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Abstract
Perceptual decision-making is a computationally demanding process that requires the brain to
interpret incoming sensory information in the context of goals, expectations, preferences, and
other factors. These integrative processes engage much of cortex but also require contributions
from subcortical structures to affect behavior. Here we summarize recent evidence supporting
specific computational roles of the basal ganglia in perceptual decision-making. These roles likely
share common mechanisms with the basal ganglia’s other, more well-established functions in
motor control, learning, and other aspects of cognition and thus can provide insights into the
general roles of this important subcortical network in higher brain function.

Introduction
For over three centuries, scholars have debated the basal ganglia’s contributions to
perception. Extensive projections to the basal ganglia from nearly all parts of the cerebral
cortex led early neuroscientists to suggest that these sub-cortical structures are “the seat of
the ‘sensorium commune’” (Thomas Willis, 1667, as cited in Wilson, 1914) and that “the
royal road of the sensations of the body to the soul is through the corpora striata [the primary
input to the basal ganglia] and all determinations of the will also descend by that road”
(Emanuel Swedenborg, 1740, as cited in Wilson, 1914). However, this focus on sensation
was overshadowed by discoveries that disturbances in the basal ganglia cause muscle
contraction and movement disorders, leading to extensive studies of their roles in the
selection, initiation, and execution of voluntary movements (Denny-Brown, 1962; Ferrier,
1873; Wilson, 1914). This work, in turn, has provided a framework for recent re-
examinations of the basal ganglia’s contributions to non-motor functions (reviewed in
Brown et al., 1997). For example, it has been suggested that the parallel anatomical loops
within the basal ganglia pathway provide a “centralized selection mechanism” that resolves
conflicts at multiple levels and in different domains, thus allowing the basal ganglia to “play
a comparable role in cognition to that of action selection in motor control” (Redgrave et al.,
1999). In this article we tie these ideas about the basal ganglia’s role in motor control and
cognition back to perception, summarizing recent work that implicates this subcortical
circuit in specific computations used to form perceptual decisions.
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Perceptual decisions are categorical judgments about the presence or identity of sensory
stimuli. Examples include determining whether or not a car is approaching, identifying a
face in a crowd, or detecting a faint cry for help. These kinds of decisions are not reflexive
responses to sensory input but rather deliberative processes that combine the available
sensory evidence with information related to the known alternatives, past experiences, goals,
and other factors to reach a categorical judgment that can guide behavior. These deliberative
processes contribute to all measurable aspects of perception, from sensitivity to low-level
features of sensory input to the ability to parse complex scenes (Gold and Ding, 2013;
Parker and Newsome, 1998). The underlying neural mechanisms include contributions from
many parts of the cerebral cortex, particularly integrative areas in the parietal and prefrontal
cortices (Gold and Shadlen, 2007; Heekeren et al., 2008). However, the complex
computations needed to implement these processes and use them to guide behavior are not
solely a cortical phenomenon.

Here we synthesize from recent electrophysiological, imaging, and computational studies a
summary of our current understanding of the basal ganglia’s contributions to the
computations that are responsible for perceptual decisions. The article is organized as
follows. First we provide some background on mechanisms of perceptual decision-making
in the brain, focusing on experimental paradigms that have allowed researchers to identify
neural signatures of key computations of the decision process. We then briefly describe the
basal ganglia circuitry that we will subsequently relate to perceptual decision-making. We
then review recent evidence that supports possible roles for this circuitry in three types of
decision-related computations. We close with a discussion of open questions related to the
role of the basal ganglia in perceptual decision-making.

Computational and neural substrates of perceptual decision-making
Psychophysical techniques developed over the past 150 years have provided the tools
needed to examine quantitatively how the brain converts noisy sensory input into a
categorical choice. An important advance in these techniques was the incorporation of
principles of Signal Detection Theory, which established the usefulness of analyzing
perceptual decisions in terms of computationally separable processes (Green and Swets,
1966; Macmillan and Creelman, 2004). These processes include formation of the decision
variable, which is a scalar quantity representing all available evidence (including signal and
noise) used to form the decision, and application of the decision rule, which converts the
decision variable into a categorical choice. Later extensions of this Theory, representing a
form of statistical decision theory known as Sequential Analysis, further characterized
formation of the decision variable as a temporally dynamic process that takes advantage of
incoming streams of sensory data to balance the speed and accuracy of the decision process
(Bogacz et al., 2006; Gold and Shadlen, 2007; Link and Heath, 1975; Ratcliff and Smith,
2004). Critically, these computational frameworks have provided not only a description of
decision outcomes under certain conditions, but also insights into the underlying neural
mechanisms.

These principles have been applied extensively to a task that involves a decision about the
global motion direction of a field of moving, randomly positioned dots on a computer screen
(the “dots task”; Britten et al., 1992; Morgan and Ward, 1980). For this task, experimenters
can precisely control the difficulty of the decision by changing the percentage of coherently
moving dots (coherence). On high-coherence trials, the majority of dots move in the same
direction, making it easy to decide the correct global motion direction. On low-coherence
trials, only a small percentage of dots move in the same direction, while the other dots move
randomly, making the direction decision more difficult. Both human and monkey subjects
can be trained to perform with high accuracy even for low-coherence stimuli. Performance
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also depends critically on viewing duration, with increasing accuracy for longer viewing
durations, particularly for low-coherence stimuli. Accordingly, when a subject is instructed
to respond as soon as the decision is formed, as in response-time (RT) versions of the task,
responding quickly yields lower accuracy, whereas taking longer to respond corresponds to
higher-accuracy decisions (Palmer et al., 2005; Roitman and Shadlen, 2002).

Successful models of this decision process typically assume that the sensory evidence,
which fluctuates noisily from moment-to-moment relative to a constant average value on a
given trial, is integrated over time (Figure 1; Mazurek et al., 2003). This form of Sequential
Analysis increases the signal-to-noise ratio of the decision variable as a function of viewing
time. For the RT task, many models further assume a decision rule in the form of a pair of
stopping bounds, or thresholds: when the accumulating evidence reaches one of these
predefined values (often corresponding to a positive value for one choice, a negative value
of equal magnitude for the alternative), the process stops. The identity of the reached bound
determines the choice; the time of bound-crossing determines the RT. Adjusting the bound
governs the speed-accuracy trade-off: a higher bound provides higher accuracy but longer
RTs, whereas a lower bound provides lower accuracy and shorter RTs. This process can be
modeled using the mathematical description of the position of a subatomic particle
undergoing Brownian motion, which corresponds to the noisy, accumulating decision
variable. This Drift Diffusion Model (DDM) can effectively describe psychometric
(accuracy versus motion coherence) and chronometric (RT versus motion coherence)
performance data (Palmer et al., 2005; Ratcliff and McKoon, 2008; Ratcliff and Rouder,
1998).

The computations described by the DDM have been identified in several brain regions (see
review by Gold and Shadlen, 2007). The sensory evidence for this task is represented, at
least in part, in the middle temporal (MT) and medial superior temporal (MST) areas of
extrastriate visual cortex (Britten et al., 1996; Britten et al., 1992,1993; Celebrini and
Newsome, 1994, 1995). Neurons in these brain regions respond selectively to visual stimuli
moving in particular directions and thus provide a moment-by-moment representation of the
dots stimulus. Electrical microstimulation of MT sites affects both choice and RT and the
combined effects are consistent with MT neurons providing momentary evidence to an
accumulator (Ditterich et al., 2003; Hanks et al., 2006; Salzman et al., 1990). The temporal
accumulation of momentary evidence is reflected in the activity of certain neurons outside
the primary visual areas, including in the lateral intraparietal area (LIP) of parietal cortex
(Shadlen and Newsome, 1996). Unlike MT neurons, these LIP neurons have activity that
builds up (or down) during the decision process, with coherence and time-dependence
consistent with a decision variable in the DDM. For an RT version of the task, this activity
appears to reach a pre-defined value just prior to the decision, as prescribed by the DDM
(Roitman and Shadlen, 2002). LIP is not alone, however, in representing a DDM-like
decision process for this task. Similar activity and/or causal relationship with visual
perceptual decisions have been found in several other brain regions that are strongly
interconnected with LIP, including the frontal eye field (FEF) and other parts of prefrontal
cortex and the superior colliculus (Ding and Gold, 2012a; Ferrera et al., 2009; Horwitz and
Newsome, 1999; Kim and Shadlen, 1999; Krauzlis, 2004; Lovejoy and Krauzlis, 2010;
Ratcliff et al., 2003; Ratcliff et al., 2007).

The involvement of multiple brain regions in the oculomotor network reflects the behavioral
context in which these perceptual decisions were studied (but may also be more general; see
Bennur and Gold, 2011; Freedman and Assad, 2006; Rishel et al., 2013). Specifically, the
monkeys were trained to indicate their direction decisions with saccadic eye movements to
visual targets located along the axis of coherent motion. Under these conditions, the brain
appears to treat the perceptual decision as a form of saccadic selection, representing a form
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of “embodied cognition” in which higher brain functions like perceptual decision-making
are implemented directly in the service of behavioral planning and control (Gibson, 1966).
According to this view, other oculomotor brain regions may also participate in saccade-
linked perceptual decisions.

The basal ganglia are well positioned functionally and anatomically to contribute to saccade-
linked decisions (Figure 2). The caudate nucleus is the primary oculomotor component of
the striatum, with signals related to the preparation and execution of saccadic eye
movements (Hikosaka et al., 2000). It receives inputs from both FEF and LIP. Its output is
split along direct and indirect pathways, which are thought to have facilitatory and inhibitory
effects, respectively, on behavior (Albin et al., 1989; Alexander and Crutcher, 1990;
DeLong, 1990; Kravitz et al., 2010; Smith et al., 1998). These pathways converge in the
substantia nigra, pars reticulata (SNr), which sends the output of the oculomotor basal
ganglia to the superior colliculus and, via the thalamus, back up to cortex. Thus, the basal
ganglia carry oculomotor-related signals and are intricately interconnected with other brain
areas that are implicated strongly in perceptual decisions that instruct saccadic eye
movements.

This oculomotor basal ganglia circuit has long been thought to play primarily a permissive
role in the generation of saccadic eye movements. Tonic inhibition from the SNr to the
superior colliculus is briefly released around the time that a saccade plan is activated,
allowing for enough excitatory drive to activate the brainstem saccade generators and thus
initiate the movement (Hikosaka and Wurtz, 1983d). In addition, this and other basal ganglia
circuits are thought to be important loci for reinforcement-based motor control, which on
relatively long timescales helps to optimize policies for action selection to maximize
opportunities to obtain benefits and avoid costs when interacting with the world (Barto,
1995; Hikosaka et al., 2006; Houk et al., 1995; Redgrave et al., 1999; Shadmehr and
Krakauer, 2008; Turner and Desmurget, 2010).

Below we review current evidence that these motor-related functions of the basal ganglia
can also play specific roles in the interpretation of sensory input. These roles are likely
implemented in the service of helping to select impending or delayed movements and thus
can be thought of in an “embodied” framework. Within this framework, the basal ganglia
appear to provide specific computations to help form perceptual decision variables,
implement decision rules, and evaluate and modify the decision process via learning.

Formation of the decision variable
Given the connectivity of the oculomotor circuit and the presence of DDM-like decision
signals in certain neurons in LIP, FEF, and the superior colliculus, an obvious question is
whether or not these signals are sent through the basal ganglia pathway, and if so, what, if
any, functional role they play in the decision process. To answer these questions, we
recently targeted the oculomotor caudate with neuronal recordings, electrical
microstimulation, and computational modeling. In short, we found that caudate neurons can
represent and causally contribute to the accumulating decision variable used to make the
final saccadic choice.

Figure 3 compares the decision variable predicted by the DDM and neural activity we
measured in the caudate and FEF of monkeys performing an RT version of the dots task.
Figure 3A and B shows simulated trials that terminated with a choice associated with the
upper bound. After stimulus onset, the decision variable rises in a manner that depends on
stimulus strength and then terminates upon reaching the upper bound. For the alternative
choice, the decision variable follows downward trajectories until reaching the lower bound
(not shown). Caudate activity shows a similar dependence on motion strength and viewing
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time, at least relatively early in the decision process (Ding and Gold, 2010; Figure 3C).
After motion onset, there is a brief delay as the relevant visual signals propagate from the
retina to the basal ganglia. Subsequently, there is a motion strength-dependent rise in
responses on trials that ultimately result in a saccadic eye movement to the target located in
each neuron’s spatial response field. This rise in activity is similar, albeit slightly weaker, on
error trials (see Ding and Gold, 2010). This pattern of activity is consistent with a DDM-like
decision variable that represents not the sensory evidence itself but rather the interpretation
of that evidence to arrive at the final choice, similar to LIP, FEF, and the superior colliculus
(example FEF activity is shown in Figure 3E).

In contrast, caudate activity that occurs later in the decision process does not match
predictions of the DDM. In the DDM, the decision process ends when the accumulating
decision variable reaches a fixed bound. Accordingly, when the decision variable is aligned
in time to the end of the decision process, all of the curves should converge at a common
level, regardless of their rate of rise (Figure 3B). Certain FEF and LIP neurons show this
behavior (Figure 3F; Ding and Gold, 2012a; Roitman and Shadlen, 2002). However, caudate
activity does not (Ding and Gold, 2010; Figure 3D). Instead of converging to a peak level of
activity that immediately precedes saccades, average caudate responses converge on a value
that is lower than the peak activity achieved during motion viewing. Together these results
imply that the caudate’s contributions to the formation of the decision variable might be
limited to early in the decision process.

These contributions can causally affect the outcome of the ongoing decision process. To
establish this causal role, we used electrical microstimulation in the caudate to bias both the
choices and RTs of monkeys performing the dots task (Ding and Gold, 2012b). In relation to
the DDM, these effects had two distinguishable components. One component reflected a
bias in non-perceptual processes, such that non-decision times (i.e., the components of the
monkey’s RT that was not accounted for by the DDM-like decision process, probably
including basic sensory and motor processing) increased for ipsilateral choices and
decreased for contralateral choices. This result is consistent with the basal ganglia’s known
role in facilitating saccadic eye movements to contralateral targets. The second component
included a decrease/increase in the total amount of accumulated evidence required for
ipsilateral/contralateral choices. This component can be interpreted as a caudate-mediated
offset in the value of the decision variable in the DDM and was similar to results from LIP
microstimulation, albeit opposite in sign (LIP microstimulation tended to cause a bias
towards contralateral choices; Hanks et al., 2006).

Neural activity reminiscent of an offset in the initial value of the decision variable was also
observed in a small subpopulation of caudate neurons (Ding and Gold, 2010). This type of
activity emerges early, well before motion onset. As illustrated in Figure 4A, a positive
starting value reduces the total amount of evidence required for the choice with positive
decision bound, thus making it more likely for the decision variable to cross that bound and
creating a choice bias. This biasing effect is more profound when stimulus strength is low.
In other words, on more difficult trials, in which low-coherence motion stimuli do not
provide much evidence for either choice, the relative magnitude of the starting value is more
predictive of the monkey’s subsequent saccadic choice. On easier trials, the effect of the
starting value is drowned out by strong evidence and the starting value is not predictive of
choice. Figure 4B shows an example of a caudate neuron that encoded this kind of process.

The starting value-related signal appears similar to a reward bias-related signal that has been
identified in the caudate nucleus. In one notable study, monkeys were trained to make a
saccadic eye movement to a target flashed at one of two possible locations (Lauwereyns et
al., 2002). Critically, one of the locations was paired with juice reward and the other was not
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rewarded. Behaviorally, the monkeys tended to have shorter RTs when instructed to make a
saccadic eye movement to foveate the rewarded target. These reward-driven biases in RT
were correlated with the magnitude of neuronal activation of oculomotor caudate neurons
before target presentation. One parsimonious explanation for these results is that the basal
ganglia modulates the initial value and development of a decision variable based on reward
expectation and other factors, ultimately biasing not just movement execution but also
movement selection.

These results are supported by several recent fMRI studies. When prior probability or
reward association is unequal for the two motion directions, human subjects’ behavior is
biased toward the choice associated with higher prior probability or larger reward (Feng et
al., 2009; Forstmann et al., 2010; Mulder et al., 2012; Nagano-Saito et al., 2012; Voss et al.,
2004). This bias reflects a non-zero starting value in a DDM-like decision process and is
encoded in parts of the striatum (Forstmann et al., 2010; Nagano-Saito et al., 2012).
Collectively, these experimental results suggest that the basal ganglia can incorporate
expectations about sensory stimuli and reward outcomes to bias the value of a developing
decision variable.

An even more expansive role for the basal ganglia in the formation of decision variables has
been proposed by a recent theoretical study. Bogacz and Gurney (2007) suggested that the
basal ganglia network may implement a multi-hypothesis sequential probability ratio test
(MSPRT) for perceptual decision making. The MSPRT estimates the conditional
probabilities of the multiple hypotheses being true given sensory stimuli and commits to
decision i if the logarithm of the corresponding conditional probability (Li, which can take
different forms including log-likelihood, log-likelihood ratios, or log-odds (Lepora and
Gurney, 2012)) reaches a predefined threshold. Li is proportional to a time integral of
sensory evidence for one choice and normalized across all alternative choices. According to
this model, the direct pathway, in which the striatum projects directly to the pallidal output
neurons in GPi, relays the un-normalized values of these probabilities. The indirect pathway,
in which cortical inputs are further processed in the interconnected STN-GPe circuits,
gathers information related to all alternatives and provides the (possibly modifiable)
normalization quantity through the STN-GPi projection. The output of the basal ganglia thus
reflects Li, upon which a threshold may be applied to generate a decision. This intriguing
idea awaits experimental testing.

Implementation of the decision rule
As noted above, a key feature of Signal Detection Theory is that the decision variable and
the decision rule are distinct components of the decision process, with identifiably different
consequences on behavior (Green and Swets, 1966; Macmillan and Creelman, 2004). Given
the dominant view of basal ganglia function in terms of action selection, it is natural to
consider its role in implementing the final rule, or selection process, of a winner-take-all
decision between multiple alternatives (Berns and Sejnowski, 1995; Mink, 1996; Redgrave
et al., 1999; Wickens, 1993). A possible scheme that is consistent with the basal ganglia’s
known roles in action selection is as follows. Different cortex-striatum ensembles form
separate processing units that link inputs to actions. A specific input pattern leads to
activation of the corresponding pallidal neurons, which subsequently disinhibit downstream
thalamus/colliculus areas and enables the corresponding action. Activation of the same
cortex-striatum ensemble also disinhibits subthalamic neurons via the GPe, which provides
delayed and diffuse activation of pallidal projection neurons, such that all other actions are
suppressed. In principle, if the specific input pattern represents the prediction of a preferred
outcome, this scheme can support value-based decisions. Conversely, if the specific input
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pattern represents certain properties of sensory stimuli, this scheme can support perceptual
decisions.

If such a scheme is implemented in the basal ganglia, one might expect to observe correlates
of a DDM-like bound crossing at the end of the decision process, representing a
commitment to one of the two possible outcomes. As noted above, in monkeys performing
an RT version of the dots task, this kind of activity is observed in LIP and FEF but not in the
caudate (Figure 3). One interpretation of this difference between caudate and LIP/FEF
activity at the time of decision commitment is that the basal ganglia are only involved in the
early part of the decision process. Alternatively, bound crossing may occur downstream
from the caudate in the basal ganglia pathway and then get sent back up to cortex. These
ideas have not yet been tested directly.

Despite the questions about if and how the basal ganglia might implement the decision rule,
several lines of evidence suggest that they can at least help to adaptively modulate its
implementation. For example, changing task demands can cause human subjects to adjust
their speed-accuracy trade-offs on an RT version of the dots task. These adjustments
correspond to reliable changes in activation of the anterior striatum measured using fMRI
(Forstmann et al., 2010; Forstmann et al., 2008). Using a linear ballistic accumulation model
– one variant of the accumulation-to-bound models – to relate fMRI signals to behavior, the
between-condition difference of striatal activation was shown to correlate with the
difference in the estimated bound height, but not drift rate, of the model fit to behavior.

This result is consistent with predictions from a biophysically motivated model of the
cortex-basal ganglia-superior colliculus network (Lo and Wang, 2006). The model contains
a recurrent cortical network that generates buildup activity similar to that observed in LIP
and FEF, a recurrent superior colliculus network that produces burst of activity for saccade
generation and resets the cortical network through feedback connections, and a basal ganglia
network that connects the cortical and collicular networks through only the direct pathway.
With biophysical parameters consistent with experimental observations, the model detects
threshold crossing of the ramping cortical activity through the cortex-colliculus pathway.
However, the fine-tuning of the effective threshold value can be done more efficiently with
changes in the corticostriatal projection than with changes in the cortico-collicular
projection. Thus, within the context of this model, the basal ganglia may play modulatory
roles in the adjustment of the decision bound, even if the decision rule is not implemented
there.

A modulatory role of the basal ganglia is also supported by a study of the subthalamic
nucleus in an impulse-control behavioral paradigm (Cavanagh et al., 2011). Although not a
perceptual task, the impulse-control behavior in the study can also be described by a DDM,
with the decision bound influencing the propensity for impulsive choices. The decision
bound is correlated with theta-power signals in the medial prefrontal cortex and lower-
frequency local field potential in the subthalamic nucleus. Both the decision bound and the
prefrontal signals can be altered with deep brain stimulation in the subthalamic nucleus.
Combined with the striatal results detailed above, it seems that multiple nuclei in the basal
ganglia can influence how a decision bound is set, suggesting an important role for the basal
ganglia in modifying the decision rule.

Evaluation and learning
Since the discovery of reward prediction error signals in the dopaminergic neurons,
reinforcement learning – especially the so-called temporal-difference learning processes –
has been linked with basal ganglia functions (Barto, 1995; Houk et al., 1995; Schultz, 1998).
These learning processes, such as Q-learning or actor-critic methods, make decisions using a
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modifiable policy that operates on estimates of the values of alternative actions and/or
estimates of current states (Sutton and Barto, 1998). Action/state values are estimated based
on current sensory input, past reinforcement history, and knowledge of the decision policy.
With repeated trial-and-error, these methods improve both decision policy and estimates of
action/state values, allowing the decision maker to adapt to current task demand for better
performance; i.e., more overall reinforcement.

In temporal-difference learning, action value is updated based on the error between its actual
and predicted values, called the reward prediction error. Dopaminergic neurons, which
provide strong modulatory input to the striatum and elsewhere, are a classic example of a
neural representation of the reward prediction error (Schultz, 1998,2002). When a reward is
unexpected, these neurons respond with phasic activation to reward delivery. When the
reward can be fully predicted by a sensory cue, these neurons respond with phasic activation
to the cue, but no longer to the reward itself. When expected reward does not arrive, these
neurons respond with suppression of activity at the expected time of reward delivery. When
the reward can be partially predicted by the cue, the magnitude of these neurons’ phasic
activation is correlated with the difference between received and predicted reward. These
patterns of dopaminergic neuron activity resemble prediction error signals used in temporal-
difference learning. Furthermore, the basal ganglia circuits, especially interactions between
striatal and midbrain dopaminergic neurons, provide the primary candidate substrate for
acquisition of such neural signals (reviewed in Joel et al., 2002).

In the context of perceptual decision-making, stimulus uncertainty can also give rise to
prediction errors that might drive learning. For example, for the dots task, higher coherence
and/or longer viewing times give rise to decision variables that are more likely to produce
the correct answer. For many tasks, the correct answer leads to a reward (e.g., juice for
monkeys, money for people), whereas an error is not rewarded. Thus, in principle, a reward
prediction error can be computed by comparing the confidence associated with the final
value of the decision variable with whether or not a reward was actually received at the end
of a trial. In fact, such a signal is sufficient to drive learning on the dots task and can account
for both changes in behavior and changes in decision-related neuronal activity measured in
area LIP during training (Law and Gold, 2009).

Signals related to reward prediction errors in the context of the dots task have recently been
reported for dopaminergic neurons in the substantia nigra pars compacta (Figure 5A).
Nomoto and colleagues (2010) used a version of dots that included manipulations of both
motion strength and the magnitude of reward given for correct responses. When large
rewards were expected, dopaminergic neurons gave a phasic response just after motion
stimulus onset that was not sensitive to motion strength. In contrast, a second phasic
response around the time of saccade onset was modulated positively by motion strength.
After reward feedback onset, this modulation by motion strength was reversed, such that
larger activation was associated with lower motion strength. When an error was made, there
was a brief suppression in activity after feedback. This pattern of activity is consistent with a
reward prediction error based on the perceptual decision variable at the time of decision.

In principle, such a reward prediction error can be computed continuously as the decision
variable is being formed, in anticipation of the impending choice and subsequent reward.
The prediction can be computed from the signal-to-noise ratio of the decision variable, with
higher signal-to-noise ratio corresponding to higher confidence in obtaining a reward. In the
DDM, the sensory evidence is assumed to be independent samples from a Gaussian
distribution. Thus, the signal is equal to the drift rate multiplied by elapsed time, and the
standard deviation (noise) of the accumulating decision variable is proportional to the square
root of elapsed time. Figure 5B shows a simulated reward prediction error computed this
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way. After motion stimulus onset, the reward prediction error ramps up in a manner that
depends on the strength of the motion signal but is the same for both choices. Around the
time of the saccadic response, the reward prediction error peaks at different levels for
different motion strengths and then decays until the time of expected reward delivery. After
reward onset, the motion-strength modulation reverses signs, such that larger activation is
associated with lower motion strength. When an error is made, the reward prediction error is
suppressed after feedback. We found signals loosely conforming to these patterns in the
caudate nucleus of monkeys trained on the RT dots task (Figure 5C; Ding and Gold, 2010).
Although caudate neurons showing the full aspects of these response patterns were rare,
subsets of these response patterns were frequently observed in the population. Thus, these
populations may represent ongoing estimates of predicted action values in the context of
perceptual decisions.

The predicted action value may, in principle, play multiple computational roles in decision
formation. One recent study implemented a partially observable Markov decision process
(POMDP) model to identify these roles (Rao, 2010). This model includes: 1) a cortical
component (e.g., LIP and FEF for the dots task) that encodes a belief about the identity of
noisy sensory inputs; 2) highly convergent corticostriatal projections that reduce the
dimensionality of the cortical belief representation; 3) dopamine neurons that learn to
evaluate the striatal representation through temporal-difference learning; and 4) a striatum-
pallidal-STN network that learns to pick appropriate actions based on the evaluation. At
each time step, the model either commits to a decision about motion direction, which results
in a large reward for correct decisions or no reward for errors, or opts to observe the motion
stimulus longer, which takes a small effort (negative reward) for waiting. The model initially
makes random choices. Over multiple trials, the model learns to optimize performance based
on tradeoff among the three reward outcomes, producing realistic choice and RT behaviors.
Thus, the basal ganglia may convert cortical representations of sensory evidence into
evaluative quantities, upon which decisions can be both generated and adjusted.

Open questions
As summarized above, there is a growing body of experimental and theoretical support for
the idea that the basal ganglia play key, well-defined computational roles in the formation
and adaptive modification of perceptual decisions. These roles may complement and/or
share common mechanisms with the basal ganglia’s contributions to motor control and
value-based decision-making. However, this work is still in its infancy, especially compared
to studies of perceptual processing in sensory, prefrontal, and parietal cortices. Below we
touch on some of the key, open questions about the exact roles played by the basal ganglia
in perceptual decision-making.

First, what is the nature of the signals that the basal ganglia receive as input in the context of
perceptual decisions? Each component of the oculomotor network shown in Figure 2
contains a diversity of response properties related to sensory, memory, decision, motor, and
reward processing in the context of visual-oculomotor decision tasks (For a limited sample,
see Basso and Wurtz, 1997,2002; Bruce and Goldberg, 1985; Ding and Gold, 2010,2012a;
Ding and Hikosaka, 2006; Freedman and Assad, 2009; Glimcher and Sparks, 1992; Gottlieb
et al., 1998; Hanes et al., 1998; Hikosaka et al., 1989a, b, c; Hikosaka and Wurtz, 1983a, b;
Hikosaka and Wurtz, 1983c; Horwitz and Newsome, 1999; Leon and Shadlen, 2003;
McPeek and Keller, 2002; Meister et al., 2013; Schall et al., 1995; Thompson et al., 1996).
For example, DDM-like bound crossings are represented in LIP and FEF but not caudate,
implying that this signal is not provided as an input to the basal ganglia (Ding and Gold,
2010,2012a; Roitman and Shadlen, 2002). Is it represented in the output nuclei (i.e., SNr)
and then sent back to the oculomotor circuits? Likewise, do the bias-related signals found in
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caudate originate there, or are they passed from LIP and FEF? Those cortical areas represent
similar bias-related signals in the context of reward-driven saccadic instructions (but not
necessarily perceptual decisions), but it is not known whether these signals are present in the
subset of neurons that project to the caudate (Coe et al., 2002; Ding and Gold, 2012a; Ding
and Hikosaka, 2006; Ikeda and Hikosaka, 2003; Meister et al., 2013; Platt and Glimcher,
1999; Roitman and Shadlen, 2002; Rorie et al., 2010; Sato and Hikosaka, 2002).
Characterizing these kinds of input properties in detail will help to identify the basal
ganglia’s unique contributions to the decision process.

Second, what is the computational role of each basal ganglia nucleus? Answering this
question will require more complete descriptions of perceptual decision-related signals
encoded in the basal ganglia. Computational models can provide useful starting points for
these studies. For example, in Bogacz and Gurney’s model (2007), the average STN activity
is predicted to be proportional to the logarithm of the normalization term in Bayes’ theorem,
which in the model is used to form the decision variable in terms of the accumulated
evidence. In Rao’s model (2010), the STN is partly responsible for choosing the best action
based on belief representation in the striatum, although it was not explicitly reported what
STN firing rate would look like. A comparison among the model predictions and actual STN
activity patterns during the dots task will help to elucidate the STN’s roles in the decision
process. Likewise, more extensive recordings from the output nuclei of the basal ganglia,
including the SNr for the oculomotor circuit, are needed to understand how the inputs are
transformed and subsequently affect processing elsewhere.

Third, how do the basal ganglia’s roles in perceptual decision-making relate to their known
functional and anatomical properties? For example, do the direct and indirect pathways play
similar, complementary roles in perceptual decision-making as they do in motor control?
Are perceptual decisions processed in their own functional loops, in loops related to the
motor context of the decision, or in more general functional loops? The relationship between
perceptual and reward-based processing merits particular attention. One intriguing
possibility is that the same circuit contributes to both types of decisions, converting sensory
evidence and value expectation into a common currency that can be used as a decision
variable. One way to answer this question is to train monkeys on a perceptual task (e.g., the
dots task) and a value-based decision task (e.g., the asymmetric reward saccade task) and
directly test if and how the same neurons are influenced by manipulations of sensory
properties and reward expectation. Alternatively, one can train monkeys to perform a single
task with manipulations of both sensory properties and reward associations (Nomoto et al.,
2010; Rorie et al., 2010) and examine whether single neurons respond to variations in both
sensory evidence and reward expectation, and if so, how such variations are combined in the
basal ganglia.

Lastly, why is basal ganglia dysfunction more frequently associated with motor than with
perceptual deficits? This widely recognized clinical observation has been a pillar in motor-
centric views of the basal ganglia. Is it merely due to an observational bias, such that motor
deficits are more often expected and tested for and therefore reported? Or does it reflect
more fundamental differences in the time course and distribution of impairment in the motor
and perceptual components in the basal ganglia? In general, a more systematic
characterization of perceptual deficits in the patient population, perhaps using tasks
equivalent to those used in monkey electrophysiology experiments, would not only improve
our understanding of the functional organization of the basal ganglia, but may also allow us
to exploit behavioral differences in the motor and perceptual domains to improve disease
diagnostic and monitoring.
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Figure 1.
Drift-diffusion model (DDM). Noisy sensory evidence (top; independent, identically
distributed picks from the Gaussian distribution at the right) is accumulated in time to form a
decision variable (bottom). Note the slightly positive mean value of the distribution of
evidence, which governs the upward rate of rise of the decision variable. When the decision
variable hits one of the choice bounds, this choice is made.
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Figure 2.
A simplified basal ganglia circuit. The dashed black line represents feedback pathways.
Abbreviations: FEF: frontal eye field; GPi and GPe: the internal and external segments of
the globus pallidus; LIP: lateral intraparietal area of the parietal cortex; SC: superior
colliculus; SNc: substantia nigra pars compacta; SNr: substantia nigra pars reticulata; STN:
subthalamic nucleus; VTA: ventral tegmental area.
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Figure 3.
Decision formation. A,B, Simulated data illustrating the average decision variable
trajectories in a DDM for different input strengths, aligned to the beginning (A) or end (B)
of the accumulation process. Colors indicate coherence levels. C,D, Average activity of a
subset of caudate neurons recorded in monkeys performing the dots task, aligned to stimulus
(C) and saccade (D) onset, respectively. IN: choices toward the recorded neuron’s response
field (RF). OUT: choices away from the RF. Colors indicate data from trials with different
motion coherences. Note the choice- and coherence-dependent modulation of caudate
activity during motion viewing and the lack of a final “bound-like” pattern of activity level
around saccade time. Modified from Ding and Gold (2010). E,F, Average activity of a
subset of FEF neurons recorded in monkeys performing the dots task, aligned to stimulus
(E) and saccade (F) onset, respectively. Modified from Ding and Gold (2012a).
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Figure 4.
Initial bias signals. A, Simulated data illustrating the effects of a non-zero starting value on a
DDM-based decision process. Gray lines show trajectories of a decision variable in 15
simulated trials with low- (left) and high- (right) coherence inputs and using either a zero
(top) or slightly positive (bottom) starting value. Note the stronger effects of the initial bias
on the final choices for the low-versus high-coherence simulations. B, Coherence-dependent
predictive index of pre-stimulus activity in a caudate neuron. The predictive index quantifies
the correlation between neuronal activity and subsequent behavioral choices. A higher value
indicates that the activity is more predictive of the final choice. Colors indicate motion
coherence. The right panel shows the mean predictive index from the shaded time window
in the left panel, plotted as a function of motion coherence. Modified from Ding and Gold
(2010).
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Figure 5.
Reward prediction error (RPE) signals. A, Population activity of DA neurons in a monkey
performing an asymmetric-reward task when large reward was expected. Data are plotted
with respect to onset of the visual stimulus (STIM), the saccadic response (SAC), and either
reward delivery (REW) or error feedback (FDBK). Colors indicate coherence levels.
Modified from Nomoto et al. (2010). B, Reward prediction error (RPE) signals derived from

a DDM simulation. At time t during motion viewing, . After
motion viewing, RPE decays exponentially with a time constant of 400 ms. After feedback
onset, RPE is updated with the difference between feedback value (simulated as a positive
square pulse for rewarded trials and 0 for error trials) and the RPE value at 100 ms after
feedback onset. C, Activity of a caudate neuron during the dots task for one choice. Data for
the other choice showed similar patterns. Modified from Ding and Gold (2010).
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