions of array size.
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13
12 y = 1.05 - 0.08*x
: ° r = -0.355, p = 0.0053; r? = 0.126
1.1 o .
o
1.0 o o] (e}

Hypothetical WM Retriveal Likelihood (1)

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

WM Capacity
(estimated by mean Kc_det's over array sizes 5 and 6)

Figureb.
Correlation in Experiment 1 between the hypothetical retrieval likelihood /and WM

Acy X N—1
capacity. According to Equation 9, I= K in which Acj,takes the value of the mean
accuracy over two recognition conditions and K;the mean value of K, y/s over array sizes
5and 6.
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WM estimates in Experiment 2. Left panel: Mean WM estimates, K. fsgen Ki jgenn and

Kj 1oc8s a function of array size and task type. Right panel: Mean WM estimates, K, fsges
Ko jgen and Ky, 1o as a function of array size and task type. In the subscript, ¢_fsdet stands
for the Cowan model coupled with the feature-switch detection task, /_iden for the ideal-
responder model with the identity-recognition task, /_/oc for the ideal-responder model with
the location-recognition task, /m_iden for the minimal-responder model with the identity-
recognition task, and /_/oc for the minimal-responder model with the location-recognition

task. The error bars indicate standard errors of the mean.
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Mean estimates of items in working memory in every experimental condition, Experiment 1

Table 1

Task Type Array Size

3 4 5 6
Change Detection (K. ) 2.94(0.02) 3.72(0.08) 3.92(0.20) 4.06(0.28)
Ideal Responder, Identity Recognition (Kj jzen) 1.93(0.03) 2.63(0.09) 3.13(0.16) 3.42(0.25)
Ideal Responder, Location Recognition (Kj ) 1.95(0.03) 2.69(0.09) 3.18(0.17) 3.47(0.26)
Minimal Responder, Identity Recognition (K, jz;)  2.89(0.04)  3.50(0.13)  3.92(0.20) 4.10(0.31)
Minimal Responder, Location Recognition (K, )  2.92(0.04)  3.59(0.12) 3.97(0.21) 4.16(0.32)

Page 24

Note. In the subscript, c=Cowan (2001) model, /=ideal-responder model, 7=minimal-responder model, det=change-detection task, /dern=identity-
recognition task, /oc=location-recognition task. Standard errors of mean in parentheses.
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Table 2

Proportion correct in every experimental condition, Experiment 1.

Task Type Array Size

3 4 5 6
Change Detection, Change Trials (estimates of /r) 0.99(0.01) 0.96(0.02) 0.86(0.03) 0.78(0.05)
Change Detection, No-change Trials (estimates of ¢r)  0.99(0.00)  0.97(0.01) 0.92(0.01) 0.90(0.02)
Identity Recognition (estimates of Acjg) 0.98(0.01) 0.91(0.02) 0.83(0.03) 0.74(0.04)
Location Recognition (estimates of Acy,) 0.98(0.01) 0.92(0.02) 0.84(0.03) 0.75(0.04)
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Note. In the subscript, Ar=hit rate, cr=correct rejection rate, Ac = accuracy, /den=identity-recognition task, /oc=location-recognition task. Standard

errors of mean in parentheses.
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Mean estimates of items in working memory in every experimental condition, Experiment 2

Table 3

Task Type Array Size

3 4 5 6
Feature-switch Detection (K. fse) 2.81(0.05) 3.53(0.08) 3.77(0.19) 4.01(0.18)
Ideal Responder, Identity Recognition (Kj jgen) 1.89(0.03) 2.57(0.07) 3.13(0.11) 3.17(0.16)
Ideal Responder, Location Recognition (Kj .0 1.91(0.03) 2.71(0.07) 3.13(0.12) 3.12(0.17)
Minimal Responder, Identity Recognition (K, i,  2.83(0.04) 3.43(0.09) 3.91(0.14) 3.81(0.19)
Minimal Responder, Location Recognition (K, ,0) 2.87(0.04) 3.62(0.09) 3.91(0.14) 3.74(0.21)

Note. In the subscript, c=Cowan (2001) model, /=ideal-responder model, 7=minimalresponder model, fsdet=feature-switch detection task,

iden=identity-recognition task, /oc=location-recognition task. Standard errors of mean in parentheses.
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