VOLUME 31

JOURNAL OF CLINICAL ONCOLOGY

Zhi Rong Qian, Monica Ter-Minassian,
Jennifer A. Chan, Yu Imamura, Susanne
M. Hooshmand, Aya Kuchiba, Teppei
Morikawa, Lauren K. Brais, Anastassia
Daskalova, Rachel Heafield, Charles S.
Fuchs, Shuji Ogino, Matthew H. Kulke,
Dana-Farber Cancer Institute and
Harvard Medical School; Monica
Ter-Minassian, Xihong Lin, David C.
Christiani, Shuji Ogino, Harvard School
of Public Health; David C. Christiani,
Massachusetts General Hospital,
Harvard Medical School; Charles S.
Fuchs, Shuji Ogino, Brigham and
Women's Hospital, Boston, MA.

Published online ahead of print at
www.jco.org on August 26, 2013.

Supported by a grant from Novartis
Pharmaceuticals, by the Raymond and
Beverly Sackler American Association
of Cancer Research Fellowship for lleal
Carcinoid Research (M.T.-M.), and in
part by Grants No. R0O1 CA151532-01A1
and 5P50CA127003-05 (Gastrointestinal
Cancer SPORE; M.H.K.) from the
National Institutes of Health.

Authors’ disclosures of potential con-
flicts of interest and author contribu-
tions are found at the end of this
article.

Corresponding author: Zhi Rong Qian,
MD, PhD, Department of Medical
Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, 450 Brookline
Ave, Room M-420, Boston, MA 02115;
e-mail: Zhirong_Qian@dfci.harvard.edu.
© 2013 by American Society of Clinical
Oncology

0732-183X/13/3127w-3418w/$20.00

DOI: 10.1200/JC0.2012.46.6946

- NUMBER 27 -

SEPTEMBER 20 2013

ORIGINAL REPORT

Prognostic Significance of MTOR Pathway Component
Expression in Neuroendocrine Tumors

Zhi Rong Qian, Monica Ter-Minassian, Jennifer A. Chan, Yu Imamura, Susanne M. Hooshmand,
Aya Kuchiba, Teppei Morikawa, Lauren K. Brais, Anastassia Daskalova, Rachel Heafield, Xihong Lin,
David C. Christiani, Charles S. Fuchs, Shuji Ogino, and Matthew H. Kulke

A B S T R A C T

Purpose

Clir?ical studies have implicated the mechanistic target of rapamycin (serine/threonine kinase;
MTOR) pathway in the regulation of neuroendocrine tumor (NET) growth. We explo-
red whether expression of MTOR pathway components has prognostic significance in
NET patients.

Patients and Methods
We evaluated immunohistochemical expression of MTOR and phospho (p) -MTOR,; its down-

stream targets RPS6KB1, RPS6, and EIF4AEBP1; and its upstream regulators, in a cohort of 195
archival neuroendocrine tumors. We correlated expression levels with clinical outcomes, after
adjusting for other prognostic variables.

Results
We observed anticipated correlations between expression of upstream components of the

MTOR pathway and their downstream targets. Expression of PIKBCA, MTOR, or p-EIF4AEBP1
was associated with high MKI67 (Ki-67) labeling index. We failed to identify clinical correlations
associated with expression of the upstream regulators TSC1, TSC2, AKT, p-AKT, PDPK1,
PTEN, PIK3R1, or PIK3CA. In contrast, high expression of MTOR or its activated downstream
targets p-RPS6KB1, p-RPS6, or p-EIFAEBP1 was associated with adverse clinical outcomes.

Conclusion

Our observations suggest that expression of MTOR or its downstream targets may be adverse

prognostic factors in neuroendocrine tumors.

J Clin Oncol 31:3418-3425. © 2013 by American Society of Clinical Oncology

The molecular aberrations in neuroendocrine tu-
mors (NET) remain poorly understood. Recent ob-
servations that the mechanistic target of rapamycin
(serine/threonine kinase; MTOR) inhibitor everoli-
mus is active in patients with advanced NET have
suggested that activation of the MTOR pathway may
play a central role in the pathogenesis of this dis-
ease.”” This hypothesis is further supported by the
recent results of whole exome sequencing in pancre-
atic NETs, which revealed mutations in MTOR
pathway genes in 15% of patients.” Whether expres-
sion of MTOR pathway components can be used to
molecularly classify NETs and predict their clinical be-
havior is uncertain.

MTOR pathway components can be readily
measured using immunohistochemical techniques.*™
MTOR itself is a Ser/Thr protein kinase complex
and is activated via phosphorylation, following acti-
vation of an upstream signaling cascade. Phosphati-
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dylinositol 3-kinase (PI3K), which is composed of a
regulatory subunit (PIK3R1 p85alpha) and a cata-
Iytic subunit (PIK3CA p110alpha), is considered a
key upstream component of this pathway.’
Activation of PI3K results in phosphorylation of
3-phosphoinositide dependent protein kinase-1
(PDPK1) at two sites, Tyr373/376, and Ser24. Phos-
pho (p) -PDPK1 phosphorylates AKT, which in turn
phosphorylates MTOR.” PTEN, TSC1, and TSC2
are tumor suppressor proteins that inhibit phos-
phorylation of MTOR.”"!

Downstream of MTOR, phosphorylation of
MTORCI leads to the phosphorylation of the eukary-
otic translation initiation factor 4E-binding protein
(EIF4EBP1) and the ribosomal protein S6 kinase
(RPS6KBI1).'>" Activated RPS6KB1 (p-RPS6KB1)
phosphorylates ribosomal protein S6 (RPS6). Activa-
tion of RPS6 and EIF4EBP1 leads to an increase in
protein synthesis, promoting cell growth.'*'?

Expression of MTOR pathway components
has been associated with adverse clinical outcomes
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in various human malignancies.*>'®>* Studies correlating MTOR
pathway component expression with outcomes in NETs, however, are
limited.*”*>*® In a study of 72 patients with pancreatic NET, loss of
PTEN or TSC2 expression was associated with adverse clinical out-
comes.® In a second study evaluating expression of MTOR and its
downstream targets in 99 patients with gastroenteropancreatic NET,
strong MTOR expression was associated with higher proliferative
index; in addition, expression of the downstream target p-RPS6KB1
was associated with shorter survival in the subgroup of mid-gut carci-
noid tumors.” Associations between MTOR pathway component ex-
pression and clinical outcomes in other studies of NET, however, have
been less definitive.”>*

In our study, we used immunohistochemical techniques to mea-
sure expression of MTOR and p-MTOR; its activated downstream
targets p-RPS6KB1, p-RPS6, and p-EIF4EBP1; and the upstream reg-
ulators TSC1, TSC2, AKT, p-AKT, p-PDPK1, PTEN, and PI3K, in 195
patients with NETs. We then assessed whether expression of these
components was associated with clinical outcomes.

Study Population

Tissue blocks were obtained from patients with a confirmed diagnosis of
NET recruited to our study approved by the institutional review board of the
Dana-Farber Cancer Institute. Additional institutional review board approval
was obtained for the molecular analysis of tumor blocks and correlation with
clinical variables performed in our study. Demographic and clinical informa-
tion was extracted patients’ medical records; staging was defined by the Amer-
ican Joint Committee on Cancer TNM classification system.*” If survival data
were not available in the medical record, they were obtained from the Social
Security Death Index.

Tissue Microarray Construction

Tissue microarrays (TMA) were constructed from formalin-fixed,
paraffin-embedded tissues, comprising 216 resection specimens and four liver
wedge biopsies using a tissue-array instrument (Beecher Instruments, Silver
Spring, MD). Three representative 0.6-mm-diameter tissue cores were taken
from each specimen. Two TMA blocks were designed containing 145 and 75
samples, respectively, from a total of 195 patients. Multiple 4- wm sections were
cut with a Leica microtome (Leica Microsystems Inc, Bannockburn, IL) and
were transferred to adhesive-coated slides for immunohistochemical staining.

Immunohistochemistry

Anti-PIK3R1 (p85alpha), anti-p-PDPK1 (Ser241), anti-TSC1, and anti-
TSC2 antibodies were obtained from Abcam (Cambridge, MA). Anti-PIK3CA
(p110alpha), anti-PTEN, anti-p-PDPK1 (Tyr373/Tyr376), anti-AKT (AKTI,
AKT2, and AKT3), anti-p-AKT (Ser473), anti-MTOR, anti-p-MTOR
(Ser2448), anti-p-RPS6KB1 (Thr389), anti-p-RPS6 (Ser240/244), and anti-p-
EIF4EBP1 (Thr37/46) were obtained from Cell Signaling Technology (Dan-
vers, MA). Anti-MKI67 mouse monoclonal antibody (Ki-67) was obtained
from DakoCytomatin (Glostrup, Denmark).

Immunohistochemistry based on the labeled streptavidin-biotin
method were performed on TMA sections. After deparaffinization and antigen
retrieval using an autoclave oven technique, sections were incubated at 4°C
overnight with incubated anti-PIK3CA (1:200), anti-PIK3R1 (1:400), anti-
PTEN (1:100), anti-p-PDPK1 (pTyr373/Tyr376; 1:200), anti-p-PDPKI
(Ser241; 1:100), anti-AKT (1:200), anti-p-AKT (1:250), anti-TSC1 (1:200),
anti-TSC2 (1:50), anti-MTOR (1:50), anti-p-MTOR (1:100), anti-p-RPS6KB1
(1:100), anti-p-RPS6 (1:100), anti-p-EIF4EBP1 (1:50), and anti-MKI67 (1:
100) antibodies. Antigen-antibody complexes were detected using the cobalt-
3,3’-diaminobenzidine (Co-DAB) reaction. Colorectal cancers known to be
positive for proteins listed in this paragraph were used as positive controls. The
omission of the primary antibody served as a negative control.

WwWw.jco.org

Evaluation of Staining of Tissue Slides

Tumor staining characteristics were reviewed and interpreted by a pa-
thologist (Z.R.Q.), who was blinded to clinical outcome data. MKI167 (Ki-67)
labeling index (LI) was determined by counting the number of positive cells
observed within areas of highest immunostaining by high-power fields
(X400).2® MTOR pathway component expression was scored by applying a
semiquantitative immunoreactivity scoring (IRS) system, as described previ-
ously.” In brief, staining intensity was scored as 0 (no immunostaining), 1
(weak), 2 (moderate), and 3 (strong). The percentage of immunoreactive cells
was scored as 0 (none), 1 (< 10%), 2 (10% to 50%), 3 (51% to 80%), and 4
(> 80%). Multiplication of the staining intensity score and the percent immu-
noreactivity score resulted in an IRS score ranging from 0 to 12 for each tissue
core. The overall IRS score®'? for each tumor was calculated by averaging the
IRS scores in three tissue cores. The median IRS score for each marker, based
on analysis of all tumors in the cohort, was used as the cutoff to define high
versus low expression. Cutoff IRS scores were as follows: PIK3CA (= 9), PIK3R1
(= 8), p-PDPKI1 (pTyr373/Tyr376; = 9), p-PDPK1 (pS241; = 8), AKT (= 8),
p-AKT (= 8), MTOR (= 6), p-MTOR (= 6), p-RPS6KB1 (= 6), p-RPS6
(= 4), p-EIF4EBP1 (= 4), PTEN (= 4), TSCI (= 8), and TSC2 (= 2).

To confirm the scores independently, a random selection of 70 tumors
was examined for each marker by a second blinded observer (Y.1.). Concor-
dance scores (all P < .001) were: k = 0.69 (PIK3CA), k = 0.82 (PIK3R1),
k= 0.80 (PTEN), k = 0.68 (p-PDPK1; pTyr373/Tyr376), k = 0.71 (p-PDPKI;
pS241), k = 0.69 (AKT), k = 0.67 (p-AKT), k = 0.80 (TSC1), k = 0.77
(TSC2), k = 0.77 (MTOR), k = 0.71 (p-MTOR), k = 0.68 (p-RPS6KB1),
Kk = 0.68 (p-RPS6), and k = 0.85 (p-EIFAEBP1).

Statistical Analysis

Overall survival (OS) was calculated using the Kaplan-Meier method
from the date of either patient’s initial diagnosis or date of diagnosis of meta-
static disease to the date of patient death, depending on the analysis performed.
Disease-free survival (DFS) was calculated from the date of resection to the
date of metastatic diagnosis or death. Statistical significance was defined as a
two-sided P < .05; however, multiple testing adjustment was not performed as
analyses were considered exploratory.”® The x” test was used to assess associ-
ations between the categorized expression levels, the tumor subgroups, and
MKI67 (Ki-67) LI status. The Spearman rank order correlation was used for
the pairwise correlation analyses of expression between proteins. Cox propor-
tional hazards regression models were used to compute mortality hazard ratios
(HR). Multivariate Cox proportional hazards regression models included
tumor primary site, sex, age at diagnosis, tumor size or TNM stage, lympho-
vascular invasion, perineural invasion, and MKI67 (Ki-67) LI (as a surrogate
for grade). A backward elimination with threshold of P = .05 was used to select
variables in the final models. Patients with missing data were excluded from
any analysis. SAS software (version 9.2; SAS Institute, Cary, NC) was used
for analyses.

Clinicopathologic Characteristics

We evaluated 195 independent patients with NET (Table 1), of
which 173 were primary tumors and 22 were metastases. The cohort
included 124 patients with small intestinal NET (SINET), 19 with
pancreatic NET (PNET), and 52 patients with other NET of various
origins. As anticipated, we found that advanced age, disease stage, and
high MKI67 (Ki-67) LI were associated with shorter OS (Table 1).

Expression of MTOR Pathway Components in NET

We evaluated potential differences in expression of 13 MTOR
pathway components in SINET, PNET, or other NET (Figs 1A to 1D;
Appendix Fig A1, online only). We observed variability in expression
levels of some but not all MTOR pathway components between tumor
subtypes. For example, low expression of TSC1 and TSC2 was more

© 2013 by American Society of Clinical Oncology 3419
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Table 1. Clinicopathologic Characteristics of the Patients with NET and Associations with OS
Characteristic No. of Patients % No. of Events Univariate HR 95% Cl P Multivariate HR* 95% Cl P
NET
Total 195 22t 43
Small intestinal 124 12 31 Reference 1 Reference
Pancreatic 19 0 4 1.35 0.47 t0 3.88 .57 1.64 0.562t05.17 .39
Otherst 52 10 8 0.76 0.35t0 1.65 48 0.65 0.19t02.17 48
Age, years 43 1.05 1.02t0 1.08 .0009 1.04 1.01t01.07 .0075
Mean 54.8
SD 13
Sex 1 .39
Female 101 52 19 Reference 1 Reference
Male 94 48 24 1.62 0.89t02.97 1.35 0.68t0 2.66
TNM stage .0001 .0002
| 15 8.0 0 References 1 References
Il 32 16
11 48 25 5
v 95 49 34 4.28 2.04 to0 8.95 4.94 214t011.4
Unknown 5 3.0 1
Lymphovascular invasion 11 A7
Negative 67 37 12 Reference 1 Reference
Positive 112 63 25 1.79 0.87 to 3.66 1.30 0.63102.67
Perineural invasion 17 .85
Negative 115 64 23 1 Reference 1 Reference
Positive 64 36 14 1.60 0.811t03.17 0.94 0.451t01.94
MKI67 (Ki-67) LI 15 .01
=2% 100 51 18 1 Reference 1 Reference
> 2% 95 49 25 1.57 0.851t02.88 2.41 1.22t04.76

Abbreviations: HR, hazard ratio; LI, labeling index; NET, neuroendocrine tumor; OS, overall survival.

“The multivariate Cox regression adjusted for tumor primary site (small intestinal v pancreas v others), age at diagnosis (continuous), gender (female v male), TNM
stage (I, II, Ill, unknown, v V), lymphovascular invasion (negative v positive), perineural invasion (negative v positive) and MKI67 (Ki-67) LI (= 2% v > 2%). A backward
elimination with threshold of P = .05 was used to select variables in the final models. We excluded patients with missing information. \We confirmed that including
patients with missing information in the majority category did not substantially alter the results.

TPatients only have metastatic tumor tissues.

FOthers: appendix, colon, lung, ovary, rectum, stomach, thyroid, and unknown.

8Reference: TNM stages |, I, and Ill.

common in PNET than in SINET (P = .0032 and P < .001, respec-
tively). High expression of the upstream component, p-PDPKI
(Tyr373/376) and AKT, as well as the downstream components,
p-RPS6KB1 and p-RPS6, was more common in SINET than in PNET
(P<.001and P <.001; P =.0005 and P < .001, respectively). We did
not detect statistically significant differences in MTOR pathway
component expression between primary tumors and metastases
among 24 pairs of primary tumors and matched nodal or distant
metastases (18 synchronous; six metachronous), although the low
number of patients may have limited our ability to detect such dif-
ferences.

Correlations Between MTOR Pathway Components
and With Clinicopathologic Variables

We predicted that expression of upstream-activating compo-
nents of the MTOR pathway would be associated with expression of
activated downstream components, as assessed by immunohisto-
chemistry. We observed strong correlations between most pairwise
comparisons of upstream molecules and their activated downstream
counterparts (Fig 2). We did not, however, observe expected inverse
associations between expression of PTEN and p-MTOR or between
TSC1 or TSC2 and p-MTOR in the cohort overall, or in the three
tumor subgroups.

3420 © 2013 by American Society of Clinical Oncology

We further found that expression of PIK3CA, MTOR, or
p-EIF4EBP1 was associated with an elevated MKI167 (Ki-67) LI (> 2%
P = .0011, P < .001, and P = .019, respectively). We did not find
statistically significant associations between MTOR pathway compo-
nent expression and other clinicopathologic variables.

Association Between MTOR Pathway Components
Expression and Clinical Outcomes

To evaluate potential associations between expression of
MTOR pathway components and clinical outcomes, we first as-
sessed whether expression of MTOR or its activated downstream
targets (p-RPS6KB1, p-RPS6, or p-EIFAEBP1) would be associated
with clinical outcomes in the overall cohort. Among the 173 pa-
tients with primary-tumor tissue available, 33 patients died within
a median follow-up time of 5.1 years. In a multivariate analysis,
expression of p-RPS6KB1 (HR, 3.13; 95% CI, 1.50 to 6.51;
P =.002) or p-RPS6 (HR, 2.62;95% CI, 1.17 to 5.86; P = .019) was
associated with shorter OS (Table 2).

Given potential differences between tumor subgroups, as well as
variation in stage and histology between patients,”**°>* our ability to
assess the prognostic significance of MTOR pathway markers based
on an analysis of the overall cohort might have been limited. We

JOURNAL OF CLINICAL ONCOLOGY
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).

Fig 1. Expression of mechanistic target
of rapamycin (serine/threonine kinase;
MTOR) pathway components in neuroen-
docrine tumors. (A) MTOR cytoplasmic
expression is shown (immunoreactivity
scoring [IRS] score, 9). (B) Tumor cells
with strong cytoplasmic phospho- (p)
RPS6KB1 immunostaining (IRS score, 9).
(C) Tumor cells with strong nuclear
p-RPS6 positivity (IRS score, 12). (D) Tu-
mor cells with both nuclear and cytoplasmic
p-EIF4EBP1 expression (IRS score, 12).

therefore focused our subsequent analyses on the largest subgroup of
patients in our cohort, those with SINET.

We assessed DFS in 47 patients with SINET who had under-
gone complete resections (R0O) of their primary tumors and asso-
ciated lymph nodes, with no evidence of distant metastatic disease
(MO). There were 11 patients with recurrences, with a median
follow-up time of 4.4 years. Expression of MTOR was associated
with shorter DFS in multivariate analyses (HR, 5.15; 95% CI, 1.48
to 17.9; P = .01; Table 3). We then assessed OS in patients with
metastatic disease. Among 76 patients who had metastatic disease
either at diagnosis or during follow-up, 24 patients died, with a
median follow-up time of 5.1 years. In a multivariate analysis,
expression of MTOR (HR, 2.94; 95% CI, 1.29 to 6.73; P = .011),
p-RPS6KB1 (HR, 3.28; 95% CI, 1.27 to 8.52; P = .015), p-RPS6
(HR, 2.69; 95% CI, 1.03 to 7.03; P = .043), or p-EIF4EBP1 (HR,
3.15; 95% CI, 1.32 to 7.53; P = .009) was associated with shorter
overall survival (Table 3; Figs 3A to 3D).

We performed parallel analyses to evaluate whether expres-
sion of the upstream regulators TSC1, TSC2, AKT, p-AKT, PDPK1,
PTEN, PIK3R1, or PIK3CA would be associated with OS in the
cohort overall, DFS in patients with resected SINET, or OS in
patients with metastatic SINET. We did not observe statistically
significant associations between expression of these upstream reg-
ulators and clinical outcomes.

Although several trials have now demonstrated the efficacy of MTOR
inhibitors in NET, the mechanism and pattern of MTOR pathway
activation in these tumors remains largely unknown. In our study, we
used immunohistochemical techniques to assess expression levels of

WWW.jco.org

MTOR pathway components in a large cohort of NET and correlated
expression with clinical outcomes.

Profiling and characterization of MTOR pathway compo-
nents has previously been demonstrated in other tumors known to
be responsive to MTOR inhibitors, including leiomyosarcoma and
renal cell carcinoma.'”** Expression of several MTOR pathway
components has also been detected in studies of NET tissue
specimens.®®?>?¢ As in these studies, we found that MTOR path-
way components were broadly expressed in NETs. We also con-
firmed prior observations that low expression of PTEN, TSC1, and
TSC2 is common in pancreatic NETs.® However, we found that
TSC1 and TSC2 expression are generally preserved in SINET,
suggesting potential differences in the mechanism of MTOR path-
way activation in these two subgroups. In the prior study, low
expression of the tumor suppressor PTEN or TSC2 was found to
correlate with adverse clinical outcomes in patients with pancreatic
NET.® Low patient numbers did not allow us to formally test these
associations in pancreatic NET.

Activation of the MTOR pathway would be predicted to be
associated with more aggressive clinical behavior. The proliferative
marker MKI167 (Ki-67) has been widely used as a prognostic indicator
in NETs; an MKI167 (Ki-67) LI of more than 2% is generally associated
with adverse outcomes. Consistent with observations in a prior study
of gastroenteropancreatic NET,” we found that expression of MTOR
or p-EIF4EBP1 is associated with a higher proliferative index. We also
found that expression of the upstream regulator PIK3CA was associ-
ated with an elevated MKI67 (Ki-67) LI (> 2%). Interestingly, similar
associations between MTOR pathway component expression and
clinical outcomes have not been observed in poorly differentiated
neuroendocrine carcinoma.”®

© 2013 by American Society of Clinical Oncology 3421
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Fig 2. Association between expression of
mechanistic target of rapamycin (serine/threo-
nine kinase; MTOR) pathway components in
neuroendocrine  tumors.  Correlations  are
shown between expression of key MTOR
pathway components and their immediate
downstream targets (the raw immunoreactiv-
ity scores were used for correlation analysis).

004 (TSC1) p- phospho.

Thr37/46

We further found associations between high expression of
MTOR or its activated downstream targets and clinical outcomes.
Expression of MTOR, p-RPS6KBI, or p-RPS6 was associated with
shorter survival in our cohort overall, though interpretation of these
results is limited to some degree by variability in patient stage and
tumor subtype. Focusing our analysis on our largest subgroup,
SINET, we found associations between shorter DFS in patients with
resections or shorter overall survival for patients with metastases and
high expression of MTOR or its activated downstream targets
p-RPS6KB1, p-RPS6, and p-EIF4EBP1. Though MTOR expression
was not found to be associated with clinical outcomes in a study of 34

3422 © 2013 by American Society of Clinical Oncology

patients with pancreatic NET,” our observations are consistent with
the results of another recent study in which activated RPS6KB1 was
found to be associated with a poor prognosis in 39 patients with
advanced mid-gut NET.”

One unanticipated observation was our failure to observe associ-
ations between p-MTOR expression and clinical outcomes as might be
predicted. It is possible that the immunohistochemical assessment for
p-MTOR was not as reliable as for some of the other markers. Indeed,
correlation between p-MTOR and its direct downstream activated
target p-RPS6KB1 was relatively weak (P = .14). We also did not
detect clear associations between expression of upstream components

JOURNAL OF CLINICAL ONCOLOGY
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Table 2. Expression of MTOR, Its Downstream Effectors, and OS in Patients With NET (n = 173)

Variable No. of Patients % No. of Events Univariate HR 95% ClI P Multivariate HR* 95% Cl P
MTOR .021 .053
Negative/low 114 68 5 1 Reference 1 Reference
High 54 32 17 2.28 1.14t0 4.57 1.99 0.99 t0 4.03
p-MTOR .88 .98
Negative/low 47 28 8 1 Reference 1 Reference
High 123 72 24 1.07 0.48t02.39 1.01 0.45t02.29
p-RPS6KB1 .0034 .002
Negative/low 107 62 14 1 Reference 1 Reference
High 66 38 19 2.96 1.43106.13 3.13 1.50t06.51
p-RPS6 .015 .019
Negative/low 106 62 13 1 Reference 1 Reference
High 65 38 19 2.41 1.19t0 4.90 2.62 1.17t05.86
p-EIFAEBP1 .35 .37
Negative/low 115 67 17 1 Reference 1 Reference
High 56 88 16 1.40 0.69 to 2.82 1.37 0.68 t0 2.75

NOTE. Analysis based on all patients with NET with evaluable primary tumors.

Abbreviations: HR, hazard ratio; LI, labeling index; MTOR, mechanistic target of rapamycin (serine/threonine kinase); NET, neuroendocrine tumor; OS, overall
survival; p-, phospho.

*HRs adjusted for tumor primary site (small intestinal v pancreas v others), age at diagnosis (continuous), sex, tumor size (continuous), lymphovascular invasion, perineural
invasion, and MKI67 (Ki-67) LI (= 2% v > 2%). A backward elimination with threshold of P = .05 was used to select variables in the final models. \We excluded patients
with missing information. We confirmed that including patients with missing information in the majority category did not substantially alter the results.

of the MTOR pathway and clinical outcomes. Taken together, our  atory nature of our analysis. Validation studies will be needed to
observations suggest that expression of MTOR and its downstream  confirm these findings.

components may be more reliable prognostic indicators than expres- Though our study sheds light on the patterns and potential clin-
sion of upstream markers in patients with NET. These observations  ical significance of MTOR pathway activation in NET, the underlying
need to be interpreted with some caution, however, given the explor- ~ mechanisms leading to pathway activation remain unclear. In other

Table 3. Associations Among Expression of MTOR Pathway Components in SINET and DFS for Resected Patients (n = 47) or OS for Metastatic Patients (n = 73)

DFS for Resected Patients OS for Metastatic Patients
No. of No. of Univariate Multivariate No. of No. of Univariate Multivariate
Variable Patients % Events HR 95% ClI HR* 95% CI  Patients % Events HR 95% ClI HR* 95% ClI
MTOR
Negative/low 34 72 5 1 Reference 1 Reference 54 72 10 1 Reference 1 Reference
High 13 28 6 5.15 1.48t017.9 5.15 1.48t017.9 21 28 14 3.36 1.47 t0 7.68 2.94 1.29t06.73
P .01 .01 .004 011
p-MTOR
Negative/low 10 21 1 1 Reference 1 Reference 18 24 5 1 Reference 1 Reference
High 37 79 10 2.96 0.381023.2 2.96 0.381023.2 57 76 19 0.85 0.311t02.31 1.15 0.39t0 3.37
P .30 .30 75 .80
p-RPS6KB1
Negative/low 29 62 5) 1 Reference 1 Reference 85) 46 7 1 Reference 1 Reference
High 18 38 6 2.12 0.64 to 7.02 2.12 0.64 to 7.02 1M 54 17 2.68 1.05t0 6.81 3.28 1.27 t0 8.52
P 22 22 .039 .015
p-RPS6
Negative/low 24 51 5 1 Reference 1 Reference 35 47 6 1 Reference 1 Reference
High 23 49 6 1.1 0.331t0 3.65 1.1 0.33103.65 40 53 17 3.37 1.311t08.67 2.69 1.03t0 7.03
P .86 .86 .012 .043
p-EIFAEBP1
Negative/low 33 70 6 1 Reference 1 Reference 50 67 10 1 Reference 1 Reference
High 14 30 5 1.80 0.551t05.92 1.80 0.651t05.92 25 33 14 2.64 1.15t0 6.06 3.15 1.32t07.53
P .33 3 .022 .009

Abbreviation: DFS, disease-free survival; HR, hazard ratio; LI, labeling index; MTOR, mechanistic target of rapamycin (serine/threonine kinase); OS, overall survival;
p-, phospho; SINET, small intestinal neuroendocrine tumor.

“HRs adjusted for age at diagnosis (continuous), sex, tumor size (continuous), lymphovascular invasion, perineural invasion, and MKI67 (Ki-67) LI (= 2% v > 2%).
A backward elimination with threshold of P = .05 was used to select variables in the final models. We excluded patients with missing information. We confirmed
that including patients with missing information in the majority category did not substantially alter the results.
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Fig 3. Overall survival for metastatic patients according to mechanistic target of rapamycin (serine/threonine kinase; MTOR) pathway component expression
in patients with small intestinal neuroendocrine tumor. Kaplan-Meier curves for overall survival are shown according to expression of (A) MTOR, (B) phospho-

(p) RPS6KB1, (C) p-RPS6, or (D) p-EIF4AEBP1.

malignancies, the MTOR pathway is activated through binding of
growth factors to receptor tyrosine kinases, as well as by a mutation,
deletion, or amplification of key pathway components including PIK3CA,
PTEN, or AKT.>'*** Loss of 16p, the chromosomal region containing
TSC2, as well as loss of 10q, the region containing PTEN, has been re-
ported in pancreatic NET, as have mutations in PTEN, TSC2, and
PIK3CA.>*>% Characteristic mutations in SINET have yet to be defined.

The MTOR inhibitor everolimus was recently approved for use
in patients with advanced pancreatic NET.! A parallel randomized
study also suggested that everolimus may have activity in patients with
advanced carcinoid tumors.? The downstream markers p-RPS6KBI,
p-RPS6, and p-EIFAEBP1 have been used as surrogate markers to
assess exposure to MTOR inhibitors both in vitro and in vivo,****73®
It is intriguing, therefore, that expression of these same markers may
more generally be associated with clinical outcomes. Although MTOR
pathway components have been suggested as potentially predictive
biomarkers of response to MTOR inhibitors,” none have yet been
validated in this capacity. These same markers would seem to be

3424 © 2013 by American Society of Clinical Oncology

leading candidates to assess for their ability to predict response to
treatment with MTOR inhibitors.

In conclusion, we found expression of MTOR and its downstream
effectors to be associated with adverse clinical outcomes in a large cohort
of patients with NET. Confirmatory studies, as well as studies evaluating
the potential predictive value of these markers in patients receiving
everolimus or other MTOR inhibitors, are warranted.
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Fig A1. Mechanistic target of rapamycin (MTOR) pathway component expression in neuroendocrine tumors (NET) according to tumor subtype. Results are shown
for all tumors evaluated (n = 195). p-, phospho; PNET, pancreatic neuroendocrine tumors; SINET, small intestinal neuroendocrine tumors.
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