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Abstract
Motivated by the study of the longitudinal development and progression of knee osteoarthritis
(OA) over a 15-year period, this study developed non-parametric mixed-effect models for ordinal
outcomes. A stochastic mixed-effect model was used to evaluate the similarity of trajectories
associated with increasing disease severity of OA in both knees. Then, a non-parametric mixed-
effects model, based on cubic B-splnes, was developed to characterize the unknown nonlinear
trend of logits as a function of time1-order. A Markov Transition Model was developed to
characterize the transitions among multi-states of knee OA. This newly developed approach
allows more flexible functional dependence of the ordinal outcome, levels of increasing knee OA
severity, on the covariates.
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1. INTRODUCTION AND MOTIVATION
Longitudinal studies, where individuals are measured repeatedly and thus correlated across
time, are being developed and applied in diverse fields of research, including epidemiology,
health outcomes research, social studies, education and clinical trials, etc. The development
and utilization of SAS procedures PROC MIXED and NLMIXED provide increasing
flexibility to implement these analyses.
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The use of continuous longitudinal outcomes has been well studied, parametrically and non-
parametrically [1–6]. However, discrete longitudinal outcomes (binary, counts or categorical
nominal or ordinal) may also play an important role in these studies where precise
characterization in longitudinal modeling is less developed, e.g. osteoarthritis (OA)
evaluated using the 5-level Kellgren and Lawrence (K-L) severity scoring system as
described in the Atlas of Standard Radiographs of Arthritis[7]. The OA severity outcome of
OA is achieved pictorially and it can be classified into five categories: normal/no disease
(state=0), doubtful OA (state=1), minimal OA (state=2), moderate (state=3), and severe
(state=4). Further, these five categories represent the initiation and progression of OA and
thus is an ordinal variable. Further, as shown in Figure 1, the initiation and progression of
knee OA (OAK) can be bidirectional or uni-directional at certain states. This progression is
chronic with multiple relapses of symptoms separated by periods with mild or no symptoms
[8, 9], and thus can be considered a relapsing-remitting disease [10]. Alternatively, the bi-
directionality may reflect the quality of the radiograph that is being scored or the
consistency and standardization of those reading the radiographs.

The scientific questions of interest in OA studies may include:

Q1 Similarity analysis: whether the knee OA symptoms in both sides develop and
progress (longitudinally) at the same/similar pattern?

Q2 Progression analysis: how the knee OA characteristics (probability trajectory of
each state) progress over time?

Q3 Transition analysis: how long and under what conditions do the knee OA states
transit from one state to other states?

Major approaches can be used to model this type of discrete longitudinal outcomes including
marginal models, random-effect models [11–17] and transitional models [10,18–21].
Conceptually, marginal models study the effect of covariates (e.g., age, time, Body Mass
Index) on the marginal distribution of the outcome variable and are often called “population-
averaged models”. Random-effect models capture individual variability by adding random
effects as in regression and are often called “subject-specific models”. Transitional models
can be used to evaluate the longitudinal effect of covariates on the state transition patterns of
categorical outcome. Computationally, the these models applied to discrete outcomes can
implemented using MIXOR[22], BUGS[23], MLwiN[24], HLM6[25], R package DRM
[26], or SAS procedures or macros (GENMOD,NLIMIXED, and GLIMMIX, %GLIMMIX)
(SAS Institute, Cary, NC).

In the studies and applications, the mean structure of the longitudinal ordinal outcome is
frequently assumed to depend on the covariates (e.g., age, time) parametrically. However,
the functional forms of covariates may be nonlinear, complex, or even unknown. Thus, the
parametric mean assumption may be inappropriate.

Few studies have characterized the longitudinal changes in ordinal OAK trajectories,
particularly using parametric or non-parametric functional forms in time (e.g., age).
However, there is no evidence that the trajectories of knee OA development and progression
over time (e.g., difference score in both knees, probability trajectory of multi-state OA over
time) are well modeled by imposing parametric assumptions.

Thus, it is desirable to develop nonparametric approaches to modeling longitudinal ordinal
outcomes both in methodology and practice. In this report, we have developed approaches to
model the longitudinal ordinal measures using semi-parametric mixed effect modeling,
based on cubic B-splines. The methodologies were demonstrated using the longitudinally-
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acquired knee OA data collected in the Michigan Bone Health and Metabolism Study
(MBHMS).

2. BIOLOGICAL, CLINICAL AND EPIDEMIOLOGICAL IMPORTANCE AND
RELEVANCE

This approach to modeling longitudinal ordinal outcomes with unknown mean structure is of
great importance. Without loss of generality, the methods can be applied to analyze other
longitudinal ordinal outcomes apart from knee OA including depression, or functional
status. Motivated by the increasing frequency of knee OA of MBHMS over time, this paper
develops nonparametric mixed-effects models to study OA development and progression
over time.

It is known that osteoarthritis (OA) is a major chronic disease in adults; more than 10
million Americans have knee osteoarthritis (OA), the most commonly studied joint affected
by OA. Because of its impact on mobility, knee OA is the most common cause of disability
in the United States. Until very recently, knee OA has been considered a disease of the
elderly, however, investigations now demonstrate that the development of knee OA is a
slowly evolving disease affecting cartilage and bone with notable deterioration in
contributing tissues being evident at age 40 with severity increasing over a period of
years[8–9, 33–34].

The timing of OA initiation and its progression in the knee and hip is of high interest
because these joints, and their integrity, determine the capacity for ambulation. OA
accounted for 97% of the total knee replacements and 83% of the total hip replacements in
2004[35]. With national data, the Healthcare Cost and Utilization Project showed
osteoarthritis accounted for $10.5 billion in hospital charges in 2006, making this a more
expensive condition than pneumonia, stroke, or complications from diabetes. Hospital
admissions for arthritis and its treatment more than doubled between 1993 and 2006.

Thus, understanding the development and progression of knee OA, chronologically, is of
critical importance for determining when preventive efforts will be most effective and when
early diagnosis and treatment of knee OA symptoms should be initiated to slow progression.
However, there are few longitudinal studies of knee OA, and there are a dearth of studies
that address the development and progression of knee OA. Not only are there few studies
that address the initiation and progression of knee OA, the methodologies required to
characterize the change in ordinal measures over time is complex, and the most commonly
employed measures of OA and its severity from radiographs generate ordinal measures.
Further, understanding the relationships of disease initiation and development of OA is
made more complex because of the autocorrelation of the contribution by having two knees
or two hips contributing to the development of disease.

Due to the complexity in OA data collection, limited data are available with the age range
and timing where OAK becomes established. Further, the study of the biological progression
mechanisms the time span and natural history of the initiation, progression and transition in
knee OA has not been well established. MBHMS provides the opportunity to study this
complexity because of its rich longitudinal data bank.

3. METHODS AND MODEL SPECIFICATIONS
In OAK studies, three problems are of interest: similarity of both sides OAK progression;
longitudinal progression pattern of OAK severity; and state transition pattern.
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3.1 Similarity and Comparison of Left and Right Trajectories Using Difference Score
To compare the development and progression in both knees, the semi-parametric mixed
effect model was used [4]:

(1)

where: Yij is the response variable (e.g., difference score as a continuous variable of right
knee and left knee) for the ith (i = 1,2,…, M, and M is the total number of subjects) subject
at time point tij (j = 1,2,…, ni and ni are the distinct time points for ith subject); β is a p × 1
vector of regression coefficients associated with covariates Xij of interest. f (t) is a twice-
differentiable smooth function of time; bi’s are independent q ×1 vectors of random effects
associated with covariates Zij; U (tij) are independent random processes used to model serial
correlation; ɛij are independent measurement errors. The fundamental assumptions for this
model are: ɛij～ iid N (0,σ2), bi ～ normal (0, D(φ)), D is a positive definite matrix depending
on a parameter vector φ; U (tij) is a mean zero Gaussian process with covariance function or
a non-homogeneous Ornstein-Uhlenbeck (NOU) process, cov(Ui (t), Uj (t))= γ(ζ, α; t, s)
depending on a parameter vector ζ and a scalar α, which is used to characterize the variance
and correlation of the process Ui (t).

3.2 Semiparametric Mixed Effect Model for Longitudinal Ordinal Data
The ordinal logistic regression models (e.g., proportional odds model, partial-proportional
odds model, non-proportional odds model) are widely used for analyzing ordinal outcomes.
For repeatedly measured ordinal outcomes across time, mixed–effects models have been
developed for ordinal outcome data to account for the dependency inherent in the data[13–
15].

For an ordinal response with C categories, the proportional odds model assumes that the
effect of an explanatory variable is the same across the C − 1 cumulative logits of the model.
This assumption of proportionality across the cumulative odds for all explanatory variables
may be too strict and thus a mixed-effect logistic regression model (known as partial-
proportional odds): for the cumulative probabilities in terms of the cumulative logits λijc can
be formulated as follows

(2)

where Yij is the ordinal response for ith subject (i = 1,2,…, M, and M is the total number of
subjects) measured at jth time point. c = 1,2,…,C denotes the response categories. Xij is the p
×1 covariate vector of observation values ij where proportional odds were assumed, and Uij
is the q ×1 vector containing the observation values ij on the set of q covariates where
proportional odds were not assumed. Zij is the r ×1 vector of random effects for subject i.
The Eq. (2) also includes C − 1 strictly decreasing thresholds γc. The random effects vi are
assumed to follow a multivariate normal distribution N (0, Σv) where Σv is the variance-
covariance matrix of vi. The proportionality of a covariate across cumulative odds can be
tested using likelihood-ratio test and Akaike’s information criterion (AIC).

Model in Eq. (2) describes the parametric functional form in terms of covariates Xij and Uij,
e.g., if time variable t (e.g., age) was believed to be cubic polynomial and further assumed
non-proportional across cumulative odds, then the “age” term as a fixed effect can be
expressed as a function:
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(3)

In Eq. (3), the coefficients  depend on category c. In this scenario, without
loss of generality, model in Eq. (2) can be rewritten as:

(4)

However, in most cases, the functional form of f (tij) is complex or unknown and Eq. (3)
might be not desirable.

Assuming f (tij) is twice-differentiable smooth function, and then we can use splines to
approximate the form. Splines consist of a series of piecewise polynomials constrained to be
joined in a visually smooth fashion and typically formed as an additive combination of
locally defined low order polynomials (or basis functions). The proprieties of splines and
detailed discussions are widely available [28–32] Cubic B-splines are widely used as a
spline basis function and were employed in this study:

(5)

where qn = Kn + 4 and Kn is the total number of internal knots. {Bk,1 ≤ k ≤qn} are a set of
local basis functions (cubic polynomials). Then, f (t) is twice continuously differentiable
within the time range.. Assuming non-proportionality of Bk (tij) across cumulative odds and
replacing f(tij) in Eq. (4) by f˜ (t) in Eq. (5), then Eq. (4) becomes:

(6)

After some arithmetic operations, Eq. (6) can be written as:

(7)

Note that in Eq. (7), parameters αc’s and β’s have a subject-specific interpretation. Given the
covariates X˜ij, U˜ij, the probability at category c for the population, πc (X˜ij, U˜ij), can be
obtained through:

(8)

For a random intercept model, i.e., , approximately we have:
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(9)

That is, (1 + 0.346θ)−1/2 αc and (1+0.346θ)−1/2 β has a population-level interpretation that
can be expressed in terms of the log odds ratio.

3.3 Transitional Markov Models of Multi-States of Knee OA
The MBHMS knee OA data showed that the transition patterns between the six adjacent
follow-up visits are very complex. The transitions can be stable or bidirectional, i.e., from
non-disease to doubtful or any disease, from mild disease to severe disease, or from mild
disease to doubtful or even normal states (see Figure 1 and Figure 2).

Transitional Markov models estimate the transition probabilities between states and examine
the effect of covariates on the transition patterns across ordinal responses over time. The q-
order mixed effect Markov model can be specified as below:

(10)

In Eq. (10), the regression coefficients can be interpreted as the effect of covariates on the
probability of an ordinal event adjusting for the past history of the process. The estimation
procedure and subject-level and population level interpretations of regression coefficients
are found in Eq. (7)～ Eq. (9).

4. APPLICATIONS: LONGITUDINAL KNEE OA
4.1 Data Description

Michigan Bone Health and Metabolism Study (MBHMS) is an on-going population-based
longitudinal study of the natural history of reproductive endocrinology. It relates to the
initiation and development of musculoskeletal and metabolic diseases and functional
limitations in Caucasian women during young and mid-adulthood. It is conducted among
women living in and around Tecumseh, Michigan and includes 664 age-eligible (24–44
years in baseline 1992/3) women whose annual assessments cover a 15-year period from
1992/3 through 2006/7, excluding the 18- and 14-month funding lapses in 1997 and 2003,
respectively. Radiographs are acquired every three years to assess the status of knee OA
initiation and progression. However, women did not have radiographs taken during
pregnancy or breastfeeding.

Evaluation of the knee OA data, as part of longitudinal data bank of MBHMS, showed that
the initiation and progression over time and the transition patterns are complex. Severity
progression can be stable or go both directions, i.e., from non-disease to doubtful or any
disease, from mild disease to severe disease, from mild disease to doubtful or even normal
states. Figure 2 shows the paths in the K-L severity scores progressing across the six time
points when radiographs were available in MBHMS.

As shown in Figure 2, MBHMS knee radiographs were taken in 1992/3, 1995/6, 1998/9,
1999/2000, 2002/3 and 2006/2008. All knee radiographs were taken weight bearing with
anterio-posterior positioning. For this particular evaluation, 625 women contributed knee
OA scores at one or more time points permitting longitudinal data analyses longitudinal data
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analyses. Radiographs of the right and left knee were evaluated using the Kellgren and
Lawrence (K-L) scoring system described in the Atlas of Standard Radiographs of Arthritis
(0=normal/no disease, 1=doubtful OA, 2=minimal OA, 3=moderate OA, and 4=severe OA)
pictorially and editorially. This severity score is based on the degree of osteophyte
formation, joint space narrowing, sclerosis, and joint deformity. Knee OA was defined as the
presence of at least 1 knee with a K-L grade of 2 or higher. There was an extensive quality
assurance program in MBHMS to evaluate interrater reproducibility (reliability) as well as
standardization in reading films across time to address shifts across time. For the detailed
descriptions of osteoarthritis measures, please see references [8–9, 27].

In the analysis, the categories of “moderate OA” and “severe OA” are combined into one
category “moderate or severe OA” considering the cell size of “severe OA”, i.e., OA state
space is {0 = normal or non-diseased, 1 = doubtful, 2=minimal OA, 3=moderate/severe
OA}.

4.2 Results
The mean difference (95% CI) in scores from 28～60 years old between the right knee and
left knee is presented in Figure 3. The data were adjusted for covariates including baseline
body mass index (BMI), physical activity, fat mass, skeletal muscle mass and smoking
behavior. The significant differences observed between ages 46～53 indicates that OA in the
right knee progressively worsened in comparison to OA of the left knee OA. Two knees
were used to define the presence OA in [27]. For illustration purpose, this report used right
knee as a representative of OA severity.

In the MBHMS OAK data, there are about 20% of participants (n=121) contributing 3 or
less data points from radiographs. Therefore, we used a 1-order (i.e., q = 1) mixed effect
Markov model to estimate the probability of observing the transition from an OA state
(defined by K-L scores) at a time to the same or different state. Figure 4a–4d showed the
selected population transition probability surfaces as a function of age and BMI adjusted for
physical activity. The banded gradient surface is the collection transition probabilities given
age and BMI. The contour lines connect points on the age and BMI plane that have the same
value for transition probability.

Essentially, this evidence-based study showed that the transition probability from a specific
state to a better state (e.g., 1→0, 2→1, 2→0, 3→0, 3→1, 3→2) is monotonically decreasing
as women age and/or increase in body size. The probability remaining at the same state (e.g.,
0→0,1→1, 2→2, 3→3) or to a worse state (e.g, 0→1, 0→2,0→3, 1→2, 1→3, 2→3) is
monotonically increased as women aged and/or increased in body size.

5. CONCLUSIONS AND FUTURE WORK
Motivated by the study of longitudinal development and progression of knee osteoarthritis
(OA), this study developed non-parametric mixed-effects models for ordinal outcomes. A
stochastic mixed-effect model was used to evaluate the similarity of longitudinal progressive
trajectories in both sides of knee OA; A non-parametric mixed-effect model based on cubic
B-splne was developed to model the unknown nonlinear trend of logits as a function of time;
1-order Markov Transition model was developed to characterize the transitions among
multi-states of knee OA. The developed method allows more flexible functional dependence
of the ordinal outcome on the covariates. The future works include: (1) comparison of knots
selection stratigies (number and positions, or methods) for cubic B-spline; (2) extension to
generalized additive mixed-effects models for more than one covariates with unknow
nonlinear functional forms.
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Figure 1.
Transition of states of knee OA. Simultaneous transition in both knees (black color);/Right
knee only transition (Red color); Left knee only transition (blue color)
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Figure 2.
MBHMS: multi-state transition of OA in both knees with time on the horizontal axis and
severity scores on the vertical axis ranging from zero (no OA) in the tope left hand corner to
severe OA in the bottom left hand corner.
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Figure 3.
population difference score
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Figure 4.
Figure 4a: Transition probability from 0→0
Figure 4b: Transition probability from 0→1
Figure 4c: Transition probability from 1→0
Figure 4d: Transition probability from 1→2
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