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Neurobiology of Disease

Alterations in Endogenous Opioid Functional Measures in
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The absence of consistent end organ abnormalities in many chronic pain syndromes has led to a search for maladaptive CNS mechanisms
that may explain their clinical presentations and course. Here, we addressed the role of brain regional p-opioid receptor-mediated
neurotransmission, one of the best recognized mechanisms of pain regulation, in chronic back pain in human subjects. We compared
p-opioid receptor availability in vivo at baseline, during pain expectation, and with moderate levels of sustained pain in 16 patients with
chronic nonspecific back pain (CNBP) and in 16 age- and gender-matched healthy control subjects, using the p-opioid receptor-selective
radioligand [ ''C]carfentanil and positron emission tomography. We found that CNBP patients showed baseline increases in thalamic
p-opioid receptor availability, contrary to a previously studied sample of patients diagnosed with fibromyalgia. During both pain
expectation and sustained pain challenges, CNBP patients showed regional reductions in the capacity to activate this neurotransmitter
system compared with their control sample, further associated with clinical pain and affective state ratings. Our results demonstrate
heterogeneity in endogenous opioid system functional measures across pain conditions, and alterations in both receptor availability and
endogenous opioid function in CNBP that are relevant to the clinical presentation of these patients and the effects of opioid analgesics on

J-opioid receptors.

Introduction

Back pain is an exceedingly common condition affecting 70—
85% of all people during their lifetimes (Andersson, 1999). Most
patients recover from an episode of acute back pain, but in a
sizable number of individuals it persists or frequently recurs,
leading to chronicity. In the majority of these patients no patho-
anatomical diagnosis can be established, and, likely due to poor
understanding of the cause of the pain, the treatment options for
chronic nonspecific back pain (CNBP) have remained unsatisfy-
ing (Kuijpers et al., 2011; Balagué et al., 2012). The lack of appar-
ent end organ pain generators raises the question of whether the
pathogenesis of CNBP involves hyperalgesia maintained by pain-
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related neuroplastic changes, otherwise primarily characterized
at the level of primary sensory and dorsal horn neurons (Woolf
and Salter, 2000). In patients with chronic back pain, the hypoth-
esis of maladaptive CNS changes has received considerable sup-
port from recent imaging studies showing brain structural and
functional alterations related to the individual pain characteris-
tics (Apkarian et al., 2004; Baliki et al., 2011, 2012).

A large body of evidence demonstrates the central role of the
brain p-opioid receptor (MOR) system in pain regulation (Zu-
bieta, 2008). The significance of brain MORs in the endogenous
regulation of acute pain in humans has been highlighted by
positron emission tomography (PET) studies demonstrating
w-opioid system activation during painful stimulation in multi-
ple brain regions, including the periaqueductal gray, mid- and
lateral thalamus, hypothalamus, nucleus accumbens, and amygdala,
as well as in the insular, anterior cingulate, and prefrontal cortices
(Zubieta et al., 2001, 2002; Bencherif et al., 2002). Consistent with its
role in pain and stress suppression, pain-induced MOR activation
was negatively correlated with the sensory and affective ratings of the
pain experience, as well as with the negative affective state experi-
enced during the challenge (Zubieta et al., 2001, 2002).

In patients with neuropathic pain, studies using the nonselec-
tive opioid receptor radioligand [ ''C]diprenorphine have shown
reductions in baseline opioid receptor availability when com-
pared with healthy control (HC) subjects (Jones et al., 2004; Wil-
loch et al., 2004; Maarrawi et al., 2007). Similar reductions, albeit
with a different regional involvement, have been found in fibro-
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Table 1. Demographic data of HC subjects and patients with CNBP and FM

(NBP FM
Patients Control Patients Control
Demographic data (N=16) (N=16) N="19 N="19
Age (years)
Mean (SD) 38 (11) 36 (11) 45 (13) 43(12)
Range 20-50 20-49 19-68 20-61
Sex (N, male/female) 8/8 8/8 0/19 0/19
Race/ethnicity [N (%)]
African American 0 1(6) 1(5) 1(5
(aucasian 14 (88) 15 (94) 16 ( 18 (95)
Hispanic 1(6) 0 2(11) 0
Native American 1(6) 0 0 0
Pain duration (years)
Median (IQR) 5.0(3.8) 4.0 (6.5)
Range 2-15 1-18
Pain intensity (VAS)
Mean (SD) 49 (20) 59 (17)
Range 10-80 24-83

Pain intensity was measured on a 0—100 visual analog scale (VAS). IQR, Interquartile range.

myalgia (FM) using [ ''C]carfentanil (Harris et al., 2007). The
reductions in opioid receptor availability in these chronic pain
conditions have been interpreted as reflecting persistent endoge-
nous opioid system activation and a downregulation of these
receptor sites. Indeed, after successful treatment, recovery of opi-
oid receptor availability has been shown in small samples of
chronic pain patients in parallel with improvements in pain re-
port (Jones et al., 1994, 1999).

Here, we examined whether CNBP is associated with dysfunc-
tions in brain regional MOR neurotransmission, studied at base-
line, during the expectation of pain, and during sustained,
experimental muscle pain (Stohler and Kowalski, 1999). We hy-
pothesized that alterations in brain MOR functional measures
would be associated with clinical pain, affective state, and reduc-
tions in gray matter volume (Apkarian et al., 2004), as the latter
may be related to deficits in pain regulatory mechanisms.

Materials and Methods

Subjects. We compared 16 CNBP patients [8 males and 8 females; mean
(£SD) age, 38 = 11 years] with 16 age- and gender-matched HC subjects
(8 males and 8 females; mean age, 36 = 11 years). For baseline receptor
measure comparisons with the CNBP sample, we also examined data
from a previously studied sample of 19 patients with FM (all females;
mean age, 45 * 13 years) and a separate age- and gender-matched HC
group (all females; mean age, 43 = 12 years; Table 1).

The study participants were as follows: right-handed nonsmokers,
who did not use alcohol >10 units per week), did not perform physical
exercise >1 h/d, and had no recreational drug use. The HC subjects had
neither current somatic or psychiatric diseases nor a history of them, and
were not taking any regular medications. All participants provided writ-
ten informed consent before entering the study. The study protocol was
in accordance with the Declaration of Helsinki, and was approved by the
Institutional Review Board and the Radioactive Drug Research Committee.

The CNBP patients were recruited from a local pain clinic with the
following main inclusion criteria: current average back or neck pain
intensity between 3 and 8 on a 0—10 verbal rating scale (0 representing no
pain, 10 representing the greatest pain intensity imaginable) with pain
duration of at least 1 year; no current or past opioid use within the past
year; and no history of psychiatric disease (except for mild depressive
symptoms).

The CNBP patients were classified as having nonspecific back or neck
pain (i.e., patients with specific diagnoses, nonspinal etiology, or radic-
ular symptoms were not included in the study). The pain was localized in
the low back in four patients, in the neck in four patients, and in larger
areas in the back and neck in the remaining eight patients. The most
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intense pain was localized in the low back in 10 of 16 patients. The CNBP
patients were using several different kinds of analgesic medications, with
the most common being acetaminophen and nonsteroidal anti-
inflammatory drugs (7 of 16 patients), muscle relaxants (3 of 16
patients), selective serotonin reuptake inhibitors (SSRIs) or serotonin-
norepinephrine reuptake inhibitors (SNRIs; 3 of 16 patients), and gaba-
pentin (3 of 16 patients).

The FM patients were part of a subject group that had previously
participated in a PET study examining the effects of acupuncture on
brain MOR availability (Harris et al., 2009). Seventeen of the 19 FM
patients studied were part of our earlier study, for which baseline MOR
nondisplaceable binding potential (BP,) data were available (Harris et
al., 2007). The patients with FM met the American College of Rheuma-
tology 1990 diagnostic criteria for FM for a minimum of 1 year (Wolfe et
al., 1990), with a continued presence of pain on at least 50% of days. The
analgesic medications used by the FM patients were SSRIs and SNRIs,
which were used by a total of 10 of 19 patients. As in the CNBP sample,
the FM patients had not been exposed to opioids for at least a year.

Pain expectation and sustained pain challenges. Performed only in the
CNBP sample and its control group, the challenges consisted of a pain
expectation condition (0.9% isotonic saline, administered 5-25 min after
the start of the scan) and a painful condition (5% hypertonic saline,
administered 45—65 min after the start of the scan). The participants
were informed of these two conditions, but not of their order or laterality,
allowing for the assessment of the effects of pain expectation. In the pain
condition, a steady state of moderate muscle pain was maintained by the
infusion of a small amount of 5% hypertonic saline into the relaxed left
masseter muscle via a computer-controlled closed-loop system (Zhang et
al., 1993; Stohler and Kowalski, 1999). This prolonged painful stimula-
tion during the PET scan allows reliable determination of MOR BP,
during the individual pain experience (Zubieta et al., 2001), while the
feedback mechanism ensures that the pain experience is comparable
across individual subjects and subject groups (Stohler and Kowalski,
1999). Moreover, because none of the volunteers had pain in the jaw or
face area, choosing the masseter muscle for painful stimulation allowed
for a better differentiation between experimental and clinical pain rat-
ings, while at the same time introducing an increase in pain signal for the
assessment of endogenous opioid system functional integrity.

The pain level was measured every 15 s by an electronic 0—100 visual
analog scale (VAS), representing “no pain” to “the highest pain intensity
imaginable.” Here, a computer-controlled pump injected an average vol-
ume of 2.4 = 1.0 ml into the masseter muscle, with a target of 40 VAS
units; the actual average VAS rating in this study over the whole subject
group was 31 = 13 units. The isotonic saline solution was infused at the
same rate as the hypertonic solution and was applied in the right masseter
muscle, opposite to where pain was induced. In the data analysis, MOR
activation during pain expectation and pain was defined as a reduction in
MOR BP, during the experimental condition when compared with the
corresponding time frame in the baseline PET scan. The pain challenge
was completed by all HC subjects (N = 16) and 15 CNBP patients (i.e.,
one patient with CNBP did not complete the pain challenge).

At baseline and immediately after the isotonic and hypertonic saline
infusions, the subjects completed the expanded form of the Positive and
Negative Affect Schedule (PANAS; Watson and Clark, 1999) and the
MCcGill Pain Questionnaire (MPQ; Melzack and Torgerson, 1971), which
uses weighted word descriptors for the pain, and 0-100 VAS ratings of
the pain intensity and unpleasantness. These measures, together with the
average pain intensity ratings acquired every 15 s during the 20 min
challenge, provided the measures of the individual pain experience dur-
ing the challenges. Individual pain sensitivity was measured as the total
volume of hypertonic saline solution (in milliliters) needed to keep the
pain intensity in the target range.

Neuroimaging. The PET scans were acquired with a Siemens HR+
scanner in 3D mode with septa retracted and scatter correction [recon-
structed full-width at half-maximum (FWHM) resolution, 5.5 mm in-
plane and 5.0 mm axially]. Each participant was positioned comfortably
in the PET scanner gantry, and an intravenous (antecubital) line was
placed in the right arm. A light forehead restraint was placed to eliminate
head movement during the scan. [''C]carfentanil was synthesized at
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high specific activity by the reaction of [''C]methyliodide and a non-
methyl precursor, as described previously (Dannals et al., 1985; Jewett,
2001). An exposure of 15 = 1.0 mCi (555 = 37 MBq) was administered
during the scan, with a mass of carfentanil injected of <0.05 ug/kg per
scan. Fifty percent of the [''C]carfentanil dose was administered as a
bolus, and the remaining 50% as a continuous infusion for the remainder
of the study. Twenty-eight frames of images were acquired over 90 min
with an increasing duration (30 s up to 10 min). The HC subjects and
CNBP patients underwent two 90 min PET scans with [ ''C]carfentanil,
one scan without any intervention for baseline MOR BPy, assessment,
and another scan for the measurement of MOR activation during pain
expectation and experimental pain. Scan order was randomized and
counterbalanced. The FM patients and the corresponding HC subjects
participated only in the baseline PET scan.

PET images were reconstructed using iterative algorithms (brain
mode; Fourier rebinning with ordered subsets-expectation maximiza-
tion, four iterations, 16 subsets; no smoothing) into a 128 X 128 pixel
matrix in a 28.8-cm-diameter field of view. Attenuation correction was
performed through a 6 min transmission scan (“*Ge source) obtained
before the PET study, and with iterative reconstruction of the blank/
transmission data followed by segmentation of the attenuation image.
Small head motions during emission scans were corrected by an auto-
mated computer algorithm for each subject before analysis, and the im-
ages were coregistered with the same software (Minoshima et al., 1993).
After this, time points were decay corrected during reconstruction of the
PET data.

Image data were transformed on a voxel-by-voxel basis into the fol-
lowing two sets of parametric maps: (1) a tracer transport measure (K,
ratio); and (2) areceptor-related measure (i.e., BP\,). A modified Logan
graphical analysis (Logan et al., 1996) was used to calculate the tracer
transport and BPyp,, obviating the need for arterial blood sampling. The
occipital cortex, an area devoid of MORs, was used as the reference
region. The slope of the Logan plot was used for the estimation of the
BPyp, @ measure equal to fypB,,,./Ky, where B, ., represents the con-
centration of receptors and K their affinity for the radioligand, and the
term fyp, refers to the concentration of free radiotracer in the extracellu-
lar fluid, which is considered to represent a constant and very small value.

Anatomical T1-weighted magnetic resonance imaging (MRI) data
were acquired on a 3 T scanner (Signa LX; General Electric), using 3D
inversion recovery-prepared fast spoiled gradient recalled acquisition
(echo time = 1.9 ms; repetition time = 9.2 ms; inversion time = 500 ms;
flip angle = 15° bandwidth = 16 kHz; number of excitations = 1; 256 X
256 matrix; field of view = 25/26 cm; number of contiguous images =
154; isotropic voxel size = 1 mm).

MR, K, and BP, images were coregistered to each other and to the
Montreal Neurological Institute (MNI) stereotactic atlas orientation us-
ing Statistical Parametric Mapping software (SPM8; Wellcome Trust
Centre for Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.
uk/spm/) and Matlab (MathWorks). MOR binding maps were normal-
ized with the deformation field obtained from the normalization of the
MR images to the MNI atlas orientation using the VBMS8 toolbox
(http://dbm.neuro.uni-jena.de/vbm/). The accuracy of the coregistra-
tion and normalization algorithms was confirmed for each subject indi-
vidually by comparing the transformed images to each other and to the
MNTI atlas template. Statistical parametric maps of group differences were
generated with SPM8. No global normalization was applied to the data;
therefore, the calculations presented are based on absolute fy,B,,,../Ky esti-
mates. Only regions with specific MOR BP,, were included in the analyses
(i.e., voxels with BPy, values >0.1). To compensate for small residual ana-
tomic variations across subjects and to improve signal-to-noise ratios, a 6
mm FWHM Gaussian filter was applied to each scan.

MRI data processing for voxel-based morphometry (VBM) analysis
was performed using VBMS toolbox, with default parameters for image
processing. This included bias regularization, and tissue classification
and registration using linear (affine) and nonlinear transforma-
tions within a unified model (Ashburner and Friston, 2005). High-
dimensional spatial normalization was made to the DARTEL template
(Diffeomorphic Anatomical Registration using Exponentiated Lie alge-
bra; Biomedical Image Analysis Group, Imperial College London, Lon-
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don, UK). The analysis was performed on the volume of gray matter,
multiplied by the nonlinear, but not linear, components derived from the
normalization matrix. This procedure preserves actual local gray matter
volume, accounting for individual brain size (modulated gray matter
volume). The realigned and normalized gray matter segments were
smoothed with an 8 mm FWHM Gaussian kernel.

Data analysis. We examined the effects of CNBP and FM on baseline
MOR BPy, by applying a general linear model (GLM) on a voxel-by-
voxel basis using SPM8. The PET data from the FM sample were pro-
cessed and reanalyzed by the same person in parallel with the PET data
from the CNBP sample, using the same assumptions and tools. Instead of
simply comparing the new data from the CNBP sample to the previously
published data on FM (Harris et al., 2007), this approach accounted for
differences in data-processing streams and updated software that might
potentially affect the results. The effects of CNBP on pain expectation
and pain-induced MOR activation (defined as a reduction in the MOR
BPyp measure from baseline to nonpainful isotonic saline or painful
hypertonic saline condition, respectively) were determined using a
mixed-model ANOVA, with the diagnostic group (HC/CNBP) as the
between-subject factor and the change in MOR BPy, as the within-
subject dependent variable. For all analyses, age was included as a nui-
sance covariate. For the pain challenges, we also included the average
VAS pain ratings during the hypertonic saline infusion as a nuisance
covariate to control for small differences between subjects. Significant
effects were detected in the whole-brain voxel-by-voxel analysis using a
statistical threshold that controls a type I error rate at p < 0.05 (false
discovery rate corrected for multiple comparisons). These statistical
thresholds were estimated using the Euler characteristic (Worsley et al.,
1992), based on the number of voxels in the gray matter, image smooth-
ness, and the extent of local changes (correction for cluster volume;
Friston etal., 1991). The numerical values for MOR BPy, were extracted
from the image data by averaging the values of voxels contained in the
area in which significant effects were obtained in the analyses.

We compared the gray matter of HC subjects and CNBP patients using
a whole-brain VBM analysis with VBMS, covarying for age. Voxels with
gray matter value <0.1 were excluded from the analysis. We used a height
threshold of p < 0.001 (uncorrected) with an extent of 80 voxels (270
mm?; corresponding to the expected number of voxels per cluster)
across the whole brain for searching significant differences in brain gray
matter volume, with a priori hypothesis of regional reduction of brain
gray matter as demonstrated by earlier studies (Apkarian et al., 2004;
Seminowicz et al., 2011; Ivo et al., 2013). Additionally, the clusters show-
ing significant alterations in endogenous opioid function in the CNBP
sample were used to perform a region of interest (ROI)-based VBM
analysis. A multivariate GLM was used to evaluate the group effects on
gray matter volume, where the diagnostic group was included as an in-
dependent variable, regional gray matter volume as a dependent variable,
and age as a covariate.

Before performing statistical tests, the distribution of each variable was
tested and a parametric or nonparametric test was selected for further
analysis accordingly. SPSS version 19 (SPSS) was used for assessing group
differences and planned correlations between MOR BPy,, local gray
matter volume and clinical measures. Statistical significance was set at
p < 0.05.

Results

General characteristics of the patients and controls
Demographic data of the CNBP and FM patients and the corre-
sponding HC subjects are shown in Table 1. There were no sig-
nificant differences between the patients with CNBP and FM in
terms of pain duration (U;y = 150, Z = —0.03, p = 0.99) or
rating of current clinical pain intensity on a 0-100 VAS (¢33, =
1.5, p = 0.14). Average age was slightly higher in the FM than the
CNBP group, but this difference was not statistically significant
(ts5 = 1.8, p = 0.08).
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Baseline MOR BPy, in CNBP

and controls

The CNBP patients showed significant in- A
creases in baseline thalamic MOR BP,
compared with its control sample (Fig. 1),
as follows: right thalamus, peak MNI co-
ordinates (x, y, z) at (10, —12, 6): cluster
size = 3070 mm?>, Z = 5.1, mean MOR
BPyp increase of 18%; left thalamus, peak
MNI coordinates at (—9, —9, 4): cluster
size = 1630 mm?, Z = 4.1, mean MOR
BPyp increase of 23%. No significant
clusters were found in the opposite con-
trast (HC > CNBP).

Regional MOR BP,;, in the CNBP
group was negatively correlated with pos-
itive affect ratings, as measured with the
PANAS, in both the right (r = —0.56,
p = 0.03) and left thalamus (r = —0.66,
p = 0.006; Fig. 2A,B). Negative affect
(PANAS), duration of clinical pain, clini-
cal pain ratings using VAS or MPQ total,
and sensory and pain affect subscale
scores were not significantly associated
with changes in thalamic MOR BPy,
(p=>04).

To eliminate the possibility that the 3
increases in MOR BPy in CNBP pa-
tients, not previously observed in other
persistent pain conditions, could be due
to technical factors such as changes in
image-processing streams, previously ac-
quired baseline data in FM patients was
also analyzed against a matched control group (Harris et al.,
2007). Contrary to the CNBP sample, patients with FM exhibited
significantly lower MOR BP, than their matched HC sample in
several brain areas. These included the thalamus bilaterally, with
a peak in the right thalamus [peak MNI coordinates at (10, —15,
1): cluster size = 3510 mm?, Z = 6.0, mean MOR BP,;, reduc-
tion of 22%], the nucleus accumbens bilaterally [right, (14, 16,
—8): cluster size = 2390 mm?, Z = 6.0, 19% reduction; left, peak
MNI coordinates at (—10, 10, —11): cluster size = 1400 mm?,
Z = 4.8, 16% reduction], the left amygdala/left hippocampus
[peak MNI coordinates at (—26, —9, —24): cluster size = 253
mm?, Z = 4.8, 24% reduction], and the left insula [peak MNI
coordinates at (—42, —3, 1): cluster size = 503 mm?, Z = 4.4,
20% reduction; Fig. 3]. A small cluster was also found in the right
amygdala, although it failed to reach significance after full cor-
rection for multiple comparisons [p = 0.09; peak MNI coordi-
nates at (22, —6, —24): cluster size = 68 mm?, Z = 4.4, 20%
reduction]. The opposite contrast (HC < FM) did not show any
significant effects.

Figure 1.

Function of MOR-mediated neurotransmission in CNBP
We also examined whether differences between the HC and
CNBP groups would be observed for the capacity to activate en-
dogenous opioid neurotransmission in response to pain expecta-
tion (pain is expected but not received) and experimental pain.
From the perspective of affective measures, there were no sig-
nificant differences in affective state between HC and CNBP sub-
jects, at baseline (PANAS positive: F; 59 = 0.03, p = 0.87;
PANAS negative: F(, ,5) = 1.8, p = 0.19), during the expectation
of pain (positive: F(; ,o) = 1.8, p = 0.20; negative: F; ,5, = 2.0,
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Increased thalamic MOR BP,, in CNBP patients. Patients with CNBP demonstrated significant increases in MOR BP,,,
in the right thalamus (R thal) and left thalamus (L thal). A, B, The thalamic clusters are shown in radiological convention in axial
(Z = 5;A) and coronal planes (Y = —14; B). , Plots of average cluster MOR BP\,, values for HC subjects (empty circles, N = 16)
and CNBP patients (filled circles, N = 16).

p = 0.16), or during pain (positive: F(, 5, = 1.0, p = 0.32; nega-
tive: F(; 50y = 1.8, p = 0.19).

As would be expected with the use of the adaptive pain main-
tenance system used in the studies, no significant differences were
observed between the HC subjects and CNBP patients in their
average 0—100 VAS ratings acquired every 15 s during the experi-
mental pain challenge (HC: 29 * 8.4; CNBP: 33 = 12;t(,,, = —0.96,
p = 0.35) or total MPQ score (HC: 23 & 12; CNBP: 24 * 11; 55, =
—0.22, p = 0.83), confirming a similar experiential state in both
groups. The total amount of hypertonic saline needed to maintain
the pain experience at target levels was, however, different: CNBP
patients required significantly less hypertonic saline than HC sub-
jects to maintain pain (average amount of hypertonic saline: 2.7 *
0.84 ml for HC subjects; 1.8 + 0.92 ml for CNBP patients; ¢.,5) = 2.6,
p = 0.02), consistent with the presence of generalized hyperalgesia in
the patient group.

A mixed-model ANOVA on a voxel-by-voxel basis revealed
significant group (HC/CNBP) X condition (pain expectation/
pain) interactions. During the pain expectation condition, we
detected a significant interaction in the left amygdala, whereby
patients with CNBP demonstrated lower endogenous opioid
system activation (ABPy,) than HC subjects [peak MNI co-
ordinates at (—20, —6, —17): cluster size = 560 mm°>, Z = 4.2;
Fig. 4A,B]. During experimental sustained muscle pain, we
also found a significant interaction in the same area, again
with lower MOR activation in CNBP patients, compared with
HC subjects [peak MNI coordinates at (—26, —13, —12): clus-
ter size = 446 mm”>, Z = 4.6; Fig. 4C]. We did not detect
significant group X condition interactions for the opposite
contrasts (HC < CNBP).
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Figure2. Associations between thalamic MOR BP,, and positive affect and gray matter in CNBP patients. 4, B, Significant negative correlations were found between MOR BP,, and positive affect

as measured by PANAS in the right thalamus (R thal; A) and left thalamus (L thal; B). €, D, The thalamic MOR BP,, was also negatively correlated with gray matter volume in the right (€) and left

thalamus (D).

Because the increased thalamic MOR BPy, in CNBP at base-
line may be related to a reduced endogenous opioid release in this
region, we performed an additional mixed-model ANOVA that
was spatially limited to the bilateral thalamic clusters showing
increased MOR BPy, at baseline. This analysis found reduced
MOR activation in the CNBP group in the thalamus, bilaterally,
during the pain challenge, but not in the pain expectation condi-
tion [right thalamus, peak MNI coordinates at (16, —24, 3): clus-
ter size = 135 mm?>, Z = 3.1; left thalamus, peak MNI coordinates
at (—9, —7,0): cluster size = 672 mm?>, Z = 3.4]. No associations
were found between the pain-induced MOR activation and base-
line MOR BPy, in these clusters, although a trend toward signif-
icant negative correlation was observed in the left thalamus (right
thalamus: p = 0.3; left thalamus: r = —0.33, p = 0.07). Again, no
significant group X condition interactions were found for the
opposite contrasts (HC << CNBP).

We then examined the relationships between the magnitude
of MOR activation during the two experimental conditions and
ratings of experimental and clinical pain, as well as affective state.
The activation of MOR neurotransmission in CNBP patients in
the left amygdala during pain expectation was positively corre-
lated with PANAS positive affect ratings during that condition
(r = 0.52, p = 0.046). During the pain challenge, MOR system
activation in the left amygdala was negatively correlated with
back pain VAS intensity (r = —0.59, p = 0.02) and VAS unpleas-
antness scores (r = —0.55, p = 0.04), but not with back pain
MPQ ratings or ratings of experimental pain (p > 0.2). Also, a
positive correlation was observed between the magnitude of
MOR activation and PANAS positive affect scores during the
pain challenge (r = 0.54, p = 0.04). No relationships were de-

tected between the MOR activation in the thalamic clusters and
VAS or MPQ pain ratings (p > 0.2) or PANAS positive and
negative affect scores (p > 0.2). These data then indicate the
presence of a deficit in endogenous opioid neurotransmission in
the left amygdala that is related to the clinical presentation of
these patients from both emotional and pain perspectives, ob-
served in both pain expectation and experimental pain
challenges.

Voxel-based morphometry

An examination of gray matter volumes in HC and CNBP volun-
teers was conducted to determine whether the alterations in mea-
sures of endogenous opioid function (increases in MOR
availability in vivo and reductions in MOR activation during pain
expectation or experimental pain challenge) would be associated
with reductions in gray matter volume, as the latter has been
reported in CNBP samples (Apkarian et al., 2004). Conversely,
for small regions such as the thalamus or the amygdala, potential
increases in gray matter volume could explain the increases in
MOR availability observed in CNBP as an artifact of measure-
ment, due to lesser partial volume-averaging effects with sur-
rounding structures with low MOR availability such as white
matter or CSF.

Global brain gray matter volumes did not differ between HC
subjects and CNBP patients (HC: 631 = 75 ml; CNBP: 613 * 69
ml; F, 5y = 0.30, p = 0.59). A VBM analysis showed significant
regional reductions in gray matter volume in CNBP, compared
with HC subjects: left inferior frontal gyrus, peak MNI coordi-
nates at (—44, 21, 16): cluster size = 527 mm?>, Z = 4.5; medial
aspect of the left superior frontal gyrus, peak MNI coordinates at
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(—4, 33, 48): cluster size = 1220 mm?,
Z = 4.0; and lateral aspect of the left supe-
rior frontal gyrus, peak MNI coordinates A
at (—14, 18, 49): cluster size = 581 mm?,
Z = 3.8. In CNBP patients, gray matter
volume in the left superior frontal gyrus
(—4, 33, 48) was negatively correlated
with PANAS negative affect scores (r =
—0.51, p = 0.04). However, these pre-
frontal gray matter changes were not
related to clinical pain ratings at the time
of imaging (p > 0.2). B
An ROI-based analysis was also used to
compare gray matter volume in HC and
CNBP samples for the regions where al-
terations in endogenous opioid mecha-
nisms were observed. Significant gray
matter loss was detected in the thalamus
(right: HC, 0.29 = 0.04; CNBP, 0.25 *
0.04; F(;,9) = 6.6, p = 0.02; left: HC,
0.27 + 0.03; CNBP, 0.25 + 0.04; F, o) =
4.8, p = 0.04), but not in the left amygdala
(p>0.7). We found a significant negative
correlation between gray matter volume
and MOR BP,, but not MOR system ac-
tivation during pain expectation or pain,
in CNBP patients in both thalamic clus-
ters (right: r = —0.64, p = 0.008; left: r =
—0.83, p < 0.0001; Fig. 2C,D). The gray
matter volume in these thalamic regions
was also positively correlated with PANAS
positive affect scores (right: r = 0.58, p =
0.02; left: r = 0.66, p = 0.006), but not
with clinical pain ratings (p > 0.2).

4

Figure3.

Martikainen et al. ® Endogenous Opioid Function in Chronic Back Pain

O

g
=)
1
c® O™ O O O
oo ap® O O
@O OoO@® O ® O

‘i

= .

Q

Q [ )

£ . : i

S ° s o

o= s

5 1540 g |

§ [ ] . ‘ )

o

8 H e Be e

o

2 5 ! $ ° R |

)

k) t o o °s

& 1.0

S ) b

= L] o)
g

o®
°
0.5
R thal Rnacc L nacc L amy/
L hipp
6

Reductions in brain regional MOR BP,; in patients with FM. A-C, Significant reductions in MOR B, compared with
controls, were observed in the right thalamus (R thal; ¥ = —11; A), the right nucleus accumbens (R nacc) and left nucleus
accumbens (L nacc; ¥ = 15; B), the left amygdala (L amy)/left hippocampus (L hipp; ¥ = —9; €), and the left insula. D, Plots of

average cluster MOR BP,; values for HC subjects (empty circles, N = 19) and FM patients (filled circles, N = 19).

Discussion

We report regionally specific alterations

in measures of MOR-mediated neurotransmission in CNBP. At
baseline, patients with CNBP showed increases in MOR BP, in
the thalamus bilaterally when compared with HC subjects. These
increases contrasted with reductions in regional MOR BP, in
EFM as well as reductions in overall opioid receptor availability
reported in other forms of persistent pain (Jones et al., 2004;
Willoch et al., 2004; Maarrawi et al., 2007). Baseline thalamic
MOR BPy, in CNBP was negatively associated with gray matter
volume in the same regions, and also negatively with positive
affect.

In a second set of analyses, we examined the activation of
endogenous opioid neurotransmission in response to pain ex-
pectation and sustained pain. An ROI approach was adopted for
the thalamus, in the areas where increases in receptor availability
were detected. We observed lower levels of thalamic MOR system
activation during the pain challenge in CNBP in comparison with
the HC group, suggesting that the upregulatory changes observed
for baseline MOR BPy, are potentially secondary to a deficit in
presynaptic endogenous opioid function in response to changes
in pain signal. We also used a brain-wide, voxel-by-voxel com-
parison to compare the activation of the MOR system between
the CNBP patients and the HC sample. During both experimen-
tal conditions, we found a significant group X condition interac-
tion in the left amygdala, showing lower magnitudes of MOR
system activation in the CNBP group with respect to the HC
group. Consistent with the suppressive effect of MOR-mediated

neurotransmission on pain but also affective regulation and
stress responses, we showed that amygdala MOR activation dur-
ing pain expectation was associated with the maintenance of pos-
itive affect during the challenge, while MOR activation in the
same region during sustained pain was also negatively correlated
with back pain ratings.

Significant alterations in MOR functional measures at base-
line and during pain were found in the thalamus, a region with a
critical role in conveying pain signals from the spinothalamic
tract to higher-order cortical areas where pain is both represented
and regulated. Reductions in blood flow to this region, as well as
spontaneous neuronal hyperactivity have been reported in both
patients and animal models of persistent neuropathic pain, sug-
gesting reduced inhibitory neural activity (Guilbaud et al., 1990;
Rinaldi et al., 1991; Iadarola et al., 1995; Paulson et al., 2002). In
line with the hypothesis that reduced thalamic inhibition is pres-
ent in persistent pain states, studies in patients with trigeminal
neuropathy have found thalamic gray matter loss, dysregulated
thalamocortical connectivity, and reduced concentrations of
GABA, a major neurotransmitter mediating fast inhibition, in the
thalamus (Gustin etal., 2011; Henderson et al., 2013). Although a
considerable amount of severe chronic back pain may be neuro-
pathic, at present it is not known whether these findings can be
extended to CNBP (Schmidt et al., 2009). Nonetheless, our find-
ings support the concept of reduced thalamic inhibition in
chronic pain by showing that deficits in MOR activation may also
lead to reduced inhibition of the pain signal and contribute to
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ratings of clinical pain intensity and its

unpleasantness in CNBP patients. These

findings are certainly consistent with the

integrative and regulatory effects of the

o amygdala MORs on emotionally relevant
sensory stimuli, including pain.

The regional deficits in MOR-mediated
neurotransmission reported here are likely
to participate in the amplification of the
pain signal and in persisting back pain.

L These mechanisms may also lead to an in-
creased sensitivity to experimental pain and
to an increased risk of developing another
chronic pain disorder, both features previ-
ously reported in CNBP and together im-
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(filled circles, N = 15).

enhanced pain, possibly by affecting pain-related thalamocortical
circuitry (Carr and Bak, 1988; Brunton and Charpak, 1998; Baliki
etal., 2011).

The amygdala, the region where reductions in endogenous
opioid activity were observed during both pain expectation and
experimental pain, has a central role in regulating emotional pro-
cesses including acute and persistent pain (Neugebauer et al.,
2004). Of the amygdala nuclei that participate in pain regulation,
particularly the basolateral and lateral nuclei present high levels
of MOR expression (Mansour et al., 1987), and these nuclei are
also considered areas of interface and integration of multiple
sensory inputs with emotional significance to the organism
(Phelps and LeDoux, 2005). MOR receptor activation in this re-
gion has been shown to modulate descending inputs to the peri-
aqueductal gray and rostral ventromedial medulla, reducing the
magnitude of the pain signal (Helmstetter et al., 1998; McGa-
raughty and Heinricher, 2002). In healthy human subjects, the
activation of endogenous MOR-mediated neurotransmission in
the amygdala during sustained pain has been associated with re-
ductions in pain intensity ratings (Zubieta et al., 2001). Here, we
observe that deficits in the capacity to activate this neurotrans-
mitter system during pain expectation and pain were associated
with lower capacities to maintain positive affect, and with higher

Differential effects of pain expectation and sustained experimental muscle pain on MOR BP,, in HC subjects and CNBP
patients. A-(, Significant differences in MOR activation were observed between HCand CNBP samplesin the left amygdala (L amy)
during pain expectation, shown in coronal (Y = —6; A) and axial planes (Z = —15; B), and during sustained pain, shown in
coronal plane (Y = —12; (). D, Plots of average MOR BP,, changes for HC subjects (empty circles, N = 16) and CNBP patients

plying dysfunctional pain control (Giesecke
etal., 2004; Von Korff et al., 2005; O’Neill et
al., 2007; Wiesinger et al., 2007). The hy-
pothesis of dysfunctional endogenous opi-
oid pain control in CNBP is supported by
data showing low endogenous opioid con-
centrations in the CSF in chronic pain sam-
ples (Puig et al., 1982; Lipman et al., 1990),
° and an association between abnormal opi-
oid system responses to naloxone, an opioid
antagonist, and pain symptoms (Bruehl et
al., 2004, 2010). At present, it is not possible
to ascertain whether those deficits are sec-
ondary to the presence of persistent pain, or
whether interindividual variations in the
function of this neurotransmitter system
represent a risk factor for the development
of chronic back pain conditions, as has been
suggested by other authors (Bruehl and
Chung, 2006). Prospective studies after
acute injury would be required to answer
that particular question. Nevertheless, the
data presented here demonstrate that en-
dogenous opioid system markers do differ
across persistent pain conditions and may
represent a tool for the study of differences in the presentation and
treatment response of varying forms of persistent pain. For example,
reductions in the availability of opioid receptors in neuropathic pain
and in FM have been suggested to underlie the poor response to
opioid medications in those conditions (Jadad et al., 1992; Cherny et
al., 1994; Dadabhoy and Clauw, 2006). In the case of CNBP, where
mean increases in receptor availability were observed, however with
substantial interindividual variability, opioid agonists are likely to
induce varying levels of response, depending on receptor concentra-
tions. The latter could contribute to a broader range of pain control
efficacy by opioid medications, but also to individual variations in
the physical dependence, rewarding, and tolerance effects of those
drugs, which are also mediated by MORs (Sora et al., 1997).

The lower magnitudes of MOR-mediated neurotransmission
observed in CNBP during both painful and nonpainful chal-
lenges may indicate the presence of reduced inhibition of nocice-
ptive input, which in turn may lead to structural changes such as
cortical reorganization (Flor et al., 1997) and gray matter loss in
cortical and subcortical areas (Apkarian et al., 2004). Indeed, in
the analyses of gray matter volume we were able to replicate the
earlier finding of gray matter loss in the prefrontal cortex, which
was correlated with negative affect (Apkarian et al., 2004;
Ruscheweyh et al., 2011; Seminowicz et al., 2011; Ivo et al., 2013).
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Pain
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We also found significant gray matter reductions in the bilateral
thalamus, in accordance with some (Apkarian et al., 2004; Ivo et
al., 2013), but not all previous studies in chronic back pain pa-
tients (Schmidt-Wilcke et al., 2006). Thalamic gray matter loss
was correlated with increases, interpreted as compensatory, in
MOR availability in the same region, while the amygdala, where
reductions in endogenous opioid system function were substan-
tial and detected in brain-wide analyses, heavily innervates pre-
frontal cortical regions (Porrino et al., 1981). This suggests that
alterations in MOR neurotransmission may be contributing not
only to the sensory and affective presentation of CNBP patients,
but also to the neurodegenerative effects of persistent pain on
brain gray matter. The contribution of the gray matter changes to
pain chronification is yet to be determined due to mixed evidence
as to whether these alterations are reversible or, at least partly,
irreversible (Grachev et al., 2000; Rodriguez-Raecke et al., 2009;
Gustin et al., 2011; Seminowicz et al., 2011).

The present report identifies alterations in what is arguably
the main central antinociceptive system, the endogenous opioids
and MORs, in patients with CNBP. These alterations were related
to the sensory and affective elements of the pain experience, but
also to the emotional state, all of which are thought to impact
disability and the clinical course of persistent pain conditions.
Perhaps more important from a diagnostic and therapeutic per-
spective, the directionality of the effects observed at the receptor
availability level differed from those previously reported in other
persistent pain conditions. Future studies appear warranted to
further delineate differences across persistent pain states, given
the relevance of these findings to the effects of opioid drugs, and
potentially the complications associated with their administra-
tion, such as abuse and dependence. The possibility that interin-
dividual variations in endogenous opioid system function may
predispose individuals to the development of persistent pain after
acute injury would also require further exploration.
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