Skip to main content
. 2013 Sep 4;89(3):564–569. doi: 10.4269/ajtmh.12-0771

Table 3.

Multivariate analysis of time series*

Arima without climatic variables (AIC = 397.4)
Parameter Standard deviation P
Autoregressive term 0.76950 0.07500 0.00000
Moving average term −0.27920 0.10730 0.00463
Seasonal moving average term −1.00000 0.14380 0.00000
Arima with climatic variables (AIC = 349.57)
Autoregressive term 0.57720 0.11430 < 0.00001
Moving average term −0.11260 0.13670 0.20498
Seasonal moving average term −0.99990 0.12030 0.00000
Cumulated rainfall (2 months lag) −0.00100 0.00030 0.00012
Temperature (8 months lag) 0.22270 0.07820 0.00221
Number of days with > 50 mm of rain (4 months lag) −0.06970 0.02800 0.00649
Number of days with > 50 mm of rain (7 months lag) −0.10090 0.02840 0.00019
MEI “El Niño” index (4 months lag) 0.23910 0.08170 0.00172
*

Parameters of ARIMA models and climatic variables significantly correlated with leishmaniasis. Improvement of model by climatic variables (Akaike's information criterion [AIC] fraction): 1- (349.57/397.4) = 12% Ljung-Box white noise test: P = 0.9511.