
Thiamin Biosynthesis - still yielding fascinating biological
chemistry

Tadhg P. Begley#,*, Steven E. Ealick^, and Fred W. McLafferty^

#Dept. of Chemistry, Texas A&M University, College Station, TX 77843
^Dept. of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853

Abstract
This paper will describe the biosynthesis of the thiamin thiazole in Bacillus subtilis and
Saccharomyces cerevisiae. The two pathways are quite different: in B. subtilis, the thiazole is
formed by an oxidative condensation of glycine, deoxy-D-xylulose- 5-phosphate and a protein
thiocarboxylate, while in S. cerevisiae the thiazole is assembled from glycine, NAD and Cys205
of the thiazole synthase.
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The major thiamin biosynthetic pathway in bacteria is outlined in Figure 1.(1, 2) In this
pathway, glycine 3 undergoes an oxidative condensation with deoxy-D-xylulose- 5-
phosphate 5 and ThiS-thiocarboxylate 6, to give the thiazole tautomer 7, which then
aromatizes to form carboxythiazole 8.(3, 4) The thiamin pyrimidine 15 is formed by a
remarkable rearrangement of AIR 14, an intermediate on the purine pathway.(5) Coupling
the thiazole and the pyrimidine, with concomitant decarboxylation, yields thiamin phosphate
2.(6, 7) A final phosphorylation gives thiamin pyrophosphate 1, the biochemically active
form of the cofactor.(8)

Our understanding of this biosynthetic pathway is now at an advanced stage. All the
biosynthetic genes have been identified and cloned, all of the enzymes have been
overexpressed, reconstituted and structurally characterized and mechanisms for all of the
biosynthetic reactions, except for the pyrimidine synthase (ThiC) are reasonably clear (1, 5).
The entire biosynthetic pathway has been fully reconstituted using pure enzymes. In this
lecture, I will describe the biosynthesis of the thiamin thiazole in B. subtilis and compare
this pathway with the very different thiazole biosynthesis recently elucidated in S.
cerevisiae.

Thiamin thiazole biosynthesis in B. subtilis
Each of the steps involved in the assembly of the thiamin thiazole in bacteria will be
described in the following sections.
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Glycine Oxidation
The ThiO gene product encodes a flavin-dependent glycine oxidase that catalyzes the
oxidation of glycine 3 to the glycine imine 4 (9). In the absence of the other thiazole
biosynthetic enzymes, the glycine imine is hydrolyzed to glyoxal.

The structure of this enzyme, with N-acetyl glycine bound at the active site, has been
determined (PDB code = 1NG3). This structure and studies with substrate analogs are
consistent with a hydride transfer mechanism for glycine oxidation (9).

In anaerobes, the glycine imine is formed from tyrosine in a reaction catalyzed by ThiH, a
radical SAM enzyme (10–12).

ThiS-thiocarboxylate Formation
The chemistry involved in the formation of ThiS-thiocarboxylate is outlined in Figure 1.
Activation of ThiS-COOH 9, at its carboxy terminus, by adenylation, gives 10 which then
acylates the IscS persulfide to give 13. Reduction of 13, by DTT in the reconstitution
reaction mixture, gives the ThiS thiocarboxylate 6 (13, 14). The biochemical reduction of 13
is not yet understood. In some bacteria, an additional protein (ThiI) mediates the sulfur
transfer to 10.(15) ThiS-thiocarboxylate 6 can also be efficiently synthesized by treating
intein-activated ThiS-COOH with ammonium sulfide (16).

The structures of the ThiF/ThiS complex and the ThiF/ATP complex have been determined
(17, 18) (PDB codes = 1ZUD and 1ZFN). The IscS protein probably does not form a
specific complex with ThiS/ThiF because all four IscS paralogs in B. subtilis are competent
persulfide donors. (14, 19)

Protein thiocarboxylates as sulfide carriers in other biosynthetic pathways
Protein thiocarboxylates have now been found to play a role as sulfide carriers in several
other biosynthetic pathways and sequence analysis suggests that this strategy may be quite
general (Figure 2).

In molybdopterin biosynthesis, MoaE catalyzes the transfer of sulfide from MoaD-
thiocarboxylate to give 19 (Figure 2A)(20, 21). A protein thiocarboxylate dependent
cysteine biosynthetic pathway has been found in M. tuberculosis (Figure 2B). In this
pathway, CysM thiocarboxylate reacts with phosphoserine 21 in a PLP-mediated reaction to
form thioester 22. This then undergoes an N/S acyl shift to give 23 followed by release of
cysteine in a hydrolysis reaction catalyzed by the Mec protease (22–26). A closely related
pathway for the biosynthesis of homocysteine was discovered in Wolinella succinogenes
(Figure 2C). In this pathway HcyS-thiocarboxylate 25 adds to O-acetyl homoserine 26 to
give thioester 27. An N/S acyl shift to give 28 followed by HcyD-catalyzed amide
hydrolysis generates homocysteine 30 (27, 28). A fourth example is found in the
biosynthesis of the siderophore thioquinolobactin 34 (Figure 2D). In this pathway, QbsE
thiocarboxylate forms a mixed thioanhydride 33 with quinolobactin 31. Hydrolysis of 33
generates the siderophore 34.(29, 30) A reagent for the sensitive detection of protein
thiocarboxylates in a proteome, that uses a click reaction between the protein
thiocarboxylate and a fluorophore-tagged sulfonyl azide, has been described. (31)

Formation of the thiazole tautomer 7
The bacterial thiazole synthase catalyzes the condensation of DXP (5), ThiS-COSH 6 and
the glycine imine 4 to form the thiazole tautomer 7 (Figure 1)(3). A mechanistic proposal for
this reaction is outlined in Figure 3. In this mechanism, DXP 5 forms an imine with Lysine
96 of the thiazole synthase. Tautomerization to 38 followed by thiocarboxylate addition
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gives 39. An O/S acyl shift followed by loss of water generates thioketone 41.
Tautomerization of 41, followed by loss of ThiS-COOH generates 43. Addition of the
glycine imine 4 followed by transimination gives the thiazole tautomer 7.

In support of this mechanism, enzyme-catalyzed exchange of the DXP carbonyl oxygen has
been observed and the DXP/K96 imine has been trapped by borohydride reduction and
characterized by MS analysis. Intermediate 37 is supported by the observation of enzyme-
catalyzed exchange of the C3 proton of DXP. The unanticipated O/S acyl shift to give 40 is
supported by the observation of oxygen incorporation from DXP and not the buffer into the
nascent ThiS-COOH. Thioenol 42 has also been trapped and characterized by MS analysis
and the final product 7 has been fully characterized by spectroscopic analysis (3, 14).

The structure of the ThiG/ThiS complex, with phosphate bound at the active site, has been
determined (PDB code = 1TYG). In this structure the phosphate and Lys96 define the DXP
binding site, which suggests that Glu98 and Asp182 are also likely to play a role in the
catalysis of thiazole formation (32).

Thiazole tautomerase
The thiazole tautomer 7 is surprisingly stable and the aromatization reaction to produce the
thiazole 8 requires enzymatic catalysis. In B. subtilis, the TenI protein has recently been
identified as the thiazole tautomerase.

The structure of the enzyme product 8 complex has been determined (PDB code = 3QH2). A
model of the enzyme substrate complex generated from this structure suggests that His122
mediates the deprotonation at C2 and that the substrate phosphate group functions as the
proton donor for the exocyclic double bond protonation (4). TenI shows high sequence
similarity to thiamin phosphate synthase and the two enzymes are frequently incorrectly
assigned in genome annotation.

Thiamin thiazole biosynthesis in S. cerevisiae
The thiamin biosynthetic pathway in S. cerevisiae is outlined in Figure 4.(33) The
biosynthesis of the thiazole and the pyrimidine heterocycles (5 &10) occurs by very
different chemistry from that used for the bacterial biosynthesis. Labeling studies have
demonstrated that the thiazole is formed from an unidentified C5 carbohydrate, glycine 3
and cysteine 11(34–36) and that the pyrimidine 10 is formed from histidine 48 and PLP 49
(37–39). Thiamin biosynthesis in yeast requires fewer enzymes than the bacterial pathway.
The biosynthesis of the thiazole requires only one protein (THI4p) in contrast to the
bacterial pathway, which requires six (ThiOFSG, IscS and TenI).

All attempts to reconstitute the THI4p-catalyzed reaction, using a variety of C5
carbohydrates, initially failed. However, a breakthrough was achieved by the detection of
three metabolites (56, 63 and 64 in Figure 5) released from the protein by heat denaturation
(40, 41).

The identification of product 64 demonstrated that complete thiazole biosynthesis could be
achieved using THI4p expressed in E. coli. In addition, this structure demonstrated that the
thiazole was adenylated, suggesting that NAD 45, and not a simple pentose, might be the
donor of the C5 carbohydrate. Initial attempts to detect Thi4p-catalyzed modification of
NAD failed. However, after the structure of THI4p was determined (PDB code = 3FPZ)(42)
it was possible to prepare an active site mutant (C204A) that was free of the tightly bound
metabolites 56, 63 and 64 (42). This form of the enzyme catalyzed the conversion of NAD
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45 and glycine 3 to 56 via intermediates 51 and 52 and confirmed NAD at the C5
carbohydrate donor. (43)

The discovery that metabolite-free THI4p could be isolated when the E. coli overexpression
strain was grown at low iron concentrations provided a source of native enzyme with an
unoccupied active site. Treatment of NAD and glycine with this form of the enzyme
generated intermediate 56. Addition of Fe(III) to this reaction mixture resulted in the
transfer of sulfide from Cys205 of THI4p to generate 63 and 64. MS analysis of the protein
in this reaction mixture confirmed Cys205 as the sulfide donor.(44) These observations led
to the mechanistic proposal outlined in Figure 5.

In this proposal hydrolysis of the N-glycosyl bond of NAD 45 gives 51. Ring opening,
tautomerization and imine formation give 53. Tautomerization, loss of water and a second
tautomerization generates compound 56, the most labile of the three intermediates released
in the heat denaturation experiment. Tautomerization to 57 followed by sulfide transfer from
Cys205 of the THI4 protein gives 60. Cyclization and two dehydrations gives the thiazole
tautomer 63, the second of the heat released metabolites. A final tautomerization completes
the thiazole formation. Our mechanism suggests that the THI4 protein may be a single
turnover enzyme. This was confirmed by demonstrating a 1:1 ratio of THI4p to thiamin
produced.

In conclusion, we have explored here the mechanistic biochemistry of thiamin thiazole
biosynthesis in B. subtilis as a representative prokaryote and in S. cerevisiae as a
representative eukaryote. The biosynthetic routes are quite different between the two
systems and the reasons for these differences are not yet known. The mechanism of thiazole
biosynthesis in bacteria is at an advanced stage, while our understanding of the mechanism
of thiazole biosynthesis in yeast is still growing with many unanswered questions remaining.
We have not yet identified most of the residues involved in catalyzing the conversion of 45
to 64. We also do not yet understand the role of iron in the sulfur transfer or the
physiological role of inactive THI4p.
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Figure 1.
The bacterial thiamin biosynthetic pathway.
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Figure 2.
Four additional examples of protein-thiocarboxylate-dependent biosynthetic pathways. A)
Molybdopterin biosynthesis in bacteria, B) Cysteine biosynthesis in Mycobacterium
tuberculosis, C) Homocysteine biosynthesis in Wolinella succinogenes, D)
Thioquinolobactin biosynthesis in Pseudomonas fluorescens.
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Figure 3.
Mechanistic proposal for the formation of the thiazole tautomer 7.
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Figure 4.
Thiamin pyrophosphate biosynthesis in S. cerevisiae.
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Figure 5.
Mechanistic proposal for the THI4 mediated formation of ADP-thiazole 64.
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